首页 > 最新文献

Current drug delivery最新文献

英文 中文
Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications. 转运体克服皮肤屏障:机遇、挑战和应用。
Pub Date : 2024-01-04 DOI: 10.2174/0115672018272012231213100535
Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain

Background: Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications.

Objectives: The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.

Methods: Data we searched from PubMed, Google Scholar, and ScienceDirect.

Results: In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.

Conclusion: In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.

背景:与注射和口服等传统方法相比,透皮给药系统(TDDS)具有多种优势,包括防止首过代谢、提供一致和持续的活性、减少副作用、允许使用半衰期短的药物、改善生理反应以及为患者提供更多便利。然而,皮肤的渗透性给 TDDS 带来了挑战,因为皮肤对大分子和亲水性药物不具渗透性,但对小分子和亲油性药物具有渗透性。为了克服这一障碍,研究人员研究了囊泡系统,如转移体、脂质体、niosomes 和 ethosomes。在这些囊泡系统中,转运体因其可变形性和柔性膜而特别有望用于非侵入性给药。在通过皮肤给药抗癌药物、胰岛素、皮质类固醇、草药和非甾体抗炎药方面,人们对它们进行了广泛的研究。转移体在治疗皮肤癌、改善胰岛素给药、增强皮质类固醇的特定部位给药以及提高中草药的渗透性和治疗效果等方面都有显著疗效。在使用非甾体抗炎药和阿片类药物止痛时,它们也能将副作用降到最低。转移体已被用于透皮免疫和靶向给药,提供特定部位的释放,并将不良反应降至最低。总之,转移体是一种很有前景的透皮给药方法,可用于多种治疗应用:本综述旨在讨论转移体的各种优势和局限性、它们在皮肤上的渗透机制,以及它们在抗癌、抗糖尿病、非甾体抗炎药、草药和透皮免疫等各种药物递送中的应用:方法:我们从 PubMed、Google Scholar 和 ScienceDirect 上搜索数据:在这篇综述中,我们探讨了转移体的各种制备方法及其在抗癌、抗糖尿病、非甾体抗炎药、草药和透皮免疫等各种药物递送中的应用:结论:与其他囊泡系统相比,转运体更灵活,皮肤穿透能力更强,可转运全身性药物,而且更稳定。转移体既能输送亲水性药物,也能输送疏水性药物,因此适用于透皮给药。所开发的转移体凝胶可用于改善经皮肤给药。
{"title":"Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications.","authors":"Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain","doi":"10.2174/0115672018272012231213100535","DOIUrl":"https://doi.org/10.2174/0115672018272012231213100535","url":null,"abstract":"<p><strong>Background: </strong>Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications.</p><p><strong>Objectives: </strong>The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Methods: </strong>Data we searched from PubMed, Google Scholar, and ScienceDirect.</p><p><strong>Results: </strong>In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Conclusion: </strong>In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. 离子液体在药学中的重要作用综述。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018255191230921035859
Prerna Uniyal, Shibam Das, Surbhi Panwar, Neelima Kukreti, Pankaj Nainwal, Rohit Bhatia

Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.

离子液体(ILs)是配位不良的离子盐,在室温下可以作为液体存在(或
{"title":"A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences.","authors":"Prerna Uniyal, Shibam Das, Surbhi Panwar, Neelima Kukreti, Pankaj Nainwal, Rohit Bhatia","doi":"10.2174/0115672018255191230921035859","DOIUrl":"10.2174/0115672018255191230921035859","url":null,"abstract":"<p><p>Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as \"designer solvents\" because so many of them have been created to solve particular synthetic issues. ILs are regarded as \"green solvents\" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1197-1210"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. 针对各种肺部疾病的可吸入药物输送系统的最新进展:挑战和未来展望。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018265571231011093546
Kabi Raj Chaudhary, Karanvir Singh, Charan Singh

In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.

在目前的情况下,肺病已成为世界各地发病率和死亡率的主要负担,同时也引发了巨大的社会和经济危机。许多针对呼吸区域的传统药物递送系统和治疗方法已经被淘汰。然而,尚未实现有效和准确的恢复。在这方面,基于纳米技术的可吸入药物递送策略,包括聚合物、脂质或金属基可吸入微粒,在规避传统治疗过程中面临的众多挑战方面发挥着不可或缺的作用。优异的空气动力学性能可增强肺部靶向性,降低给药频率,从而降低全身毒性,并改善药物特性,因此药代动力学特征是与纳米技术可吸入递送相关的无休止因素。在这篇综述中,我们全面探讨了针对上述每种肺部疾病的纳米技术工程可吸入制剂的最新进展。此外,我们系统地讨论了吸入颗粒物的不确定和不确定的物理化学特征可能产生的呼吸道或全身毒性。
{"title":"Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives.","authors":"Kabi Raj Chaudhary, Karanvir Singh, Charan Singh","doi":"10.2174/0115672018265571231011093546","DOIUrl":"10.2174/0115672018265571231011093546","url":null,"abstract":"<p><p>In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1320-1345"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advancements in Bioelectronic Medicine: A Review. 生物电子医学的最新进展:回顾。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018286832231218112557
Sudipta Das, Baishali Ghosh, Rudra Narayan Sahoo, Amit Kumar Nayak

Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.

