Pub Date : 2024-11-09DOI: 10.1016/j.csite.2024.105421
T. Giftlin Blessy, B. Rushi Kumar
The field of hybrid nanofluid transport through porous media holds immense promise for optimizing thermal processing and various thermodynamic applications. This study investigates the flow dynamics of a hybrid nanofluid, comprising water and a synergistic combination of single-walled and multi-walled carbon nanotubes (SWCNT-MWCNT), as it traverses a vertically stretched porous surface. The mathematical modeling of this flow scenario considers the influential factors of magnetohydrodynamics (MHD), viscous dissipation, heat sources, and ohmic heating. The Darcy–Forchheimer–Brinkman model is employed to capture the transport of fluid through the porous medium. Through the application of Local Non-Similarity (LNS) technique, the governing equations are converted into a dimensionless system and solved numerically using the robust bvp4c function in MATLAB. Interestingly, higher values of heat source parameter leads to a rising trend in the temperature profile, highlighting the intricate interplay between the thermal and fluid dynamic aspects of the system. This work provides valuable insights into the tailored design of hybrid nanofluids and porous media configurations to harness their enhanced thermal transport capabilities, with potential applications in diverse fields such as energy storage systems, heat exchangers, and thermal management devices. The findings contribute to the broader understanding of hybrid nanofluid transport in porous media and pave the way for the development of innovative thermal management solutions in a wide range of industrial and technological domains.
{"title":"Simulation and non-similar analysis of magnetized SWCNT-MWCNT hybrid nanofluid flow in porous media using Darcy–Forchheimer–Brinkman model","authors":"T. Giftlin Blessy, B. Rushi Kumar","doi":"10.1016/j.csite.2024.105421","DOIUrl":"10.1016/j.csite.2024.105421","url":null,"abstract":"<div><div>The field of hybrid nanofluid transport through porous media holds immense promise for optimizing thermal processing and various thermodynamic applications. This study investigates the flow dynamics of a hybrid nanofluid, comprising water and a synergistic combination of single-walled and multi-walled carbon nanotubes (SWCNT-MWCNT), as it traverses a vertically stretched porous surface. The mathematical modeling of this flow scenario considers the influential factors of magnetohydrodynamics (MHD), viscous dissipation, heat sources, and ohmic heating. The Darcy–Forchheimer–Brinkman model is employed to capture the transport of fluid through the porous medium. Through the application of Local Non-Similarity (LNS) technique, the governing equations are converted into a dimensionless system and solved numerically using the robust bvp4c function in MATLAB. Interestingly, higher values of heat source parameter leads to a rising trend in the temperature profile, highlighting the intricate interplay between the thermal and fluid dynamic aspects of the system. This work provides valuable insights into the tailored design of hybrid nanofluids and porous media configurations to harness their enhanced thermal transport capabilities, with potential applications in diverse fields such as energy storage systems, heat exchangers, and thermal management devices. The findings contribute to the broader understanding of hybrid nanofluid transport in porous media and pave the way for the development of innovative thermal management solutions in a wide range of industrial and technological domains.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105421"},"PeriodicalIF":6.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.csite.2024.105461
Ali Heydari , Ahmad R. Gharaibeh , Mohammad Tradat , Qusai Soud , Yaman Manaserh , Vahideh Radmard , Bahareh Eslami , Jeremy Rodriguez , Bahgat Sammakia
The rapid growth in data center workloads and the increasing complexity of modern applications have led to significant contradictions between computational performance and thermal management. Traditional air-cooling systems, while widely adopted, are reaching their limits in handling the rising thermal footprints and higher rack power densities of next-generation servers, often resulting in thermal throttling and decreased efficiency, emphasizing the need for more efficient cooling solutions. Direct-to-chip liquid cooling with cold plates has emerged as a promising solution, providing efficient heat dissipation for high-performance servers. However, challenges remain, such as ensuring system stability under varying thermal loads and optimizing integration with existing infrastructure. This comprehensive study digs into the area of data center liquid cooling, providing a novel, comprehensive experimental investigation of the critical steps and tests necessary for commissioning coolant distribution units (CDUs) in direct-to-chip liquid-cooled data centers. It carefully investigates the hydraulic, thermal, and energy aspects, establishing the groundwork for Liquid-to-Air (L2A) CDU data centers. A CDU's performance was evaluated under different conditions. First, the CDU's maximum cooling capacity was evaluated and found to be as high as 89.9 kW at an approach temperature difference (ATD) of 18.3 °C with a 0.83 heat exchanger effectiveness. Then, to assess the cooling performance and stability of the CDU, a low-power test and a transient thermohydraulic test were conducted. The results showed instability in the supply fluid temperature (SFT) caused by the oscillation in fan speed at low thermal loads. Despite this, heat removal rates remained constant across varying supply air temperatures (SATs), and a partial power usage effectiveness (PPUE) of 1.042 was achieved at 100 % heat load (86 kW) under different SATs. This research sets a foundation for improving L2A CDU performance and offers practical insights for overcoming current cooling limitations in data centers.
