In this article, the effects on the weld bead geometry and heat affected zone at observe area explored on Wire Arc Additive Manufacturing Gas Tungsten Arc Welding (WAAM-GTAW). Based on GTAW process, layer by layer WAAM components are produced by deposition welding. Each welding process, the temperature is recorded at one point to determine temperature history. This article explained how specific thermal cycles, from the welding heat input to subsequent cooling phases, dictate the transformation behavior, phase stability, and morphological changes in δ-ferrite, ultimately shaping the material properties and performance of the welded. The factor affecting these properties were explained to identify evolution microstructure in observe area. The paper focuses on the impact of the temperature history to determine macrostructure and microstructure δ-ferrite evolutions of the observe parts deposited in the WAAM process. The thermal cycle experienced during welding lead to the transformation of δ-ferrite into austenite. The δ-ferrite transforms in austenite when the temperature rises above 800 °C–450 °C (T 8/5). Specimens that experienced temperatures above T8/5 exhibited vermicular (V) and eutectic ferrite (EF) modes of delta ferrite. Specimens that had peak temperature prediction records around 750 °C–525 °C in the T8/5 area exhibited ferrite with acicular (Ac) mode. Specimens approaching the lower line of T8/5 around 425 °C showed a transition from acicular to coarse Ac. Specimens with peak temperature records below the T8/5 line generally did not experience changes after the welding process.
{"title":"Influence of the welding thermal cycle on δ-ferrite evolution in the first layer of austenitic stainless steel (ASS) 308L produced by WAAM-GTAW","authors":"Moch Chamim , Djarot B. Darmadi , Anindito Purnowidodo , Teguh Dwi Widodo , Zuhdi Ismail","doi":"10.1016/j.csite.2024.105489","DOIUrl":"10.1016/j.csite.2024.105489","url":null,"abstract":"<div><div>In this article, the effects on the weld bead geometry and heat affected zone at observe area explored on Wire Arc Additive Manufacturing Gas Tungsten Arc Welding (WAAM-GTAW). Based on GTAW process, layer by layer WAAM components are produced by deposition welding. Each welding process, the temperature is recorded at one point to determine temperature history. This article explained how specific thermal cycles, from the welding heat input to subsequent cooling phases, dictate the transformation behavior, phase stability, and morphological changes in δ-ferrite, ultimately shaping the material properties and performance of the welded. The factor affecting these properties were explained to identify evolution microstructure in observe area. The paper focuses on the impact of the temperature history to determine macrostructure and microstructure δ-ferrite evolutions of the observe parts deposited in the WAAM process. The thermal cycle experienced during welding lead to the transformation of δ-ferrite into austenite. The δ-ferrite transforms in austenite when the temperature rises above 800 °C–450 °C (T 8/5). Specimens that experienced temperatures above T8/5 exhibited vermicular (V) and eutectic ferrite (EF) modes of delta ferrite. Specimens that had peak temperature prediction records around 750 °C–525 °C in the T8/5 area exhibited ferrite with acicular (Ac) mode. Specimens approaching the lower line of T8/5 around 425 °C showed a transition from acicular to coarse Ac. Specimens with peak temperature records below the T8/5 line generally did not experience changes after the welding process.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105489"},"PeriodicalIF":6.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present numerical study explores the performance of fluid-structure interaction (FSI) in a microchannel with an oscillating elastic wall. A two-dimensional (2D) Computational Fluid Dynamics (CFD) simulation was performed to investigate the influence of the elastic wall's frequency and amplitude on fluid flow behavior, pressure drop, and heat transfer enhancement. The FSI governing equations were solved using the Arbitrary Lagrangian-Eulerian (ALE) method. The results indicated that the Nusselt number (Nu) decreases as oscillation frequency increases. In contrast, the Nu increased linearly with the oscillation amplitude. Additionally, the Prandtl number (Pr) showed an insignificant influence on the Nu number for the studied operating range. An optimal operating condition was identified for the microchannel with an oscillating wall, achieving a spatial average Nu number of 16.796 compared to 14.577 for a simple microchannel channel, representing a 15.23 %% enhancement in heat transfer. A correlation is derived for the spatial average Nu number as a function of the Reynolds number (Re), Strouhal number (St), Pr, and vibration amplitude ratio, providing a valuable tool for designing and optimizing microchannel systems with FSI. Finally, the Maxwell boundary conditions are incorporated into the simulation of a microchannel with a vibrating upper wall to evaluate the slip conditions.
