Pub Date : 2024-10-18DOI: 10.1016/j.csite.2024.105304
Limited access to safe drinking water is a critical global issue, particularly in areas with inadequate infrastructure. Solar stills offer a promising alternative for such regions. This study investigates the influence of square baffles within a modified solar still design on its overall efficiency. Additionally, the integration of reflectors is explored to enhance both evaporation and condensation rates. Furthermore, the effectiveness of a paraffin wax phase change material (PCM) combined with silver nanoparticles is assessed within the modified still. Thermo-economic analyses are conducted to evaluate the economic feasibility of the proposed system. The findings demonstrate a significant improvement in distillation yield. The modified still with square baffles achieved a yield of 9800 mL/m2.day compared to 3550 mL/m2.day for the reference still, representing a 193 % increase. Moreover, incorporating the nano-PCM at an optimal configuration (25 cords) resulted in a further 265 % productivity increase for the modified still with both square baffles and reflectors. This configuration also achieved an efficiency of 63 %. Economic analysis revealed a minimal cost difference between the reference still (0.014 $/L) and the modified still with square baffles and nano-PCM (0.01 $/L). In terms of environmental impact, the modified still exhibited a lower annual CO2 emission of 28.8 tons.
{"title":"Optimizing cord pyramid solar distillers: A comprehensive study on square baffles, reflectors, and phase transition materials","authors":"","doi":"10.1016/j.csite.2024.105304","DOIUrl":"10.1016/j.csite.2024.105304","url":null,"abstract":"<div><div>Limited access to safe drinking water is a critical global issue, particularly in areas with inadequate infrastructure. Solar stills offer a promising alternative for such regions. This study investigates the influence of square baffles within a modified solar still design on its overall efficiency. Additionally, the integration of reflectors is explored to enhance both evaporation and condensation rates. Furthermore, the effectiveness of a paraffin wax phase change material (PCM) combined with silver nanoparticles is assessed within the modified still. Thermo-economic analyses are conducted to evaluate the economic feasibility of the proposed system. The findings demonstrate a significant improvement in distillation yield. The modified still with square baffles achieved a yield of 9800 mL/m<sup>2</sup>.day compared to 3550 mL/m<sup>2</sup>.day for the reference still, representing a 193 % increase. Moreover, incorporating the nano-PCM at an optimal configuration (25 cords) resulted in a further 265 % productivity increase for the modified still with both square baffles and reflectors. This configuration also achieved an efficiency of 63 %. Economic analysis revealed a minimal cost difference between the reference still (0.014 $/L) and the modified still with square baffles and nano-PCM (0.01 $/L). In terms of environmental impact, the modified still exhibited a lower annual CO<sub>2</sub> emission of 28.8 tons.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.csite.2024.105306