数据中心工作负载的快速增长和现代应用的日益复杂,导致计算性能和热管理之间的矛盾日益突出。传统的空气冷却系统虽然被广泛采用,但在处理下一代服务器不断增加的热足迹和更高的机架功率密度方面已达到极限,往往会导致热节流和效率降低,因此需要更高效的冷却解决方案。采用冷板的直接芯片液冷技术已成为一种前景广阔的解决方案,可为高性能服务器提供高效散热。然而,挑战依然存在,例如确保系统在不同热负荷下的稳定性,以及优化与现有基础设施的集成。本综合研究深入探讨了数据中心液体冷却领域,对直接到芯片液体冷却数据中心的冷却剂分配单元(CDU)调试所需的关键步骤和测试进行了新颖、全面的实验研究。它仔细研究了液压、热能和能源方面的问题,为液空(L2A)CDU 数据中心奠定了基础。CDU 的性能在不同条件下进行了评估。首先,对 CDU 的最大冷却能力进行了评估,发现在接近温差(ATD)为 18.3 °C、热交换器效率为 0.83 的条件下,CDU 的最大冷却能力高达 89.9 千瓦。然后,为了评估 CDU 的冷却性能和稳定性,进行了低功率测试和瞬态热液压测试。结果表明,在低热负荷时,风扇转速的波动会导致供流体温度(SFT)不稳定。尽管如此,在不同的供气温度(SAT)下,热去除率保持不变,在不同的 SAT 下,100% 热负荷(86 kW)时的部分功率使用效率(PPUE)达到了 1.042。这项研究为提高 L2A CDU 性能奠定了基础,并为克服数据中心当前的冷却限制提供了实用见解。
{"title":"Parameters of performance: A deep dive into liquid-to-air CDU assessment","authors":"Ali Heydari , Ahmad R. Gharaibeh , Mohammad Tradat , Qusai Soud , Yaman Manaserh , Vahideh Radmard , Bahareh Eslami , Jeremy Rodriguez , Bahgat Sammakia","doi":"10.1016/j.csite.2024.105461","DOIUrl":"10.1016/j.csite.2024.105461","url":null,"abstract":"<div><div>The rapid growth in data center workloads and the increasing complexity of modern applications have led to significant contradictions between computational performance and thermal management. Traditional air-cooling systems, while widely adopted, are reaching their limits in handling the rising thermal footprints and higher rack power densities of next-generation servers, often resulting in thermal throttling and decreased efficiency, emphasizing the need for more efficient cooling solutions. Direct-to-chip liquid cooling with cold plates has emerged as a promising solution, providing efficient heat dissipation for high-performance servers. However, challenges remain, such as ensuring system stability under varying thermal loads and optimizing integration with existing infrastructure. This comprehensive study digs into the area of data center liquid cooling, providing a novel, comprehensive experimental investigation of the critical steps and tests necessary for commissioning coolant distribution units (CDUs) in direct-to-chip liquid-cooled data centers. It carefully investigates the hydraulic, thermal, and energy aspects, establishing the groundwork for Liquid-to-Air (L2A) CDU data centers. A CDU's performance was evaluated under different conditions. First, the CDU's maximum cooling capacity was evaluated and found to be as high as 89.9 kW at an approach temperature difference (ATD) of 18.3 °C with a 0.83 heat exchanger effectiveness. Then, to assess the cooling performance and stability of the CDU, a low-power test and a transient thermohydraulic test were conducted. The results showed instability in the supply fluid temperature (SFT) caused by the oscillation in fan speed at low thermal loads. Despite this, heat removal rates remained constant across varying supply air temperatures (SATs), and a partial power usage effectiveness (PPUE) of 1.042 was achieved at 100 % heat load (86 kW) under different SATs. This research sets a foundation for improving L2A CDU performance and offers practical insights for overcoming current cooling limitations in data centers.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105461"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study involves a computational analysis to find the effectiveness of incorporating twisted tape within a twisted square duct for improving heat transfer, focusing on laminar single-phase flow. The primary goal is to study how varying the tape pitch (y) influences the hydrothermal performance of this system. The twisted square duct pitch (S) and twist ratio (H) were kept constant. The numerical analysis is performed under conditions of uniform wall temperature, and varying the pitch