生物电子医学是一个多学科领域,它将分子医学、神经学、工程学和计算机科学结合起来,设计用于诊断和治疗疾病的设备。生物电子医学的进步可以提高疾病治疗的精确性和个性化。生物电子医学可以产生、抑制和测量可兴奋组织中的电活动。生物电子设备利用电子而不是药物来改变特定的神经回路,并利用生物电子过程来调节各种疾病的生物过程。与传统药物治疗相比,生物电子设备具有解决疾病根本原因、减少不良反应和降低成本的潜力。本综述介绍了生物电子药物的不同重要方面以及最新进展。生物电子医学领域在治疗疾病方面具有很大的潜力,可通过调节脑脉冲实现非侵入性治疗干预。生物电子医学利用电能控制生物过程、治疗疾病或恢复丧失的能力。这些新型药物是通过检测和调节神经系统电信号方法的技术发展设计出来的。外周神经系统调节慢性疾病的各种过程;它涉及在特定外周神经上植入小型装置,读取并调节大脑信号模式,以达到针对特定器官信号能力的治疗效果。生物电子医学领域潜力巨大,它研究如何治疗各种疾病,包括类风湿性关节炎、糖尿病、高血压、瘫痪、慢性病、失明等。
{"title":"Recent Advancements in Bioelectronic Medicine: A Review.","authors":"Sudipta Das, Baishali Ghosh, Rudra Narayan Sahoo, Amit Kumar Nayak","doi":"10.2174/0115672018286832231218112557","DOIUrl":"10.2174/0115672018286832231218112557","url":null,"abstract":"<p><p>Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1445-1459"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellulose Acetate-Based Wound Dressings Loaded with Bioactive Agents: Potential Scaffolds for Wound Dressing and Skin Regeneration. 载有生物活性剂的醋酸纤维素伤口敷料:伤口敷料和皮肤再生的潜在支架。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018262616231001191356
Sindi P Ndlovu, Sibusiso Alven, Kula Hlalisa, Blessing A Aderibigbe

Wound healing and skin regeneration are major challenges in chronic wounds. Among the types of wound dressing products currently available in the market, each wound dressing material is designed for a specific wound type. Some of these products suffer from various shortcomings, such as poor antibacterial efficacy and mechanical performance, inability to provide a moist environment, poor permeability to oxygen and capability to induce cell migration and proliferation during the wound healing process. Hydrogels and nanofibers are widely reported wound dressings that have demonstrated promising capability to overcome these shortcomings. Cellulose acetate is a semisynthetic polymer that has attracted great attention in the fabrication of hydrogels and nanofibers. Loading bioactive agents such as antibiotics, essential oils, metallic nanoparticles, plant extracts, and honey into cellulose acetate-based nanofibers and hydrogels enhanced their biological effects, including antibacterial, antioxidant, and wound healing. This review reports cellulose acetate-based hydrogels and nanofibers loaded with bioactive agents for wound dressing and skin regeneration.