In current work, the productivity of a photovoltaic thermal (PVT) unit impacted by dust accumulation was improved using magnetic force. The magnetic force was implemented to a cooling duct with Y-shaped fins, while solar irradiation was included as heat sources in the equations. Dust effects were simulated by adjusting the optical properties. The addition of a thermoelectric generator (TEG) layer boosted the electrical output. The cooling fluid was a homogeneous water and iron oxide mixture. Dust accumulation led to a 9.3 % drop in thermal performance, but the use of magnetic force enhanced electrical efficiency. Higher concentrations of additives improved system performance, with a maximum gain of 15.88 % at the highest inlet velocity (Vinlet). Increasing Vinlet further improved thermal efficiency (ηth) by 10.96 %, photovoltaic efficiency (ηPV) by 1.16 %, and thermoelectric efficiency (ηTE) by 33.53 %. Moreover, the application of Lorentz force increased isothermal uniformity by approximately 5.91 %
在当前工作中,利用磁力提高了受灰尘积聚影响的光伏热(PVT)装置的生产率。磁力被应用于带有 Y 形翅片的冷却管道,而太阳辐照则作为热源被纳入方程中。通过调整光学特性来模拟灰尘的影响。热电发生器(TEG)层的加入提高了电力输出。冷却液为均匀的水和氧化铁混合物。灰尘的积累导致热性能下降了 9.3%,但磁力的使用提高了电效率。添加剂的浓度越高,系统性能越好,在最高进气速度(Vinlet)下的最大增益为 15.88%。提高 Vinlet 可进一步提高热效率(ηth)10.96%、光电效率(ηPV)1.16% 和热电效率(ηTE)33.53%。此外,洛伦兹力的应用还使等温均匀性提高了约 5.91 %。
{"title":"Simulation of behavior of solar panel in existence of nanomaterial as cooling system","authors":"","doi":"10.1016/j.csite.2024.105306","DOIUrl":"10.1016/j.csite.2024.105306","url":null,"abstract":"<div><div>In current work, the productivity of a photovoltaic thermal (PVT) unit impacted by dust accumulation was improved using magnetic force. The magnetic force was implemented to a cooling duct with Y-shaped fins, while solar irradiation was included as heat sources in the equations. Dust effects were simulated by adjusting the optical properties. The addition of a thermoelectric generator (TEG) layer boosted the electrical output. The cooling fluid was a homogeneous water and iron oxide mixture. Dust accumulation led to a 9.3 % drop in thermal performance, but the use of magnetic force enhanced electrical efficiency. Higher concentrations of additives improved system performance, with a maximum gain of 15.88 % at the highest inlet velocity (V<sub>inlet</sub>). Increasing V<sub>inlet</sub> further improved thermal efficiency (η<sub>th</sub>) by 10.96 %, photovoltaic efficiency (η<sub>PV</sub>) by 1.16 %, and thermoelectric efficiency (η<sub>TE</sub>) by 33.53 %. Moreover, the application of Lorentz force increased isothermal uniformity by approximately 5.91 %</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.csite.2024.105305
To accurately understand the moisture variation and drying characteristics of Lentinus edodes (L. edodes) during the drying process, the kinetics model of L. edodes with a wider application range was investigated. First, the heat pump drying kinetics model for L. edodes was fitted, verified and extended based on the orthogonal experimental data. Then, the expression of moisture ratio of L. edodes with respect to drying time, air supply temperature (AST), loading density (LD) and circulating air volume (CAV) was proposed, and interaction effects of the three key parameters on the drying time were studied based on the prediction model. The findings indicated a substantial agreement between the predicted and experimental values. The drying time could be shortened by increasing the air supply temperature and the circulating air volume or decreasing the loading density. Among these three factors, the AST had the greatest impact on drying time, followed by CAV and LD. For every 48 g/m2 reduction in LD and 11.3 m3/h increase in CAV, the drying time could be reduced by 10.5–29.9 min. Similarly, increasing the AST by 1 °C and the CAV by 11.3 m3/h could decrease the drying time by 13.7–100.6 min. The research results are helpful to optimize the drying process, improve the drying efficiency, and provide guidance and references for practical production of L. edodes HPD.