本数值研究探讨了带有振荡弹性壁的微通道中流体与结构相互作用(FSI)的性能。通过二维(2D)计算流体动力学(CFD)模拟,研究了弹性壁的频率和振幅对流体流动行为、压降和传热增强的影响。采用任意拉格朗日-欧拉(ALE)方法求解了 FSI 主导方程。结果表明,努塞尔特数(Nu)随着振荡频率的增加而降低。相反,Nu 随振荡振幅线性增加。此外,在研究的工作范围内,普朗特数(Pr)对努氏数的影响不大。带振荡壁的微通道确定了最佳运行条件,其空间平均 Nu 数为 16.796,而简单微通道的 Nu 数为 14.577,换热效率提高了 15.23%%。得出了空间平均 Nu 数与雷诺数 (Re)、斯特劳哈尔数 (St)、Pr 和振动振幅比之间的相关性,为设计和优化带有 FSI 的微通道系统提供了宝贵的工具。最后,将麦克斯韦边界条件纳入带有振动上壁的微通道模拟,以评估滑移条件。
{"title":"Numerical study of fluid-structure interaction for enhanced heat transfer in microchannels with an oscillating elastic wall","authors":"Farzad Havasi , Seyyed Hossein Hosseini , Abdolhamid Azizi , Masoud Seidi , Sajjad Ahangar Zonoozi , Goodarz Ahmadi","doi":"10.1016/j.csite.2024.105480","DOIUrl":"10.1016/j.csite.2024.105480","url":null,"abstract":"<div><div>The present numerical study explores the performance of fluid-structure interaction (FSI) in a microchannel with an oscillating elastic wall. A two-dimensional (2D) Computational Fluid Dynamics (CFD) simulation was performed to investigate the influence of the elastic wall's frequency and amplitude on fluid flow behavior, pressure drop, and heat transfer enhancement. The FSI governing equations were solved using the Arbitrary Lagrangian-Eulerian (ALE) method. The results indicated that the Nusselt number (Nu) decreases as oscillation frequency increases. In contrast, the Nu increased linearly with the oscillation amplitude. Additionally, the Prandtl number (Pr) showed an insignificant influence on the Nu number for the studied operating range. An optimal operating condition was identified for the microchannel with an oscillating wall, achieving a spatial average Nu number of 16.796 compared to 14.577 for a simple microchannel channel, representing a 15.23 %% enhancement in heat transfer. A correlation is derived for the spatial average Nu number as a function of the Reynolds number (Re), Strouhal number (St), Pr, and vibration amplitude ratio, providing a valuable tool for designing and optimizing microchannel systems with FSI. Finally, the Maxwell boundary conditions are incorporated into the simulation of a microchannel with a vibrating upper wall to evaluate the slip conditions.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105480"},"PeriodicalIF":6.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.csite.2024.105430
Saima Zainab , Sadia Shakir , Noreen Sher Akbar , Kiran Batool , Taseer Muhammad
Tetra hybrid nanofluids enhance heat transfer efficiency in advanced thermal management systems, benefiting industries like electronics cooling, automotive, aerospace, and renewable energy. In this study, we examine the impact of magnetohydrodynamic tetra-hybrid nanofluid on nodal/saddle stagnation points in a rounded cylinder with a sinusoidal radius. The analysis focuses on optimizing energy and mass transfer rates around a circular cylinder with a sinusoidal surface, simulating thermal processes in biological systems. By utilizing similarity variables, a complex set of nonlinear partial differential equations is transformed into ordinary differential equations and solved numerically using MATLAB's bvp4c solver. The effects of several parameters are discussed graphically for the nodal stagnation point as well as numerically for both the nodal and saddle points. At , the heat transfer rate for the tetra hybrid nanofluid shows a 1.36 % increase compared to the nanofluid, underscoring the enhanced thermal efficiency of hybrid nanofluids in radiative conditions. indicates that the application of a magnetic field, combined with variations in d, results in significant improvements in shear stress and heat transfer, reflecting enhanced velocity and thermal profiles compared to Madhukesh et al. (Gangadhar et al., 2024) [21]. The results indicate that increasing enhances the Nusselt number and improves heat transfer, while the accompanying rise in flow resistance typically leads to a decrease in mass transfer rate.