伤口愈合和皮肤再生是慢性伤口的主要挑战。在目前市场上可用的伤口敷料产品类型中,每种伤口敷料材料都是为特定的伤口类型设计的。这些产品中的一些存在各种缺点,例如抗菌功效和机械性能差、无法提供潮湿的环境、对氧气的渗透性差以及在伤口愈合过程中诱导细胞迁移和增殖的能力差。水凝胶和纳米纤维是广泛报道的伤口敷料,它们已经证明了克服这些缺点的有希望的能力。醋酸纤维素是一种半合成聚合物,在水凝胶和纳米纤维的制备中备受关注。将抗生素、精油、金属纳米颗粒、植物提取物和蜂蜜等生物活性剂加载到基于醋酸纤维素的纳米纤维和水凝胶中,增强了其生物效应,包括抗菌、抗氧化和伤口愈合。这篇综述报道了用于伤口敷料和皮肤再生的基于乙酸纤维素的水凝胶和负载有生物活性剂的纳米纤维。
{"title":"Cellulose Acetate-Based Wound Dressings Loaded with Bioactive Agents: Potential Scaffolds for Wound Dressing and Skin Regeneration.","authors":"Sindi P Ndlovu, Sibusiso Alven, Kula Hlalisa, Blessing A Aderibigbe","doi":"10.2174/0115672018262616231001191356","DOIUrl":"10.2174/0115672018262616231001191356","url":null,"abstract":"<p><p>Wound healing and skin regeneration are major challenges in chronic wounds. Among the types of wound dressing products currently available in the market, each wound dressing material is designed for a specific wound type. Some of these products suffer from various shortcomings, such as poor antibacterial efficacy and mechanical performance, inability to provide a moist environment, poor permeability to oxygen and capability to induce cell migration and proliferation during the wound healing process. Hydrogels and nanofibers are widely reported wound dressings that have demonstrated promising capability to overcome these shortcomings. Cellulose acetate is a semisynthetic polymer that has attracted great attention in the fabrication of hydrogels and nanofibers. Loading bioactive agents such as antibiotics, essential oils, metallic nanoparticles, plant extracts, and honey into cellulose acetate-based nanofibers and hydrogels enhanced their biological effects, including antibacterial, antioxidant, and wound healing. This review reports cellulose acetate-based hydrogels and nanofibers loaded with bioactive agents for wound dressing and skin regeneration.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1226-1240"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects. 基于生物材料的神经变性新策略:最新进展与未来展望》。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018275382231215063052
Dilpreet Singh, Sanjay Nagdev

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.

神经退行性疾病,包括阿尔茨海默氏症、帕金森氏症和亨廷顿氏症,由于中枢神经系统的复杂性和向大脑输送治疗药物的局限性,给有效治疗带来了巨大挑战。基于生物材料的给药系统为克服这些挑战和改善治疗效果提供了前景广阔的策略。这些系统利用各种生物材料,如纳米颗粒、水凝胶和植入物,将药物、基因或细胞输送到大脑的受影响区域。它们具有靶向递送、控制释放和保护治疗剂等优势。本综述探讨了生物材料在神经变性药物递送中的作用,讨论了基于生物材料的不同方法,包括表面修饰、封装和功能化技术。此外,它还探讨了基于生物材料的给药系统在神经退行性疾病领域面临的挑战、未来前景和潜在影响。
{"title":"Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects.","authors":"Dilpreet Singh, Sanjay Nagdev","doi":"10.2174/0115672018275382231215063052","DOIUrl":"10.2174/0115672018275382231215063052","url":null,"abstract":"<p><p>Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1037-1049"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatile Oil of Magnolia biondii Pamp. for Transnasal Administration: Its Preparation, Characterization, and Mechanism of Action in the Treatment of Allergic Rhinitis. 用于经鼻给药的厚朴挥发油:经鼻给药:木兰花挥发油的制备、特性及治疗过敏性鼻炎的作用机制》。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018286048240229180813
Qiuting Guo, Xuan Wang, Yao Wang, Peijie Zhou, Xiaofei Zhang

Background: Allergic Rhinitis (AR) is a common chronic nasal condition usually caused by allergens. The immune system overreacts when the body is exposed to allergens, releasing a lot of tissue chemicals that cause congestion, more secretions, and an inflammatory reaction in the nasal mucosa.

Method: In clinical practice, it remains a significant public health issue. Modern pharmacological studies have demonstrated that Magnolia Volatile Oil (MVO) has good anti-inflammatory, antibacterial, immunomodulatory, and other pharmacological effects. Previous research and literature reports have reported that MVO has good therapeutic effects on allergic rhinitis. However, due to the poor water solubility of Magnolia, its bioavailability is low. The purpose of this present work is to develop a new microemulsion formulation to improve the stability and bioavailability of MVO.

Results: The droplet size, PDI, and zeta potential of Magnolia volatile oil microemulsion (MVOME) were characterized along with its physical characteristics, and these values were found to be 14.270.03 nm, 0.09410.31, and -0.35850.12 mV, respectively, demonstrating the successful formation of microemulsion. In OVA-induced AR rats, MVO-ME dramatically reduced the serum levels of TNF-α, IL-1β, and IL-6 inflammatory factors. In addition, MVO-ME significantly inhibited the expression of protein levels of PPAR-γ and P65 in the nasal mucosa of AR rats. In this regard, we hypothesized that MVO-ME may play a therapeutic role in AR by activating the PPAR signaling pathway as well as inhibiting the activation of the NF/κB signaling pathway.