{"title":"Heat pump drying kinetics modeling and prediction for Lentinus edodes based on orthogonal experimental","authors":"","doi":"10.1016/j.csite.2024.105305","DOIUrl":"10.1016/j.csite.2024.105305","url":null,"abstract":"<div><div>To accurately understand the moisture variation and drying characteristics of Lentinus edodes (L. edodes) during the drying process, the kinetics model of L. edodes with a wider application range was investigated. First, the heat pump drying kinetics model for L. edodes was fitted, verified and extended based on the orthogonal experimental data. Then, the expression of moisture ratio of L. edodes with respect to drying time, air supply temperature (AST), loading density (LD) and circulating air volume (CAV) was proposed, and interaction effects of the three key parameters on the drying time were studied based on the prediction model. The findings indicated a substantial agreement between the predicted and experimental values. The drying time could be shortened by increasing the air supply temperature and the circulating air volume or decreasing the loading density. Among these three factors, the AST had the greatest impact on drying time, followed by CAV and LD. For every 48 g/m<sup>2</sup> reduction in LD and 11.3 m<sup>3</sup>/h increase in CAV, the drying time could be reduced by 10.5–29.9 min. Similarly, increasing the AST by 1 °C and the CAV by 11.3 m<sup>3</sup>/h could decrease the drying time by 13.7–100.6 min. The research results are helpful to optimize the drying process, improve the drying efficiency, and provide guidance and references for practical production of L. edodes HPD.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.csite.2024.105307
This study presents an investigation of a heat pipe with a mesh wick, utilizing machine learning (ML) techniques. The model including radial basis function interpolation (RBF), Kriging model (KRG), and the k-nearest neighborhood model (K-NN) were studied and compared. A set of training and validating populations were classified using a k-means clustering technique. The design variable included the geometric shape of heat pipe such as its diameter, the properties and percentage used of working fluid, and the temperature at the evaporator. The prediction case study included the heat transfer rate (q), and total difference temperature between evaporator and condenser section (ΔT). The prediction results found that the ΔT gave the most accurate indicator while the q is passable to applied. The Kriging model proved to be the most accurate, achieving an RMSE of 0.9896 and R2 of 0.9149 for heat transfer rate prediction, and an RMSE of 0.1902 and R2 of 0.9398 for total temperature difference prediction with 90 % training data. The second-best accuracy was achieved by the RBF model, with the linear, thin plate, and cubic spline kernels performing reasonably well.
{"title":"Applied machine learning: Performance prediction of heat pipe with mesh wick","authors":"","doi":"10.1016/j.csite.2024.105307","DOIUrl":"10.1016/j.csite.2024.105307","url":null,"abstract":"<div><div>This study presents an investigation of a heat pipe with a mesh wick, utilizing machine learning (ML) techniques. The model including radial basis function interpolation (RBF), Kriging model (KRG), and the k-nearest neighborhood model (K-NN) were studied and compared. A set of training and validating populations were classified using a k-means clustering technique. The design variable included the geometric shape of heat pipe such as its diameter, the properties and percentage used of working fluid, and the temperature at the evaporator. The prediction case study included the heat transfer rate (q), and total difference temperature between evaporator and condenser section (Δ<em>T</em>). The prediction results found that the Δ<em>T</em> gave the most accurate indicator while the q is passable to applied. The Kriging model proved to be the most accurate, achieving an RMSE of 0.9896 and R<sup>2</sup> of 0.9149 for heat transfer rate prediction, and an RMSE of 0.1902 and R<sup>2</sup> of 0.9398 for total temperature difference prediction with 90 % training data. The second-best accuracy was achieved by the RBF model, with the linear, thin plate, and cubic spline kernels performing reasonably well.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.csite.2024.105259
To mitigate the challenges of magnetic leakage and iron loss in the rotor of interior permanent magnet (IPM) motors, this article proposes a novel rotor structure that eliminates the bilateral bridge, relying solely on a central bridge to maintain rotor strength. This design reduces the overall bridge width of the rotor, thereby decreasing magnetic leakage and improving torque. The novel rotor features a distinctive design that combines high silicon steel sheets and low silicon steel sheets. High silicon steel sheets are used on the rotor's surface to minimize iron loss, while low silicon steel sheets are used internally to ensure rotor strength. This design takes advantage of the high silicon steel's low iron loss while mitigating its brittleness and saturation issues. The article describes the method for producing this combined rotor. Mechanical and electromagnetic property tests are conducted on both high and low silicon steel sheets, resulting in stress-strain curves, B-H curves, and iron loss characteristics. Finally, the rotor stress is calculated. The analysis indicates that this novel motor can reduce magnetic leakage, increase torque by 7.5 %, improve efficiency by 0.18 %, decrease rotor iron loss by 36.2 %, and lower rotor temperature by 3.9 % compared to the original motor.