ratio (y/S) across values of 0.25, 0.5,0.75, 1, 1.25, 1.5 and 1.75. The obtained findings suggest that the addition of twisted tape within the twisted square duct results in a greater rate of heat exchange and pressure drop relative to the simple twisted square duct. Research reveals that despite a higher rate of heat transfer for a pitch ratio of 0.25 the increased friction factor results in less effective thermal performance compared to the cases with pitch ratios of 0.75 and 0.5. The thermal performance factor reaches its peak at 1.32, corresponding to the Reynolds number 1000 for a pitch ratio of 0.75 case. Conversely, the lowest thermal performance factor value of 0.89 is observed at the Reynolds number 500 for pitch ratio 1.25 case.
{"title":"Thermal performance enhancement of laminar flow using compound twisted square duct and variable pitch twisted tape inserts","authors":"V.P. Chithra , V. Jayakumar , Balaji Bakthavatchalam , Sambhaji Kashinath Kusekar , Kashif Irshad , Khairul Habib","doi":"10.1016/j.csite.2024.105462","DOIUrl":"10.1016/j.csite.2024.105462","url":null,"abstract":"<div><div>This study involves a computational analysis to find the effectiveness of incorporating twisted tape within a twisted square duct for improving heat transfer, focusing on laminar single-phase flow. The primary goal is to study how varying the tape pitch (y) influences the hydrothermal performance of this system. The twisted square duct pitch (S) and twist ratio (H) were kept constant. The numerical analysis is performed under conditions of uniform wall temperature, and varying the pitch ratio (y/S) across values of 0.25, 0.5,0.75, 1, 1.25, 1.5 and 1.75. The obtained findings suggest that the addition of twisted tape within the twisted square duct results in a greater rate of heat exchange and pressure drop relative to the simple twisted square duct. Research reveals that despite a higher rate of heat transfer for a pitch ratio of 0.25 the increased friction factor results in less effective thermal performance compared to the cases with pitch ratios of 0.75 and 0.5. The thermal performance factor reaches its peak at 1.32, corresponding to the Reynolds number 1000 for a pitch ratio of 0.75 case. Conversely, the lowest thermal performance factor value of 0.89 is observed at the Reynolds number 500 for pitch ratio 1.25 case.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105462"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.csite.2024.105391
Miriam Rodríguez de Rivera , Pedro Jesús Rodríguez de Rivera , Fabiola Socorro , Manuel Rodríguez de Rivera
This study explores a novel application of a calorimetric sensor to measure the heat capacity of small heat-conducting parts under varying environmental conditions. The sensor, a hybrid of a heat conduction calorimeter and a differential scanning calorimeter (DSC), has been adapted from its original use on living skin to measure conductive materials. We present a detailed description of the sensor's instrumentation, its operating model, and the experimental procedure. The sensor's accuracy is evaluated through experimental measurements on aluminum and brass samples, showing a maximum deviation of 5 % and a mean deviation of 2.35 % from the theoretical values. Additionally, finite element method (FEM) simulations are employed to further investigate the sensor's performance, confirming that both measurement time and sample size significantly influence the results. This research demonstrates the potential of this calorimetric sensor for rapid and accurate thermal analysis of small heat conducting parts, with potential applications in various scientific and industrial fields.