Conclusion: MVO-ME has systematic advantages, such as high solubility, bioavailability, etc. It is expected to be an efficient nano-drug delivery system for the clinical treatment of allergic rhinitis.

背景:过敏性鼻炎(AR)是一种常见的慢性鼻部疾病,通常由过敏原引起。当人体接触过敏原时,免疫系统会做出过度反应,释放出大量组织化学物质,导致鼻塞、分泌物增多以及鼻粘膜炎症反应:在临床实践中,这仍然是一个重要的公共卫生问题。现代药理研究表明,厚朴挥发油(MVO)具有良好的抗炎、抗菌、免疫调节等药理作用。以往的研究和文献报道表明,厚朴挥发油对过敏性鼻炎有良好的治疗效果。然而,由于厚朴的水溶性较差,其生物利用度较低。本研究的目的是开发一种新的微乳剂配方,以提高厚朴的稳定性和生物利用度:结果:研究人员对厚朴挥发油微乳液(MVOME)的液滴尺寸、PDI 和 zeta 电位及其物理特性进行了表征,发现这些值分别为 14.270.03 nm、0.09410.31 和 -0.35850.12 mV,表明微乳液的形成是成功的。在 OVA 诱导的 AR 大鼠中,MVO-ME 能显著降低血清中 TNF-α、IL-1β 和 IL-6 炎症因子的水平。此外,MVO-ME 还能显著抑制 AR 大鼠鼻粘膜中 PPAR-γ 和 P65 蛋白水平的表达。因此,我们推测MVO-ME可能通过激活PPAR信号通路以及抑制NF/κB信号通路的激活,对AR起到治疗作用:结论:MVO-ME具有高溶解度、生物利用度等系统性优势。结论:MVO-ME 具有高溶解度、生物利用度等系统优势,有望成为临床治疗过敏性鼻炎的高效纳米给药系统。
{"title":"Volatile Oil of <i>Magnolia biondii</i> Pamp. for Transnasal Administration: Its Preparation, Characterization, and Mechanism of Action in the Treatment of Allergic Rhinitis.","authors":"Qiuting Guo, Xuan Wang, Yao Wang, Peijie Zhou, Xiaofei Zhang","doi":"10.2174/0115672018286048240229180813","DOIUrl":"10.2174/0115672018286048240229180813","url":null,"abstract":"<p><strong>Background: </strong>Allergic Rhinitis (AR) is a common chronic nasal condition usually caused by allergens. The immune system overreacts when the body is exposed to allergens, releasing a lot of tissue chemicals that cause congestion, more secretions, and an inflammatory reaction in the nasal mucosa.</p><p><strong>Method: </strong>In clinical practice, it remains a significant public health issue. Modern pharmacological studies have demonstrated that Magnolia Volatile Oil (MVO) has good anti-inflammatory, antibacterial, immunomodulatory, and other pharmacological effects. Previous research and literature reports have reported that MVO has good therapeutic effects on allergic rhinitis. However, due to the poor water solubility of Magnolia, its bioavailability is low. The purpose of this present work is to develop a new microemulsion formulation to improve the stability and bioavailability of MVO.</p><p><strong>Results: </strong>The droplet size, PDI, and zeta potential of Magnolia volatile oil microemulsion (MVOME) were characterized along with its physical characteristics, and these values were found to be 14.270.03 nm, 0.09410.31, and -0.35850.12 mV, respectively, demonstrating the successful formation of microemulsion. In OVA-induced AR rats, MVO-ME dramatically reduced the serum levels of TNF-α, IL-1β, and IL-6 inflammatory factors. In addition, MVO-ME significantly inhibited the expression of protein levels of PPAR-γ and P65 in the nasal mucosa of AR rats. In this regard, we hypothesized that MVO-ME may play a therapeutic role in AR by activating the PPAR signaling pathway as well as inhibiting the activation of the NF/κB signaling pathway.</p><p><strong>Conclusion: </strong>MVO-ME has systematic advantages, such as high solubility, bioavailability, etc. It is expected to be an efficient nano-drug delivery system for the clinical treatment of allergic rhinitis.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1408-1421"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured Lipid Carrier-Mediated Transdermal Delivery System of Glibenclamide for Gestational Diabetes: Pharmacokinetic and Pharmacodynamic Evaluation. 纳米结构脂质载体介导的格列本脲透皮给药系统用于妊娠糖尿病:药代动力学和药效学评估。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018274038231212105440
M Ashwini, Preethi Sudheer, Bharani S Sogali

Background: Gestational diabetes mellitus (GDM) poses significant risks during pregnancy for both mother and fetus. Adherence to oral antidiabetic medications, like glibenclamide (GB), can be challenging, necessitating novel drug delivery methods. Nanostructured lipid carriers (NLC) offer a promising approach by efficiently permeating the skin due to their small size and lipid-based composition.