{"title":"Electromagnetic-thermal-mechanical performance of novel interior permanent magnet motor","authors":"","doi":"10.1016/j.csite.2024.105259","DOIUrl":"10.1016/j.csite.2024.105259","url":null,"abstract":"<div><div>To mitigate the challenges of magnetic leakage and iron loss in the rotor of interior permanent magnet (IPM) motors, this article proposes a novel rotor structure that eliminates the bilateral bridge, relying solely on a central bridge to maintain rotor strength. This design reduces the overall bridge width of the rotor, thereby decreasing magnetic leakage and improving torque. The novel rotor features a distinctive design that combines high silicon steel sheets and low silicon steel sheets. High silicon steel sheets are used on the rotor's surface to minimize iron loss, while low silicon steel sheets are used internally to ensure rotor strength. This design takes advantage of the high silicon steel's low iron loss while mitigating its brittleness and saturation issues. The article describes the method for producing this combined rotor. Mechanical and electromagnetic property tests are conducted on both high and low silicon steel sheets, resulting in stress-strain curves, B-H curves, and iron loss characteristics. Finally, the rotor stress is calculated. The analysis indicates that this novel motor can reduce magnetic leakage, increase torque by 7.5 %, improve efficiency by 0.18 %, decrease rotor iron loss by 36.2 %, and lower rotor temperature by 3.9 % compared to the original motor.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.csite.2024.105290
Thermal heat transfer analysis of trihybrid nanofluids using an intelligent Levenberg-Marquardt neural network (ANN-LMA) approach, with a focus on entropy generation, has been conducted. The flow equations were modeled in Cartesian coordinates and simplified using dimensionless variables. Partial differential equations were converted into ordinary differential equations through appropriate similarity transformations. These ordinary differential equations were then solved using the finite element method applied to a data set evaluated from (ANN-LMA) approach. This dataset can be input into MATLAB to generate predicted solutions for flow patterns. The ANN-LMA technique was employed to evaluate the efficiency of heat transfer characteristics for nanofluids in various scenarios. Incorporating carbon nanotubes (both single-wall (SWCNT) and multi-wall (MWCNT)) along with iron oxide in water, the study demonstrates their effectiveness in enhancing heat transfer. These nanofluids have broad industrial applications, such as in coolant enhancement, cancer therapy, and solar radiation management, and show promising results. This study specifically examines the flow properties of water-based CNT cross-trihybrid nanofluids over a convectively heated surface, leveraging their unique characteristics. Improvements in heat transfer are achieved through the introduction of dissipative heat, thermal radiation, and external heat sources or sinks. The performance of the computational solver was assessed using error histograms, regression analyses, and Mean Squared Error (MSE) results. The physical significance of the designed factors is graphically depicted and discussed in detail. It was found that radiative heat increases surface heat energy through substantial accumulation, thereby enhancing heat transfer properties, while dissipative heat, due to Joule dissipation and other external sources, significantly raises the fluid temperature.