{"title":"Heat transfer optimization using computational insights into nodal/saddle point flow patterns of tera-hybrid nanofluid containing microbes in a cylindrical shells","authors":"Saima Zainab , Sadia Shakir , Noreen Sher Akbar , Kiran Batool , Taseer Muhammad","doi":"10.1016/j.csite.2024.105430","DOIUrl":"10.1016/j.csite.2024.105430","url":null,"abstract":"<div><div>Tetra hybrid nanofluids enhance heat transfer efficiency in advanced thermal management systems, benefiting industries like electronics cooling, automotive, aerospace, and renewable energy. In this study, we examine the impact of magnetohydrodynamic tetra-hybrid nanofluid on nodal/saddle stagnation points in a rounded cylinder with a sinusoidal radius. The analysis focuses on optimizing energy and mass transfer rates around a circular cylinder with a sinusoidal surface, simulating thermal processes in biological systems. By utilizing similarity variables, a complex set of nonlinear partial differential equations is transformed into ordinary differential equations and solved numerically using MATLAB's bvp4c solver. The effects of several parameters are discussed graphically for the nodal stagnation point as well as numerically for both the nodal and saddle points. At <span><math><mrow><mi>R</mi><mo>=</mo><mn>4.5</mn></mrow></math></span>, the heat transfer rate for the tetra hybrid nanofluid shows a 1.36 % increase compared to the nanofluid, underscoring the enhanced thermal efficiency of hybrid nanofluids in radiative conditions. indicates that the application of a magnetic field, combined with variations in d, results in significant improvements in shear stress and heat transfer, reflecting enhanced velocity and thermal profiles compared to Madhukesh et al. (Gangadhar et al., 2024) [21]. The results indicate that increasing <span><math><mrow><msub><mi>ϕ</mi><mn>1</mn></msub></mrow></math></span> enhances the Nusselt number and improves heat transfer, while the accompanying rise in flow resistance typically leads to a decrease in mass transfer rate.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105430"},"PeriodicalIF":6.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.csite.2024.105496
Xun Zhang, Chuang Li, Bing Lu, Fengwei Dai, Ge Huang, Ronghai Sun
In mines with deep levels and those exhibiting anomalous geothermal temperatures, high geothermal environments can affect the erosion process of waterlogged coal by immersion. To study the influence of a high geothermal environment regarding the self-ignition of waterlogged coal, immersion of the coals in aqueous solutions under various temperature conditions (room temperature 20 °C, 40 °C, 60 °C and 80°) for 30 days. Low-temperature nitrogen adsorption, infrared spectroscopy, and simultaneous thermal analysis were utilized to examine the alterations in the micro physicochemical structure and oxidation process of waterlogged coal samples at room temperature and high geothermal temperature. Compared with room temperature conditions, the high geothermal environment increased the number and volume of pores in the waterlogged coal, broke intermolecular hydrogen bonds, and increased the total number of reactive groups. These microstructural changes affected the oxidation process of the waterlogged coal, causing in the oxidation characteristic temperature points on the TG and DSC curves as well as the activation energies E of the second and third stages of TG being significantly lower than those of the waterlogged coal under room temperature conditions. This study suggests that the high geothermal environment enhances the spontaneous combustion tendency of waterlogged coal and accelerates its oxidation process.