{"title":"New application of a calorimetric sensor: Measurement of the heat capacity of heat-conducting small parts","authors":"Miriam Rodríguez de Rivera , Pedro Jesús Rodríguez de Rivera , Fabiola Socorro , Manuel Rodríguez de Rivera","doi":"10.1016/j.csite.2024.105391","DOIUrl":"10.1016/j.csite.2024.105391","url":null,"abstract":"<div><div>This study explores a novel application of a calorimetric sensor to measure the heat capacity of small heat-conducting parts under varying environmental conditions. The sensor, a hybrid of a heat conduction calorimeter and a differential scanning calorimeter (DSC), has been adapted from its original use on living skin to measure conductive materials. We present a detailed description of the sensor's instrumentation, its operating model, and the experimental procedure. The sensor's accuracy is evaluated through experimental measurements on aluminum and brass samples, showing a maximum deviation of 5 % and a mean deviation of 2.35 % from the theoretical values. Additionally, finite element method (FEM) simulations are employed to further investigate the sensor's performance, confirming that both measurement time and sample size significantly influence the results. This research demonstrates the potential of this calorimetric sensor for rapid and accurate thermal analysis of small heat conducting parts, with potential applications in various scientific and industrial fields.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105391"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.csite.2024.105449
Xin Zhang , Yuting Wang , Hanxiang Wang , Shen Fan , Xiang Meng , Haolei Xu
Microwave heating has emerged as a promising technology in hydrate mining, attracting significant interest. This study focus on optimizing the structural parameters of microwave radiation antenna via a multiphysical coupling model. Subsequently the model is validated through experimental results. The microwave radiation simulation model is then developed to evaluate the antenna radiation performance and to elucidate the temperature distribution mechanism within the reservoir. The optimized structure features rectangle slots with an angle of 75° and a length of 28 mm. When this optimized antenna is deployed in a 1-m radius reservoir and heated for 10 h, it rises the average temperature from 2 °C to 7.11 °C. Moreover, the design improves the thermal uniformity within the gas hydrate reservoir, achieving a temperature standard deviation of 7.76 °C. Post-heating uniformity indicates effective microwave distribution. Overall, these results affirm that microwave heating, particularly when utilizing an optimized antenna, effectively enhances the reservoir's sensible heat and aids in hydrate decomposition.
{"title":"Structural parameters optimization of microwave radiation antenna in hydrate reservoir based on multiphysical coupling model","authors":"Xin Zhang , Yuting Wang , Hanxiang Wang , Shen Fan , Xiang Meng , Haolei Xu","doi":"10.1016/j.csite.2024.105449","DOIUrl":"10.1016/j.csite.2024.105449","url":null,"abstract":"<div><div>Microwave heating has emerged as a promising technology in hydrate mining, attracting significant interest. This study focus on optimizing the structural parameters of microwave radiation antenna via a multiphysical coupling model. Subsequently the model is validated through experimental results. The microwave radiation simulation model is then developed to evaluate the antenna radiation performance and to elucidate the temperature distribution mechanism within the reservoir. The optimized structure features rectangle slots with an angle of 75° and a length of 28 mm. When this optimized antenna is deployed in a 1-m radius reservoir and heated for 10 h, it rises the average temperature from 2 °C to 7.11 °C. Moreover, the design improves the thermal uniformity within the gas hydrate reservoir, achieving a temperature standard deviation of 7.76 °C. Post-heating uniformity indicates effective microwave distribution. Overall, these results affirm that microwave heating, particularly when utilizing an optimized antenna, effectively enhances the reservoir's sensible heat and aids in hydrate decomposition.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105449"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.csite.2024.105425
Amin Motevali Emami , Ehsan Baniasadi , Ahmed Rezk
The increasing carbon footprint associated with conventional cooling methods underscores the urgent need for sustainable alternatives. This study investigates the economic and environmental advantages of various solar-thermal cooling systems, with a focus on optimizing their performance across different climate conditions. Employing a multi-objective approach, the research emphasizes exergy-economic indices to optimize selected cycles. The analysis covers multiple refrigeration technologies, including liquid absorption, solid adsorption, and solid desiccant cycles. Results indicate that the liquid absorption cycle performs optimally in hot, arid climates, reducing the payback period to approximately 8 years when optimized. In hot and humid regions, the solid desiccant cycle proves most effective due to its superior humidity control, yielding a payback period of 5.3 years. For cold and mountainous areas, the solid adsorption cycle is preferred, with a payback period of 13.5 years, while moderate and humid climates benefit from the solid desiccant cycle for both cooling and humidity regulation. The exergy-economic factors for the solar refrigeration systems across semi-arid, hot and arid, hot and humid, cold and mountainous, and moderate and humid climates are 0.758, 0.602, 0.698, 0.74, and 0.575, respectively.