{"title":"Heat transfer enhancement using ternary hybrid nanofluid for cross-viscosity model with intelligent Levenberg-Marquardt neural networks approach incorporating entropy generation","authors":"","doi":"10.1016/j.csite.2024.105290","DOIUrl":"10.1016/j.csite.2024.105290","url":null,"abstract":"<div><div>Thermal heat transfer analysis of trihybrid nanofluids using an intelligent Levenberg-Marquardt neural network (ANN-LMA) approach, with a focus on entropy generation, has been conducted. The flow equations were modeled in Cartesian coordinates and simplified using dimensionless variables. Partial differential equations were converted into ordinary differential equations through appropriate similarity transformations. These ordinary differential equations were then solved using the finite element method applied to a data set evaluated from (ANN-LMA) approach. This dataset can be input into MATLAB to generate predicted solutions for flow patterns. The ANN-LMA technique was employed to evaluate the efficiency of heat transfer characteristics for nanofluids in various scenarios. Incorporating carbon nanotubes (both single-wall (SWCNT) and multi-wall (MWCNT)) along with iron oxide in water, the study demonstrates their effectiveness in enhancing heat transfer. These nanofluids have broad industrial applications, such as in coolant enhancement, cancer therapy, and solar radiation management, and show promising results. This study specifically examines the flow properties of water-based CNT cross-trihybrid nanofluids over a convectively heated surface, leveraging their unique characteristics. Improvements in heat transfer are achieved through the introduction of dissipative heat, thermal radiation, and external heat sources or sinks. The performance of the computational solver was assessed using error histograms, regression analyses, and Mean Squared Error (MSE) results. The physical significance of the designed factors is graphically depicted and discussed in detail. It was found that radiative heat increases surface heat energy through substantial accumulation, thereby enhancing heat transfer properties, while dissipative heat, due to Joule dissipation and other external sources, significantly raises the fluid temperature.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.csite.2024.105246
The growing energy demands of modern society have led to an increased reliance on secondary batteries, particularly lithium-ion (Li-ion) batteries, due to their superior energy density and power output. These batteries perform most effectively and safely within a specific temperature range, making it essential to develop accurate models for predicting temperature variations under diverse operational and environmental conditions. In particular, it is crucial to forecast temperature changes resulting from random and dynamic current fluctuations, reflecting real-world usage scenarios while considering the surrounding battery system environment. In this study, we employed a long short-term memory (LSTM) network to develop a surrogate model capable of predicting the battery’s core temperature over time, given varying current loads and heat transfer coefficients. The LSTM model demonstrated remarkable accuracy, achieving an average prediction accuracy of 99% in simulating temperature changes induced by arbitrary currents.
{"title":"Predicting temperature of a Li-ion battery under dynamic current using long short-term memory","authors":"","doi":"10.1016/j.csite.2024.105246","DOIUrl":"10.1016/j.csite.2024.105246","url":null,"abstract":"<div><div>The growing energy demands of modern society have led to an increased reliance on secondary batteries, particularly lithium-ion (Li-ion) batteries, due to their superior energy density and power output. These batteries perform most effectively and safely within a specific temperature range, making it essential to develop accurate models for predicting temperature variations under diverse operational and environmental conditions. In particular, it is crucial to forecast temperature changes resulting from random and dynamic current fluctuations, reflecting real-world usage scenarios while considering the surrounding battery system environment. In this study, we employed a long short-term memory (LSTM) network to develop a surrogate model capable of predicting the battery’s core temperature over time, given varying current loads and heat transfer coefficients. The LSTM model demonstrated remarkable accuracy, achieving an average prediction accuracy of 99% in simulating temperature changes induced by arbitrary currents.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.csite.2024.105293
To investigate the functioning mechanism of cruise altitude on transportation and discharging dynamics of onboard fire-extinguishants, a numerical model coupling the vaporization and flowing process is established for the Halon 1301-N2 multi-component two-phase flow inside the onboard fire-extinguishing system based on computational fluid dynamics. Flowing and transportation parameters are simulated and compared for Halon 1301 at 0 m, 3000 m, 6000 m and 12000 m. Moreover, the peak discharging fluid pressure, velocity and density are also analyzed to evaluate the impact of altitude on discharging dynamics of Halon 1301. Notably, the maximum discharging velocity at 3000 m, 6000 m and 12000 m are reduced by 4 %, 9 % and 15 % relative to that at 0 m; the maximum discharging fluid pressure and density at 12000 m are respectively reduced by 32 % and 12 % relative to those at 0 m. High altitude is unraveled to inhibit the vaporization of Halon 1301 and lower the discharging efficiency at the pipeline outlet, consequently lowering the diffusion efficiency and effective concentration of Halon 1301 in the protected area and further weakening the fire-suppression effectiveness. The unveiled insights afford guidance for the optimization of fire-extinguishing systems to improve the fire-fighting capability of airplanes at high altitudes.