Objective: This study aimed to develop and evaluate transdermal patches loaded with glibenclamide NLCs to treat GDM.

Methods: Glibenclamide NLCs were prepared using hot homogenization with ultrasonication and melt dispersion method. A central composite design was utilized to optimize the formulations. Transdermal patches containing optimized NLCs were developed using HPMC K 100 and Eudragit L polymers. The patches were evaluated for various parameters, and their pharmacokinetic and pharmacodynamic studies were carried out to assess their safety and efficacy.

Results: Optimized NLCs efficiently permeated rat skin. Cell viability studies indicated the nontoxicity of the formulations. NLC-loaded transdermal patches (F2 and F7) showed drug release of 1098 μg/cm2 and 1001.83 μg/cm2 in 24 h, with a 2.5-fold higher flux and permeation coefficient than the GB patch. Pharmacokinetic analysis revealed Tmax of 8 and 10 h and Cmax of 7127 ng/ml and 7960 ng/ml for F2 and F7, respectively, ensuring sustained drug action. AUC0-α was 625681 ng/ml·h and 363625 ng/ml·h for F2 and F7, respectively, indicating improved bioavailability.

Conclusion: Transdermal patches incorporating NLCs hold promise for enhancing glibenclamide's therapeutic efficacy in GDM treatment. Improved skin permeation, sustained drug release, and enhanced bioavailability make NLC-based transdermal patches a potential alternative with better patient compliance.

背景:妊娠期糖尿病(GDM)对孕妇和胎儿都有很大风险。口服抗糖尿病药物(如格列本脲(GB))的依从性可能具有挑战性,因此需要新型给药方法。纳米结构脂质载体(NLC)因其体积小和基于脂质的成分,可有效渗透皮肤,是一种很有前景的方法:本研究旨在开发和评估装载格列本脲 NLC 的透皮贴片,以治疗 GDM:方法:采用超声热均质法和熔融分散法制备格列本脲NLCs。采用中心复合设计对制剂进行优化。使用 HPMC K 100 和 Eudragit L 聚合物开发了含有优化 NLCs 的透皮贴片。对这些贴剂进行了各种参数评估,并开展了药代动力学和药效学研究,以评估其安全性和有效性:结果:优化后的 NLC 可有效渗透大鼠皮肤。细胞存活率研究表明制剂无毒性。负载 NLC 的透皮贴片(F2 和 F7)在 24 小时内的药物释放量分别为 1098 μg/cm2 和 1001.83 μg/cm2,通量和渗透系数是 GB 贴片的 2.5 倍。药代动力学分析表明,F2 和 F7 的 Tmax 分别为 8 小时和 10 小时,Cmax 分别为 7127 纳克/毫升和 7960 纳克/毫升,确保了药物的持续作用。F2 和 F7 的 AUC0-α 分别为 625681 ng/ml*h 和 363625 ng/ml*h,表明生物利用度有所提高:结论:含有 NLC 的透皮贴剂有望提高格列本脲在 GDM 治疗中的疗效。皮肤渗透性的改善、药物的持续释放和生物利用度的提高使基于 NLC 的透皮贴剂成为一种潜在的替代品,病人的依从性更好。
{"title":"Nanostructured Lipid Carrier-Mediated Transdermal Delivery System of Glibenclamide for Gestational Diabetes: Pharmacokinetic and Pharmacodynamic Evaluation.","authors":"M Ashwini, Preethi Sudheer, Bharani S Sogali","doi":"10.2174/0115672018274038231212105440","DOIUrl":"10.2174/0115672018274038231212105440","url":null,"abstract":"<p><strong>Background: </strong>Gestational diabetes mellitus (GDM) poses significant risks during pregnancy for both mother and fetus. Adherence to oral antidiabetic medications, like glibenclamide (GB), can be challenging, necessitating novel drug delivery methods. Nanostructured lipid carriers (NLC) offer a promising approach by efficiently permeating the skin due to their small size and lipid-based composition.</p><p><strong>Objective: </strong>This study aimed to develop and evaluate transdermal patches loaded with glibenclamide NLCs to treat GDM.</p><p><strong>Methods: </strong>Glibenclamide NLCs were prepared using hot homogenization with ultrasonication and melt dispersion method. A central composite design was utilized to optimize the formulations. Transdermal patches containing optimized NLCs were developed using HPMC K 100 and Eudragit L polymers. The patches were evaluated for various parameters, and their pharmacokinetic and pharmacodynamic studies were carried out to assess their safety and efficacy.</p><p><strong>Results: </strong>Optimized NLCs efficiently permeated rat skin. Cell viability studies indicated the nontoxicity of the formulations. NLC-loaded transdermal patches (F2 and F7) showed drug release of 1098 μg/cm<sup>2</sup> and 1001.83 μg/cm<sup>2</sup> in 24 h, with a 2.5-fold higher flux and permeation coefficient than the GB patch. Pharmacokinetic analysis revealed Tmax of 8 and 10 h and C<sub>max</sub> of 7127 ng/ml and 7960 ng/ml for F2 and F7, respectively, ensuring sustained drug action. AUC0-α was 625681 ng/ml·h and 363625 ng/ml·h for F2 and F7, respectively, indicating improved bioavailability.</p><p><strong>Conclusion: </strong>Transdermal patches incorporating NLCs hold promise for enhancing glibenclamide's therapeutic efficacy in GDM treatment. Improved skin permeation, sustained drug release, and enhanced bioavailability make NLC-based transdermal patches a potential alternative with better patient compliance.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1386-1407"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Polyvinyl Alcohol/Polyethylene Glycol Copolymer-based Orodispersible Films Loaded with Entecavir: Formulation and In vitro Characterization. 基于聚乙烯醇/聚乙二醇共聚物的恩替卡韦口服分散膜的开发:配方和体外表征。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018261294231024093926
Teng Wei, Bing-Yu Zhou, Xin-Hong Wu, Xue-Ai Liu, Ming-Wei Huo, Xiang-Xiang Huang, Ling-Zhi Shi, Li-Li Shi, Qin-Ri Cao