{"title":"Effect of high geothermal environments on microscopic properties and oxidation processes of waterlogged coal","authors":"Xun Zhang, Chuang Li, Bing Lu, Fengwei Dai, Ge Huang, Ronghai Sun","doi":"10.1016/j.csite.2024.105496","DOIUrl":"https://doi.org/10.1016/j.csite.2024.105496","url":null,"abstract":"In mines with deep levels and those exhibiting anomalous geothermal temperatures, high geothermal environments can affect the erosion process of waterlogged coal by immersion. To study the influence of a high geothermal environment regarding the self-ignition of waterlogged coal, immersion of the coals in aqueous solutions under various temperature conditions (room temperature 20 °C, 40 °C, 60 °C and 80°) for 30 days. Low-temperature nitrogen adsorption, infrared spectroscopy, and simultaneous thermal analysis were utilized to examine the alterations in the micro physicochemical structure and oxidation process of waterlogged coal samples at room temperature and high geothermal temperature. Compared with room temperature conditions, the high geothermal environment increased the number and volume of pores in the waterlogged coal, broke intermolecular hydrogen bonds, and increased the total number of reactive groups. These microstructural changes affected the oxidation process of the waterlogged coal, causing in the oxidation characteristic temperature points on the TG and DSC curves as well as the activation energies E of the second and third stages of TG being significantly lower than those of the waterlogged coal under room temperature conditions. This study suggests that the high geothermal environment enhances the spontaneous combustion tendency of waterlogged coal and accelerates its oxidation process.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"129 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.csite.2024.105494
Ahmad Dabestani, Mostafa Kahani
This study explores the enhanced thermal performance of heat exchangers utilizing spirally coiled tubes, particularly in applications such as heating saltwater in solar desalination plants, which require elevated heat transfer coefficients. A numerical investigation is conducted to assess the impact of mechanically rotating horizontal spiral tubes on flow patterns and temperature profiles along their length. A detailed physical model was developed using COMSOL Multiphysics software. The findings from computational fluid dynamics simulations indicate that mechanical rotation significantly modifies both velocity and temperature gradients at each cross-section of the tube. This rotation effectively reduces the formation of thermal hotspots in the outer regions, thereby improving and accelerating heat dispersion. Notably, substantial variations in velocity and temperature profiles occur at rotation speeds up to 4 rpm; however, these changes diminish beyond this speed threshold. The study reveals that rotation increases the Nusselt number of the heated flow within the tube by over 145 %. Furthermore, the effects of rotation are more pronounced in smaller diameter tubes compared to larger ones. Ultimately, the performance factor indicates that the benefits of enhanced heat transfer outweigh the increased pressure drops associated with tube rotation, validating the effectiveness of the proposed heating system.
{"title":"CFD analysis of rotation effect on flow patterns and heat transfer enhancement in a horizontal spiral tube heat exchanger","authors":"Ahmad Dabestani, Mostafa Kahani","doi":"10.1016/j.csite.2024.105494","DOIUrl":"10.1016/j.csite.2024.105494","url":null,"abstract":"<div><div>This study explores the enhanced thermal performance of heat exchangers utilizing spirally coiled tubes, particularly in applications such as heating saltwater in solar desalination plants, which require elevated heat transfer coefficients. A numerical investigation is conducted to assess the impact of mechanically rotating horizontal spiral tubes on flow patterns and temperature profiles along their length. A detailed physical model was developed using COMSOL Multiphysics software. The findings from computational fluid dynamics simulations indicate that mechanical rotation significantly modifies both velocity and temperature gradients at each cross-section of the tube. This rotation effectively reduces the formation of thermal hotspots in the outer regions, thereby improving and accelerating heat dispersion. Notably, substantial variations in velocity and temperature profiles occur at rotation speeds up to 4 rpm; however, these changes diminish beyond this speed threshold. The study reveals that rotation increases the Nusselt number of the heated flow within the tube by over 145 %. Furthermore, the effects of rotation are more pronounced in smaller diameter tubes compared to larger ones. Ultimately, the performance factor indicates that the benefits of enhanced heat transfer outweigh the increased pressure drops associated with tube rotation, validating the effectiveness of the proposed heating system.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105494"},"PeriodicalIF":6.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.csite.2024.105493
Jawad Raza , Liaquat Ali Lund , Hamna Ashraf , Zahir Shah , Mansoor H. Alshehri , Narcisa Vrinceanu
Heat pipes have the potential to benefit from nanofluid flow between coaxial cylinders. Heat is effectively transferred from one place to another by means of heat pipes. Heat pipes can be used for electronics cooling, spacecraft thermal management, and heat recovery systems by adding nanofluids, which enhances the heat pipe's thermal conductivity and heat transfer capability. This work aims to discover an approximate solution for the flow of a trihybrid nanofluid (THNF) consisting of graphene, copper, and silver between two coaxial cylinders in magneto-hydrodynamics, taking into account the broad variety of applications. The nanomaterial is tested in a system with a fixed inner cylinder and a rotating outer cylinder. It contains graphene, copper, silver, and kerosene oil as the base fluid. For examining the flow characteristics, magnetic field is applied along radial direction of the cylinder, while inner cylinder is fixed, and outer cylinder is rotating. Moreover, temperature of the outer cylinder is higher than the lower cylinder. The objective of this study is to develop a mathematical model of the problem and solve the governing equation numerically using the MATLAB built-in routine called bvp4c. Additionally, we identify the most effective physical parameter to optimize the heat transfer rate using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Using a variety of factors, we calculate fluid velocity, skin friction, temperature, and Nusselt number graphically. According to the study, higher Brinkman numbers and magnetic parameter characteristics lead to higher temperatures. Furthermore, Fuzzy TOPSIS shows that alternative A11 has the maximum heat transfer rate, while another A8 has the lowest.