{"title":"CFD investigation on flowing and discharging characteristics of airborne Halon 1301 fire-extinguishing agent at varied altitudes","authors":"","doi":"10.1016/j.csite.2024.105293","DOIUrl":"10.1016/j.csite.2024.105293","url":null,"abstract":"<div><div>To investigate the functioning mechanism of cruise altitude on transportation and discharging dynamics of onboard fire-extinguishants, a numerical model coupling the vaporization and flowing process is established for the Halon 1301-N<sub>2</sub> multi-component two-phase flow inside the onboard fire-extinguishing system based on computational fluid dynamics. Flowing and transportation parameters are simulated and compared for Halon 1301 at 0 m, 3000 m, 6000 m and 12000 m. Moreover, the peak discharging fluid pressure, velocity and density are also analyzed to evaluate the impact of altitude on discharging dynamics of Halon 1301. Notably, the maximum discharging velocity at 3000 m, 6000 m and 12000 m are reduced by 4 %, 9 % and 15 % relative to that at 0 m; the maximum discharging fluid pressure and density at 12000 m are respectively reduced by 32 % and 12 % relative to those at 0 m. High altitude is unraveled to inhibit the vaporization of Halon 1301 and lower the discharging efficiency at the pipeline outlet, consequently lowering the diffusion efficiency and effective concentration of Halon 1301 in the protected area and further weakening the fire-suppression effectiveness. The unveiled insights afford guidance for the optimization of fire-extinguishing systems to improve the fire-fighting capability of airplanes at high altitudes.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.csite.2024.105287
This study investigates the storage of solar thermal energy using thermal oils in Kilis, Türkiye, a region characterized by high solar potential. Both experimental and modeling studies were conducted. Mobiltherm 605 and PO Heat Transfer Oil 32 were tested as alternatives to commonly used oils. PO Heat Transfer Oil 32 was introduced to the literature for the first time. The impact of operating temperature, water flow rate, and outdoor temperature on the efficiency of stored thermal energy in the water heating system was examined. The findings revealed that system efficiency averaged 42 % at a nighttime outdoor temperature of 9 °C but decreased to 36 % at 13.5 °C. Efficiency was also 36 % at a flow rate of 0.7 m/s, decreasing to 24 % at 0.24 m/s. Mobiltherm 605 cooled down later than PO 32 in the thermal tank, indicating a higher heat transfer coefficient for PO 32. Based on experimental data, a model of the thermal storage system was developed, and its techno-economic feasibility was assessed. Using this model, a techno-economic analysis was performed and the potential for this clean energy to reduce reliance on natural gas combi boilers for heating was discussed. For a building with a maximum indoor-outdoor temperature difference of 20 °C and a heating requirement of 467 kWh over 14 h, the thermal energy cost was estimated to be $0.029/kWh. This implementation reduced carbon emissions by 130 kg/day. The total equipment cost for the thermal storage system, with a U-type Vacuum Tube Collector (U-VTC) area of approximately 380 m2, was $295,697. In conclusion, both Mobiltherm 605 and PO Heat Transfer Oil 32 demonstrated comparable price/performance ratios relative to common oils.