{"title":"Exergy-economic based multi-objective optimization and carbon footprint analysis of solar thermal refrigeration systems","authors":"Amin Motevali Emami , Ehsan Baniasadi , Ahmed Rezk","doi":"10.1016/j.csite.2024.105425","DOIUrl":"10.1016/j.csite.2024.105425","url":null,"abstract":"<div><div>The increasing carbon footprint associated with conventional cooling methods underscores the urgent need for sustainable alternatives. This study investigates the economic and environmental advantages of various solar-thermal cooling systems, with a focus on optimizing their performance across different climate conditions. Employing a multi-objective approach, the research emphasizes exergy-economic indices to optimize selected cycles. The analysis covers multiple refrigeration technologies, including liquid absorption, solid adsorption, and solid desiccant cycles. Results indicate that the liquid absorption cycle performs optimally in hot, arid climates, reducing the payback period to approximately 8 years when optimized. In hot and humid regions, the solid desiccant cycle proves most effective due to its superior humidity control, yielding a payback period of 5.3 years. For cold and mountainous areas, the solid adsorption cycle is preferred, with a payback period of 13.5 years, while moderate and humid climates benefit from the solid desiccant cycle for both cooling and humidity regulation. The exergy-economic factors for the solar refrigeration systems across semi-arid, hot and arid, hot and humid, cold and mountainous, and moderate and humid climates are 0.758, 0.602, 0.698, 0.74, and 0.575, respectively.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105425"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.csite.2024.105454
Weiwei Zhang , Yi Liu , Donghui Yuan , Jun Rong , Ningning Hu , Yuye Chen , Jianlong Ma
In the design of tangentially fired boilers, because of the limitations of the occupied area and on-site space, the structural relationship between the windbox of the secondary air pipe and the burner nozzle is the main pipe and the parallel branch pipe. The distribution of secondary air flow in each layer of the burner nozzle is not uniform when the boiler is running at peak-shaving operation. Therefore, after the distribution method of secondary air flow is determined, the adjust of air flow through the precise adjustment of secondary air damper opening is necessary. An adjustment model of secondary air damper opening under a hot condition is established through the effective coupling of the Newton–Raphson descent iteration method and a three-dimensional numerical simulation method. For different secondary air distribution objectives, precise adjustment of secondary air damper opening can be achieved through a few times of numerical simulation calculation using this model. Given the secondary air pipe of a 350 MWe supercritical tangentially fired boiler as the research object and two secondary air distribution objectives as examples, the feasibility and accuracy of the model are verified by realizing precise adjustment of damper openings.
{"title":"Adjustment algorithm of damper openings of tangentially fired boilers based on secondary air distribution","authors":"Weiwei Zhang , Yi Liu , Donghui Yuan , Jun Rong , Ningning Hu , Yuye Chen , Jianlong Ma","doi":"10.1016/j.csite.2024.105454","DOIUrl":"10.1016/j.csite.2024.105454","url":null,"abstract":"<div><div>In the design of tangentially fired boilers, because of the limitations of the occupied area and on-site space, the structural relationship between the windbox of the secondary air pipe and the burner nozzle is the main pipe and the parallel branch pipe. The distribution of secondary air flow in each layer of the burner nozzle is not uniform when the boiler is running at peak-shaving operation. Therefore, after the distribution method of secondary air flow is determined, the adjust of air flow through the precise adjustment of secondary air damper opening is necessary. An adjustment model of secondary air damper opening under a hot condition is established through the effective coupling of the Newton–Raphson descent iteration method and a three-dimensional numerical simulation method. For different secondary air distribution objectives, precise adjustment of secondary air damper opening can be achieved through a few times of numerical simulation calculation using this model. Given the secondary air pipe of a 350 MWe supercritical tangentially fired boiler as the research object and two secondary air distribution objectives as examples, the feasibility and accuracy of the model are verified by realizing precise adjustment of damper openings.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105454"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.csite.2024.105455
Minfeng Dou , Xiyao Wang , Hongxin Yao , Linshuang Long , Guozhu Zhao , Hong Ye
A scanning electron beam can be used to construct heat flux boundaries (HFBs). However, the long current response time in the deflection coil using a current control method (CCM) cause the deviation of the current waveform, potentially reducing the accuracy of the reconstructed HFB relative to the target HFB. The impact of the current response time on the reconstruction accuracy increases as the field frequency increases, and the accuracy can be reduced from 0.89 to 0.69. To shorten the current response time and improve the reconstruction accuracy, a voltage waveform design method (VWDM) is introduced as a replacement for the CCM. The result indicates that the accuracy of the HFB reconstructed by a scanning electron beam controlled by the VWDM can reach 0.91. Additionally, increasing the maximum output voltage of the power amplifier used to generate the voltage can further improve the reconstruction accuracy of the HFB with the VWDM. This study provides a new approach for the accurate construction of HFBs for rapid thermal processing, additive manufacturing and thermal assessment of hypersonic vehicles.