{"title":"Fuzzy TOPSIS optimization of MHD trihybrid nanofluid in heat pipes","authors":"Jawad Raza , Liaquat Ali Lund , Hamna Ashraf , Zahir Shah , Mansoor H. Alshehri , Narcisa Vrinceanu","doi":"10.1016/j.csite.2024.105493","DOIUrl":"10.1016/j.csite.2024.105493","url":null,"abstract":"<div><div>Heat pipes have the potential to benefit from nanofluid flow between coaxial cylinders. Heat is effectively transferred from one place to another by means of heat pipes. Heat pipes can be used for electronics cooling, spacecraft thermal management, and heat recovery systems by adding nanofluids, which enhances the heat pipe's thermal conductivity and heat transfer capability. This work aims to discover an approximate solution for the flow of a trihybrid nanofluid (THNF) consisting of graphene, copper, and silver between two coaxial cylinders in magneto-hydrodynamics, taking into account the broad variety of applications. The nanomaterial is tested in a system with a fixed inner cylinder and a rotating outer cylinder. It contains graphene, copper, silver, and kerosene oil as the base fluid. For examining the flow characteristics, magnetic field is applied along radial direction of the cylinder, while inner cylinder is fixed, and outer cylinder is rotating. Moreover, temperature of the outer cylinder is higher than the lower cylinder. The objective of this study is to develop a mathematical model of the problem and solve the governing equation numerically using the MATLAB built-in routine called bvp4c. Additionally, we identify the most effective physical parameter to optimize the heat transfer rate using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Using a variety of factors, we calculate fluid velocity, skin friction, temperature, and Nusselt number graphically. According to the study, higher Brinkman numbers <span><math><mrow><mo>(</mo><mrow><mi>B</mi><mi>r</mi></mrow><mo>)</mo></mrow></math></span> and magnetic parameter <span><math><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> characteristics lead to higher temperatures. Furthermore, Fuzzy TOPSIS shows that alternative A11 <span><math><mrow><mo>(</mo><mrow><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.9</mn><mo>,</mo><mn>1.0</mn><mo>,</mo><mn>1.0</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>M</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.5</mn><mo>,</mo><mn>0.7</mn><mo>,</mo><mn>0.9</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>B</mi><mi>r</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.9</mn><mo>,</mo><mn>1.0</mn><mo>,</mo><mn>1.0</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> has the maximum heat transfer rate, while another A8 <span><math><mrow><mo>(</mo><mrow><mi>ϕ</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.1</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>M</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.1</mn></mrow><mo>)</mo></mrow><mo>,</mo><mi>B</mi><mi>r</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.1</mn></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> has the lowest.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105493"},"PeriodicalIF":6.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.csite.2024.105468
Gy. Bognár, P.G. Szabó, G. Takács
There has been a growing demand for novel, highly efficient, power-saving cooling solutions in recent years. In many cases, standard cooling techniques offer only limited opportunities to prevent the overheating of circuits. Such issues concern high-speed Printed Circuit Board Assemblies (PCBA) in data centers and telecommunication racks, where the flow of the cooling medium is obstructed due to the lack of space. Size limitations can also be a serious problem when cooling high-power devices because the devices consume a large space. Since the heat sink-based cooling solutions and the sophisticated IC packages only deal with one possible heat flow path, we were given the idea of enhancing the secondary heat flow path towards the Printed Circuit Board (PCB). Led by this intention, the idea of creating an embedded minichannel system inside the circuit board and circulating the cooling agent was realized. Through this method, we could decrease the board-to-ambient thermal resistance significantly. This paper presents the demonstration and feasibility study of this method. One of the main aims of this study is to demonstrate the applicability of the proposed concept in PCBAs, where the primary concerns are the low-cost manufacturability and available space. The other goal is to create an adaptation of the standard thermal characterization methodologies to deal with the specific dissipating components in the PCBA demonstrators. In the first part, the manufacturing technology is elaborated on, and its efficiency is characterized by thermal transient testing and Computational Fluid Dynamics (CFD) simulations. For these use cases, it was noted that the cumulative thermal resistance decreased by approximately 60 % when a volumetric flow rate of 100 ccm was applied in the minichannels. In the second part, a more sophisticated technology demonstration is realized and characterized by adding the proposed embedded minichannel heat sink to an existing high-speed PCBA. A specific thermal transient testing was implemented specifically for this use case, and it was carried out on programmable logic devices by utilizing general-purpose programmable logic to construct the necessary measurement methods. In the future, this feature can be used in different logic circuit designs where it is not possible to determine the junction temperature directly.