本研究调查了在图尔基耶的基利斯使用导热油储存太阳热能的情况,该地区的太阳能潜力很高。研究同时进行了实验和建模。Mobiltherm 605 和 PO 导热油 32 作为常用导热油的替代品接受了测试。PO 导热油 32 是首次出现在文献中。研究了工作温度、水流量和室外温度对水加热系统中存储热能效率的影响。研究结果表明,当夜间室外温度为 9 °C 时,系统效率平均为 42%,但当温度为 13.5 °C 时,系统效率降至 36%。流速为 0.7 米/秒时,效率也为 36%,流速为 0.24 米/秒时,效率降至 24%。在保温箱中,Mobiltherm 605 的冷却时间比 PO 32 晚,这表明 PO 32 的传热系数更高。根据实验数据,开发了一个蓄热系统模型,并对其技术经济可行性进行了评估。利用该模型进行了技术经济分析,并讨论了这种清洁能源在减少对天然气联合锅炉供热依赖方面的潜力。对于一栋室内外最大温差为 20 °C、14 小时供暖需求为 467 千瓦时的建筑,热能成本估计为 0.029 美元/千瓦时。这一实施方案减少了 130 千克/天的碳排放量。蓄热系统的设备总成本为 295 697 美元,U 型真空管集热器(U-VTC)的面积约为 380 平方米。总之,与普通油相比,美孚 605 和 PO 导热油 32 的性价比相当。
{"title":"The effect of solar thermal energy storage on natural gas heating systems: An experimental and techno-economic investigation","authors":"","doi":"10.1016/j.csite.2024.105287","DOIUrl":"10.1016/j.csite.2024.105287","url":null,"abstract":"<div><div>This study investigates the storage of solar thermal energy using thermal oils in Kilis, Türkiye, a region characterized by high solar potential. Both experimental and modeling studies were conducted. Mobiltherm 605 and PO Heat Transfer Oil 32 were tested as alternatives to commonly used oils. PO Heat Transfer Oil 32 was introduced to the literature for the first time. The impact of operating temperature, water flow rate, and outdoor temperature on the efficiency of stored thermal energy in the water heating system was examined. The findings revealed that system efficiency averaged 42 % at a nighttime outdoor temperature of 9 °C but decreased to 36 % at 13.5 °C. Efficiency was also 36 % at a flow rate of 0.7 m/s, decreasing to 24 % at 0.24 m/s. Mobiltherm 605 cooled down later than PO 32 in the thermal tank, indicating a higher heat transfer coefficient for PO 32. Based on experimental data, a model of the thermal storage system was developed, and its techno-economic feasibility was assessed. Using this model, a techno-economic analysis was performed and the potential for this clean energy to reduce reliance on natural gas combi boilers for heating was discussed. For a building with a maximum indoor-outdoor temperature difference of 20 °C and a heating requirement of 467 kWh over 14 h, the thermal energy cost was estimated to be $0.029/kWh. This implementation reduced carbon emissions by 130 kg/day. The total equipment cost for the thermal storage system, with a U-type Vacuum Tube Collector (U-VTC) area of approximately 380 m<sup>2</sup>, was $295,697. In conclusion, both Mobiltherm 605 and PO Heat Transfer Oil 32 demonstrated comparable price/performance ratios relative to common oils.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.csite.2024.105288
The goal of present investigation is to explore the influence of exponential variable density and entropy optimization on second-grade nanofluid heating efficiency and mass-concentration transmission along extended surface using external magnetic-field and temperature-concentration slip effects. To enhance the motion of nanoparticles and thermal efficiency, the influence of exponential form of temperature-based density on magnetically charged second-grade nanomaterial is main novelty of this research. For higher temperature difference, the entropy optimization is used. The defined formulation of stream functions and similarities are used to convert leading second-grade nanofluid model into ordinary differential form. The efficient Keller box method and Newton Raphson technique are applied to compute numerical results. The final algebraic equations are solved through global matrix for unknown physical quantities. The consequence of all physical constraints on velocity/U profile, temperature/θ field, concentration/ϕ shapes, skin friction coefficient, Nusselt and Sherwood number are analyzed pictorially and numerically. The following range of parameters 0.1 ≤ ≤ 2.0, 0.0 ≤ ≤ 1.2, 0.1 ≤ ≤ 2.0, 0.07 ≤ ≤ 7.0, 0.01 ≤ ≤ 0.8, 0.01 ≤ ≤ 0.9 is used. It is found that velocity field increases with maximum amplitude as variable density, magnetic force and temperature-slip constraint. It is noted that the slip behavior in temperature field and concentration field are increased with convective boundary conditions. It is depicted that local Nusselt quantity and local Sherwood quantity increases as buoyancy force and Prandtl coefficient increases.