{"title":"High-precision reconstruction of a heat flux boundary via a programmable scanning electron beam controlled by the voltage waveform design method","authors":"Minfeng Dou , Xiyao Wang , Hongxin Yao , Linshuang Long , Guozhu Zhao , Hong Ye","doi":"10.1016/j.csite.2024.105455","DOIUrl":"10.1016/j.csite.2024.105455","url":null,"abstract":"<div><div>A scanning electron beam can be used to construct heat flux boundaries (HFBs). However, the long current response time in the deflection coil using a current control method (CCM) cause the deviation of the current waveform, potentially reducing the accuracy of the reconstructed HFB relative to the target HFB. The impact of the current response time on the reconstruction accuracy increases as the field frequency increases, and the accuracy can be reduced from 0.89 to 0.69. To shorten the current response time and improve the reconstruction accuracy, a voltage waveform design method (VWDM) is introduced as a replacement for the CCM. The result indicates that the accuracy of the HFB reconstructed by a scanning electron beam controlled by the VWDM can reach 0.91. Additionally, increasing the maximum output voltage of the power amplifier used to generate the voltage can further improve the reconstruction accuracy of the HFB with the VWDM. This study provides a new approach for the accurate construction of HFBs for rapid thermal processing, additive manufacturing and thermal assessment of hypersonic vehicles.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105455"},"PeriodicalIF":6.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.csite.2024.105452
Shiya Zhao , Jianxin Diao , Sheng Yao , Jingyu Yuan , Xuan Liu , Min Li
The renovation of historic residential buildings is required to balance the daylighting and thermal comfort of the building space with the conservation of the architectural features. However, there is a lack of dynamic optimization in the dimension of seasons for the historic residential buildings, while conservation factors are not considered in the design strategies. Therefore, in this study, a seasonal multi-optimization method for the historic residential buildings was introduced to improve the daylighting and thermal comfort while reducing carbon emissions. At first, the field and network investigation were conducted and a prototypical model was developed based on the second-order cluster analysis method. Furthermore, the envelope (internal insulation materials, internal insulation thickness, window types) and shading devices (inclination angle of shutters and shutter depth for different seasons and orientations) were optimized based on the Grasshopper platform. Finally, the best renovation solution orientated by low-carbon emission was proposed. The results show that the optimal material for the internal insulation of the wall is polyurethane, which has a thickness of 0.10 m. The window type is 6 mm high transmission reflective glass. The greatest inclination angle of shutters in summer is the window facing southeast. Conversely, in spring and autumn, the southwest windows have the greatest inclination angle of shutters. In winter, the inclination angle of shutters for the northeast windows is a maximum of 26°. The inclination angle of shutters for southwest windows in autumn is the most needed for design, and the angle is upward reversed 47°. The maximum shutter depth of 0.19 m in the southeastern windows is a 72.71 % improvement relative to the minimum shutter depth. Compared with the prototypical model, the useful daylight illuminance of the building model is improved by 12.41 %, the thermal discomfort hours percentage is reduced 3.09 %, and the life cycle carbon emissions is reduced by 14.6 %. The optimal design strategies for the building envelope and shading devices considering conservation principles can improve the daylighting and thermal comfort of the historic residential buildings.