Purpose: The aim of the study is to prepare entecavir (ETV)-loaded orodispersible films (ODFs) using polyvinyl alcohol (PVA)/polyethylene glycol (PEG) graft copolymer (Kollicoat® IR) as a film-forming agent, and further to evaluate the dissolution rate, mechanical and physicochemical properties of films.

Methods: ETV-ODFs were prepared by a solvent casting method. The amount of film-forming agent, plasticizer, and disintegrating agent was optimized in terms of the appearance, thickness, disintegration time and mechanical properties of ODFs. The compatibility between the drug and each excipient was conducted under high temperature (60 °C), high humidity (RH 92.5%), and strong light (4500 Lx) for 10 days. The dissolution study of optimal ODFs compared with the original commercial tablet (Baraclude®) was performed using a paddle method in pH 1.0, pH 4.5, pH 6.8, and pH 7.4 media at 37 °C. The morphology of ODFs was observed via scanning electron microscopy (SEM). The mechanical properties such as tensile strength (TS), elastic modulus (EM), and percentage elongation (E%) of ODFs were evaluated using the universal testing machine. The physicochemical properties of ODFs were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR).

Results: The related substances were less than 0.5% under high temperature, high humidity, and strong light for 10 days when ETV was mixed with excipients. The optimal formulation of ODFs was set as the quality ratio of Kollicoat® IR, glycerol, sodium alginate (ALG-Na): TiO2: MCC+CMC-Na: ETV was 60:9:12:1:1:1. The drug-loaded ODFs were white and translucent with excellent stripping property. The thickness, disintegration time, EM, TS, and E% were 103.33±7.02 μm, 25.31±1.95 s, 25.34±8.69 Mpa, 2.14±0.26 Mpa, and 65.45±19.41 %, respectively. The cumulative drug release from ODFs was more than 90% in four different media at 10 min. The SEM showed that the drug was highly dispersible in ODFs, and the XRD, DSC, and FT-IR results showed that there occurred some interactions between the drug and excipients.

Conclusion: In conclusion, the developed ETV-loaded ODFs showed relatively short disintegration time, rapid drug dissolution, and excellent mechanical properties. This might be an alternative to conventional ETV Tablets for the treatment of chronic hepatitis B.