{"title":"Thermal characterization methodologies for experimental minichannel heat sink designs in printed circuit board assemblies","authors":"Gy. Bognár, P.G. Szabó, G. Takács","doi":"10.1016/j.csite.2024.105468","DOIUrl":"10.1016/j.csite.2024.105468","url":null,"abstract":"<div><div>There has been a growing demand for novel, highly efficient, power-saving cooling solutions in recent years. In many cases, standard cooling techniques offer only limited opportunities to prevent the overheating of circuits. Such issues concern high-speed Printed Circuit Board Assemblies (PCBA) in data centers and telecommunication racks, where the flow of the cooling medium is obstructed due to the lack of space. Size limitations can also be a serious problem when cooling high-power devices because the devices consume a large space. Since the heat sink-based cooling solutions and the sophisticated IC packages only deal with one possible heat flow path, we were given the idea of enhancing the secondary heat flow path towards the Printed Circuit Board (PCB). Led by this intention, the idea of creating an embedded minichannel system inside the circuit board and circulating the cooling agent was realized. Through this method, we could decrease the board-to-ambient thermal resistance significantly. This paper presents the demonstration and feasibility study of this method. One of the main aims of this study is to demonstrate the applicability of the proposed concept in PCBAs, where the primary concerns are the low-cost manufacturability and available space. The other goal is to create an adaptation of the standard thermal characterization methodologies to deal with the specific dissipating components in the PCBA demonstrators. In the first part, the manufacturing technology is elaborated on, and its efficiency is characterized by thermal transient testing and Computational Fluid Dynamics (CFD) simulations. For these use cases, it was noted that the cumulative thermal resistance decreased by approximately 60 % when a volumetric flow rate of 100 ccm was applied in the minichannels. In the second part, a more sophisticated technology demonstration is realized and characterized by adding the proposed embedded minichannel heat sink to an existing high-speed PCBA. A specific thermal transient testing was implemented specifically for this use case, and it was carried out on programmable logic devices by utilizing general-purpose programmable logic to construct the necessary measurement methods. In the future, this feature can be used in different logic circuit designs where it is not possible to determine the junction temperature directly.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105468"},"PeriodicalIF":6.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.csite.2024.105485
Kang Li , Chunyu Li , Jian Cao , Ni Liu , Hua Zhang , Binlin Dou , Ran Tu , Qize He , Lin Su , Xuejin Zhou
This study investigates the impact of vapor injection parameters and positions on the performance of a low-pressure ratio scroll compressor in electric vehicle thermal management systems under extremely low temperatures. The research combines experimental and simulation methods to analyze five injection ports designed at different positions. Key performance metrics, including mass flow rate, discharge temperature (Tdis), coefficient of performance (COP), compression work, and heating capacity (Qh) were evaluated under various conditions. A low-pressure ratio (scroll number N = 2) vapor injection scroll compressor was designed with an optimized injection port configuration. This design was rigorously validated through experimental results, confirming its efficacy. Notably, the findings reveal that the enhancement in Qh and COP is more pronounced in extremely low-temperature working conditions compared to non-injection conditions, with improvements of 10.7 % and 4.6 %, respectively. Compressor performance increases with increasing vapor injection pressure, and compressor speed and performance increment are more significant under low-temperature working conditions. Finally, an injection coefficient, denoted as k, is proposed to determine the optimal injection pressure for diverse discharge and suction pressures in cold climates. According to the experimental results, the value of k associated with the best heating COP ranges between 0.65 and 0.85.