本研究的目标是利用外部磁场和温度-浓度滑移效应,探索指数变密度和熵优化对二级纳米流体加热效率和质量-浓度沿扩展表面传输的影响。为了提高纳米粒子的运动和热效率,基于温度的指数形式密度对带磁二级纳米材料的影响是本研究的主要创新点。对于更高的温差,采用了熵优化。利用定义的流函数公式和相似性将领先的二级纳米流体模型转换为常微分形式。采用高效的 Keller box 方法和 Newton Raphson 技术计算数值结果。通过全局矩阵求解未知物理量的最终代数方程。对速度/U 曲线、温度/θ 场、浓度/j 形状、表皮摩擦系数、努塞尔特数和舍伍德数等所有物理约束条件的后果进行了图像和数值分析。使用的参数范围如下 0.1 ≤ ξ ≤ 2.0, 0.0 ≤ n ≤ 1.2, 0.1 ≤ Ec ≤ 2.0, 0.07 ≤ Pr ≤ 7.0, 0.01 ≤ Nt ≤ 0.8, 0.01 ≤ Nb ≤ 0.9。结果发现,随着密度、磁力和温度-滑移约束条件的变化,速度场以最大振幅增加。注意到温度场和浓度场的滑移行为在对流边界条件下有所增加。随着浮力和普朗特系数的增加,局部努塞尔特量和局部舍伍德量也随之增加。
{"title":"Entropy optimization of MHD second-grade nanofluid thermal transmission along stretched sheet with variable density and thermal-concentration slip effects","authors":"","doi":"10.1016/j.csite.2024.105288","DOIUrl":"10.1016/j.csite.2024.105288","url":null,"abstract":"<div><div>The goal of present investigation is to explore the influence of exponential variable density and entropy optimization on second-grade nanofluid heating efficiency and mass-concentration transmission along extended surface using external magnetic-field and temperature-concentration slip effects. To enhance the motion of nanoparticles and thermal efficiency, the influence of exponential form of temperature-based density on magnetically charged second-grade nanomaterial is main novelty of this research. For higher temperature difference, the entropy optimization is used. The defined formulation of stream functions and similarities are used to convert leading second-grade nanofluid model into ordinary differential form. The efficient Keller box method and Newton Raphson technique are applied to compute numerical results. The final algebraic equations are solved through global matrix for unknown physical quantities. The consequence of all physical constraints on velocity/U profile, temperature/θ field, concentration/ϕ shapes, skin friction coefficient, Nusselt and Sherwood number are analyzed pictorially and numerically. The following range of parameters 0.1 ≤ <span><math><mrow><mi>ξ</mi></mrow></math></span> ≤ 2.0, 0.0 ≤ <span><math><mrow><mi>n</mi></mrow></math></span> ≤ 1.2, 0.1 ≤ <span><math><mrow><msub><mi>E</mi><mi>c</mi></msub></mrow></math></span> ≤ 2.0, 0.07 ≤ <span><math><mrow><msub><mi>P</mi><mi>r</mi></msub></mrow></math></span> ≤ 7.0, 0.01 ≤ <span><math><mrow><msub><mi>N</mi><mi>t</mi></msub></mrow></math></span> ≤ 0.8, 0.01 ≤ <span><math><mrow><msub><mi>N</mi><mi>b</mi></msub></mrow></math></span> ≤ 0.9 is used. It is found that velocity field increases with maximum amplitude as variable density, magnetic force and temperature-slip constraint. It is noted that the slip behavior in temperature field and concentration field are increased with convective boundary conditions. It is depicted that local Nusselt quantity and local Sherwood quantity increases as buoyancy force and Prandtl coefficient increases.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}