目的:以聚乙烯醇(PVA)/聚乙二醇(PEG)接枝共聚物(Kollicoat®IR)为成膜剂,制备负载恩替卡韦(ETV)的口腔分散性薄膜,并进一步评价薄膜的溶解速率、力学性能和物理化学性能。方法:采用溶剂浇铸法制备ETV ODFs。从ODFs的外观、厚度、崩解时间和力学性能等方面优化了成膜剂、增塑剂和崩解剂的用量。在高温(60°C)、高湿度(相对湿度92.5%)和强光(4500Lx)下对药物和每种赋形剂进行10天的兼容性测试。与原始商业片剂(Baraclude®)相比,最佳ODF的溶出度研究是在37°C的pH 1.0、pH 4.5、pH 6.8和pH 7.4介质中使用桨法进行的。通过扫描电子显微镜(SEM)观察ODF的形态。使用通用试验机评估ODF的力学性能,如拉伸强度(TS)、弹性模量(EM)和伸长率(E%)。利用X射线衍射(XRD)、差示扫描量热法(DSC)和傅立叶变换红外光谱(FT-IR)对ODFs的理化性质进行了研究。ODFs的最佳配方为Kollicoat®IR、甘油、藻酸钠(ALG-Na):TiO2:MCC+CMC-Na:ETV的质量比为60:9:12:1:1。载药ODF呈白色半透明,具有良好的剥离性能。厚度、崩解时间、EM、TS和E%分别为103.33±7.02μm、25.31±1.95 s、25.34±8.69 Mpa、2.14±0.26 Mpa和65.45±19.41%。在四种不同的介质中,ODFs在10分钟内的累积药物释放超过90%。SEM显示药物在ODFs中高度分散,XRD、DSC和FT-IR结果显示药物与赋形剂之间存在一些相互作用。结论:制备的ETV负载ODFs崩解时间相对较短,药物溶出速度快,力学性能优异。这可能是治疗慢性乙型肝炎的传统ETV片的替代品。
{"title":"Development of Polyvinyl Alcohol/Polyethylene Glycol Copolymer-based Orodispersible Films Loaded with Entecavir: Formulation and <i>In vitro</i> Characterization.","authors":"Teng Wei, Bing-Yu Zhou, Xin-Hong Wu, Xue-Ai Liu, Ming-Wei Huo, Xiang-Xiang Huang, Ling-Zhi Shi, Li-Li Shi, Qin-Ri Cao","doi":"10.2174/0115672018261294231024093926","DOIUrl":"10.2174/0115672018261294231024093926","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of the study is to prepare entecavir (ETV)-loaded orodispersible films (ODFs) using polyvinyl alcohol (PVA)/polyethylene glycol (PEG) graft copolymer (Kollicoat® IR) as a film-forming agent, and further to evaluate the dissolution rate, mechanical and physicochemical properties of films.</p><p><strong>Methods: </strong>ETV-ODFs were prepared by a solvent casting method. The amount of film-forming agent, plasticizer, and disintegrating agent was optimized in terms of the appearance, thickness, disintegration time and mechanical properties of ODFs. The compatibility between the drug and each excipient was conducted under high temperature (60 °C), high humidity (RH 92.5%), and strong light (4500 Lx) for 10 days. The dissolution study of optimal ODFs compared with the original commercial tablet (Baraclude®) was performed using a paddle method in pH 1.0, pH 4.5, pH 6.8, and pH 7.4 media at 37 °C. The morphology of ODFs was observed via scanning electron microscopy (SEM). The mechanical properties such as tensile strength (TS), elastic modulus (EM), and percentage elongation (E%) of ODFs were evaluated using the universal testing machine. The physicochemical properties of ODFs were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR).</p><p><strong>Results: </strong>The related substances were less than 0.5% under high temperature, high humidity, and strong light for 10 days when ETV was mixed with excipients. The optimal formulation of ODFs was set as the quality ratio of Kollicoat® IR, glycerol, sodium alginate (ALG-Na): TiO2: MCC+CMC-Na: ETV was 60:9:12:1:1:1. The drug-loaded ODFs were white and translucent with excellent stripping property. The thickness, disintegration time, EM, TS, and E% were 103.33±7.02 μm, 25.31±1.95 s, 25.34±8.69 Mpa, 2.14±0.26 Mpa, and 65.45±19.41 %, respectively. The cumulative drug release from ODFs was more than 90% in four different media at 10 min. The SEM showed that the drug was highly dispersible in ODFs, and the XRD, DSC, and FT-IR results showed that there occurred some interactions between the drug and excipients.</p><p><strong>Conclusion: </strong>In conclusion, the developed ETV-loaded ODFs showed relatively short disintegration time, rapid drug dissolution, and excellent mechanical properties. This might be an alternative to conventional ETV Tablets for the treatment of chronic hepatitis B.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1362-1374"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transdermal Drug Delivery System of Linagliptin Sustained-release Microparticle Gels: In vitro Characterization and In vivo Evaluation. 利拉利汀缓释微粒凝胶透皮给药系统:体外表征和体内评估。
Pub Date : 2024-01-01 DOI: 10.2174/0115672018279370240103062944
Jiayan Liu, Song Guo, Shuai Hong, Jingshu Piao, Mingguan Piao

Background: Linagliptin (LNG) exhibits poor bioavailability and numerous side effects, significantly limiting its use. Transdermal drug delivery systems (TDDS) offer a potential solution to overcome the first-pass effect and gastrointestinal reactions associated with oral formulations.