本研究探讨了在极低温度条件下,蒸汽喷射参数和位置对电动汽车热管理系统中低压比涡旋压缩机性能的影响。研究结合实验和模拟方法,对设计在不同位置的五个喷射口进行了分析。评估了各种条件下的关键性能指标,包括质量流量、排气温度 (Tdis)、性能系数 (COP)、压缩功和加热能力 (Qh)。设计的低压比(涡旋数 N = 2)喷气涡旋压缩机具有优化的喷气口配置。实验结果对该设计进行了严格验证,证实了其有效性。值得注意的是,研究结果表明,与非喷气条件相比,在极低温工作条件下,Qh 和 COP 的提高更为明显,分别提高了 10.7% 和 4.6%。压缩机性能随着蒸汽喷射压力的增加而提高,在低温工况下,压缩机速度和性能的提高更为显著。最后,还提出了一个喷气系数(用 k 表示),以确定在寒冷气候条件下不同排气和吸气压力下的最佳喷气压力。根据实验结果,与最佳加热 COP 相关的 k 值介于 0.65 和 0.85 之间。
{"title":"Theoretical analysis and experimental validation of optimal vapor injection conditions for a low-pressure ratio scroll compressor","authors":"Kang Li , Chunyu Li , Jian Cao , Ni Liu , Hua Zhang , Binlin Dou , Ran Tu , Qize He , Lin Su , Xuejin Zhou","doi":"10.1016/j.csite.2024.105485","DOIUrl":"10.1016/j.csite.2024.105485","url":null,"abstract":"<div><div>This study investigates the impact of vapor injection parameters and positions on the performance of a low-pressure ratio scroll compressor in electric vehicle thermal management systems under extremely low temperatures. The research combines experimental and simulation methods to analyze five injection ports designed at different positions. Key performance metrics, including mass flow rate, discharge temperature <em>(T</em><sub><em>dis</em></sub>), coefficient of performance (COP), compression work, and heating capacity (<em>Q</em><sub><em>h</em></sub>) were evaluated under various conditions. A low-pressure ratio (scroll number <em>N</em> = 2) vapor injection scroll compressor was designed with an optimized injection port configuration. This design was rigorously validated through experimental results, confirming its efficacy. Notably, the findings reveal that the enhancement in <em>Q</em><sub><em>h</em></sub> and COP is more pronounced in extremely low-temperature working conditions compared to non-injection conditions, with improvements of 10.7 % and 4.6 %, respectively. Compressor performance increases with increasing vapor injection pressure, and compressor speed and performance increment are more significant under low-temperature working conditions. Finally, an injection coefficient, denoted as <em>k</em>, is proposed to determine the optimal injection pressure for diverse discharge and suction pressures in cold climates. According to the experimental results, the value of k associated with the best heating COP ranges between 0.65 and 0.85.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105485"},"PeriodicalIF":6.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.csite.2024.105483
Jinyeong Bak, Manh Long Doan, Seongbae Park, Jae Jun Jeong, Byongjo Yun
Accurate prediction of bubble behavior in large diameter pipes is crucial for evaluating the performance of safety systems, steam generators, and heat exchangers in nuclear systems. Bubble behavior in large diameter pipes under two-phase flow significantly differs from that in small pipes. With the increasing use of computational fluid dynamics (CFD) codes, predicting interfacial area concentration (IAC) is critical for understanding multi-dimensional bubble behavior. This study developed a two-group local bubble size model for bubbly, slug, and churn flows under adiabatic conditions. The model includes correlations for void fraction and bubble sizes of two groups, which were implemented into CFD codes and validated against experimental data from large diameter pipes with low-pressure air–water flow. Results show the model's prediction accuracy surpasses existing correlations. The developed correlations are applicable across a range of flow conditions covering pipe diameters in the range 0.05–0.152 m, pressures from atmospheric to 300 kPa, superficial liquid velocities from 0.25 m/s to 2.85 m/s, and superficial gas velocities from 0.04 m/s to 5.48 m/s. The model is expected to enhance the prediction capabilities of CFD codes for the adiabatic two-group two-phase flows in the large diameter pipes.