Objective: The aim of this study was to develop LNG microparticle gels to enhance drug bioavailability and mitigate side effects.

Methods: Linagliptin hyaluronic acid (LNG-HA) microparticles were prepared by spray drying method and their formulation was optimized via a one-factor method. The solubility and release were investigated using the slurry method. LNG-HA microparticle gels were prepared and optimised using in vitro transdermal permeation assay. The hypoglycaemic effect of the LNG-HA microparticle gel was examined on diabetic mice.

Results: The results indicated that the LNG-HA microparticle encapsulation rate was 84.46%. Carbomer was selected as the gel matrix for the microparticle gels. Compared to the oral API, the microparticle gel formulation demonstrated a distinct biphasic release pattern. In the first 30 minutes, only 43.56% of the drug was released, followed by a gradual release. This indicates that the formulation achieved a slow-release effect from a dual reservoir system. Furthermore, pharmacodynamic studies revealed a sustained hypoglycemic effect lasting for 48 hours with the LNG microparticle gel formulation.

Conclusion: These findings signify that the LNG microparticle gel holds significant clinical value for providing sustained release and justifies its practical application.

背景:利拉利汀(LNG)生物利用度低,副作用多,严重限制了其使用。透皮给药系统(TDDS)为克服与口服制剂相关的首过效应和胃肠道反应提供了一种潜在的解决方案:本研究旨在开发 LNG 微颗粒凝胶,以提高药物的生物利用度并减轻副作用:方法:采用喷雾干燥法制备了利拉利汀透明质酸(LNG-HA)微颗粒,并通过单因素法对其配方进行了优化。采用浆液法研究了其溶解度和释放度。制备了 LNG-HA 微颗粒凝胶,并通过体外透皮试验对其进行了优化。在糖尿病小鼠身上检测了 LNG-HA 微颗粒凝胶的降血糖效果:结果:结果表明,LNG-HA 微颗粒的包封率为 84.46%。微颗粒凝胶选择了卡波姆作为凝胶基质。与口服原料药相比,微颗粒凝胶制剂表现出明显的双相释放模式。在最初的 30 分钟内,只有 43.56% 的药物被释放,随后药物逐渐释放。这表明该制剂实现了双储层系统的缓释效果。此外,药效学研究表明,液化天然气微粒凝胶配方的持续降糖效果可持续 48 小时:这些研究结果表明,液化天然气微颗粒凝胶在提供持续释放方面具有重要的临床价值,并证明了其实际应用的合理性。
{"title":"Transdermal Drug Delivery System of Linagliptin Sustained-release Microparticle Gels: <i>In vitro</i> Characterization and <i>In vivo</i> Evaluation.","authors":"Jiayan Liu, Song Guo, Shuai Hong, Jingshu Piao, Mingguan Piao","doi":"10.2174/0115672018279370240103062944","DOIUrl":"10.2174/0115672018279370240103062944","url":null,"abstract":"<p><strong>Background: </strong>Linagliptin (LNG) exhibits poor bioavailability and numerous side effects, significantly limiting its use. Transdermal drug delivery systems (TDDS) offer a potential solution to overcome the first-pass effect and gastrointestinal reactions associated with oral formulations.</p><p><strong>Objective: </strong>The aim of this study was to develop LNG microparticle gels to enhance drug bioavailability and mitigate side effects.</p><p><strong>Methods: </strong>Linagliptin hyaluronic acid (LNG-HA) microparticles were prepared by spray drying method and their formulation was optimized via a one-factor method. The solubility and release were investigated using the slurry method. LNG-HA microparticle gels were prepared and optimised using in vitro transdermal permeation assay. The hypoglycaemic effect of the LNG-HA microparticle gel was examined on diabetic mice.</p><p><strong>Results: </strong>The results indicated that the LNG-HA microparticle encapsulation rate was 84.46%. Carbomer was selected as the gel matrix for the microparticle gels. Compared to the oral API, the microparticle gel formulation demonstrated a distinct biphasic release pattern. In the first 30 minutes, only 43.56% of the drug was released, followed by a gradual release. This indicates that the formulation achieved a slow-release effect from a dual reservoir system. Furthermore, pharmacodynamic studies revealed a sustained hypoglycemic effect lasting for 48 hours with the LNG microparticle gel formulation.</p><p><strong>Conclusion: </strong>These findings signify that the LNG microparticle gel holds significant clinical value for providing sustained release and justifies its practical application.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"1537-1547"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1