{"title":"Local two-group bubble size model for adiabatic air–water flow in a large diameter pipe using CFD code","authors":"Jinyeong Bak, Manh Long Doan, Seongbae Park, Jae Jun Jeong, Byongjo Yun","doi":"10.1016/j.csite.2024.105483","DOIUrl":"https://doi.org/10.1016/j.csite.2024.105483","url":null,"abstract":"Accurate prediction of bubble behavior in large diameter pipes is crucial for evaluating the performance of safety systems, steam generators, and heat exchangers in nuclear systems. Bubble behavior in large diameter pipes under two-phase flow significantly differs from that in small pipes. With the increasing use of computational fluid dynamics (CFD) codes, predicting interfacial area concentration (IAC) is critical for understanding multi-dimensional bubble behavior. This study developed a two-group local bubble size model for bubbly, slug, and churn flows under adiabatic conditions. The model includes correlations for void fraction and bubble sizes of two groups, which were implemented into CFD codes and validated against experimental data from large diameter pipes with low-pressure air–water flow. Results show the model's prediction accuracy surpasses existing correlations. The developed correlations are applicable across a range of flow conditions covering pipe diameters in the range 0.05–0.152 <ce:italic>m</ce:italic>, pressures from atmospheric to 300 kPa, superficial liquid velocities from 0.25 m/s to 2.85 m/s, and superficial gas velocities from 0.04 m/s to 5.48 m/s. The model is expected to enhance the prediction capabilities of CFD codes for the adiabatic two-group two-phase flows in the large diameter pipes.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"132 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The maritime transportation of electric vehicles (EVs) poses significant fire risks due to the potential for thermal runaway in lithium-ion batteries, particularly when the state of charge (SOC) varies. This study uniquely examines the effects of SOC on fire behavior and suppression efficacy, going beyond previous research by focusing on the maritime environment. Experiments were conducted on EV battery packs at SOC levels of 70 %, 50 %, and 30 %, and on a full-scale EV at 50 % SOC, to evaluate fire dynamics and the effectiveness of suppression methods, including seawater injection and fire blankets. Results showed that higher SOC levels are associated with significantly increased heat release rates and extended fire durations, while lower SOC levels (30 %) reduce fire intensity yet necessitate continuous monitoring for re-ignition risks. Moreover, the combination of seawater injection and fire blankets showed promise in cases where rapid cooling and containment of fire spread were priorities, illustrating a potential strategy for managing EV battery fires during maritime transport. These findings underscore the need for strategic SOC management, recommending lower SOC thresholds to minimize fire severity, and the use of combined suppression techniques to enhance EV fire safety during maritime transport.
{"title":"Assessing fire dynamics and suppression techniques in electric vehicles at different states of charge: Implications for maritime safety","authors":"Suhaeng Lee, Daehyun Choi, Yeoseon Jeong, Minho Moon, Hyukjoo Kwon, Kukil Han, Hyungjun Kim, Hongsoon Im, Youngseob Park, Dongki Shin, Geonhui Gwak","doi":"10.1016/j.csite.2024.105474","DOIUrl":"10.1016/j.csite.2024.105474","url":null,"abstract":"<div><div>The maritime transportation of electric vehicles (EVs) poses significant fire risks due to the potential for thermal runaway in lithium-ion batteries, particularly when the state of charge (SOC) varies. This study uniquely examines the effects of SOC on fire behavior and suppression efficacy, going beyond previous research by focusing on the maritime environment. Experiments were conducted on EV battery packs at SOC levels of 70 %, 50 %, and 30 %, and on a full-scale EV at 50 % SOC, to evaluate fire dynamics and the effectiveness of suppression methods, including seawater injection and fire blankets. Results showed that higher SOC levels are associated with significantly increased heat release rates and extended fire durations, while lower SOC levels (30 %) reduce fire intensity yet necessitate continuous monitoring for re-ignition risks. Moreover, the combination of seawater injection and fire blankets showed promise in cases where rapid cooling and containment of fire spread were priorities, illustrating a potential strategy for managing EV battery fires during maritime transport. These findings underscore the need for strategic SOC management, recommending lower SOC thresholds to minimize fire severity, and the use of combined suppression techniques to enhance EV fire safety during maritime transport.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105474"},"PeriodicalIF":6.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}