{"title":"Seasonal optimization of envelope and shading devices oriented towards low-carbon emission for premodern historic residential buildings of China","authors":"Shiya Zhao , Jianxin Diao , Sheng Yao , Jingyu Yuan , Xuan Liu , Min Li","doi":"10.1016/j.csite.2024.105452","DOIUrl":"10.1016/j.csite.2024.105452","url":null,"abstract":"<div><div>The renovation of historic residential buildings is required to balance the daylighting and thermal comfort of the building space with the conservation of the architectural features. However, there is a lack of dynamic optimization in the dimension of seasons for the historic residential buildings, while conservation factors are not considered in the design strategies. Therefore, in this study, a seasonal multi-optimization method for the historic residential buildings was introduced to improve the daylighting and thermal comfort while reducing carbon emissions. At first, the field and network investigation were conducted and a prototypical model was developed based on the second-order cluster analysis method. Furthermore, the envelope (internal insulation materials, internal insulation thickness, window types) and shading devices (inclination angle of shutters and shutter depth for different seasons and orientations) were optimized based on the Grasshopper platform. Finally, the best renovation solution orientated by low-carbon emission was proposed. The results show that the optimal material for the internal insulation of the wall is polyurethane, which has a thickness of 0.10 m. The window type is 6 mm high transmission reflective glass. The greatest inclination angle of shutters in summer is the window facing southeast. Conversely, in spring and autumn, the southwest windows have the greatest inclination angle of shutters. In winter, the inclination angle of shutters for the northeast windows is a maximum of 26<sup>°</sup>. The inclination angle of shutters for southwest windows in autumn is the most needed for design, and the angle is upward reversed 47<sup>°</sup>. The maximum shutter depth of 0.19 m in the southeastern windows is a 72.71 % improvement relative to the minimum shutter depth. Compared with the prototypical model, the useful daylight illuminance of the building model is improved by 12.41 %, the thermal discomfort hours percentage is reduced 3.09 %, and the life cycle carbon emissions is reduced by 14.6 %. The optimal design strategies for the building envelope and shading devices considering conservation principles can improve the daylighting and thermal comfort of the historic residential buildings.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105452"},"PeriodicalIF":6.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.csite.2024.105410
Abdelrahman O. Ali , Mohamed R. Elmarghany , Ahmed M. Hamed , Mohamed Nabil Sabry , Mohamed M. Abdelsalam
Utility authorities utilize various methods to promote end-user energy conservation, including higher tariff rates and demand response (DR) strategies. This paper investigates an Optimized Smart Home Energy Management System (OSHEMS) designed to minimize grid dependence and energy bills while ensuring reliable load delivery. A hybrid architecture prototype was implemented, integrating a photovoltaic (PV) array, battery storage, and the electrical grid. The system combines Maximum Power Point Tracking (MPPT) solar chargers and Pure Sine Wave (PSW) inverters for efficient energy management. The Home Energy Management Whale Optimization Algorithm (HEMWOA) was employed to optimize energy usage and achieve cost reduction while enhancing user comfort. Real-time pricing (RTP) tariffs incentivizing flexible energy consumption during peak hours were incorporated. OSHEMS manages, schedules, and monitors energy sources and appliances, determining the optimal consumption mix. Experimental results demonstrate a significant decrease in grid reliance (46.6 %) and energy costs (57.7 %) compared to non-scheduling scenarios. These findings highlight the potential of OSHEMS in promoting sustainable and cost-effective energy consumption in smart homes.
{"title":"Optimized smart home energy management system: Reducing grid consumption and costs through real-time pricing and hybrid architecture","authors":"Abdelrahman O. Ali , Mohamed R. Elmarghany , Ahmed M. Hamed , Mohamed Nabil Sabry , Mohamed M. Abdelsalam","doi":"10.1016/j.csite.2024.105410","DOIUrl":"10.1016/j.csite.2024.105410","url":null,"abstract":"<div><div>Utility authorities utilize various methods to promote end-user energy conservation, including higher tariff rates and demand response (DR) strategies. This paper investigates an Optimized Smart Home Energy Management System (OSHEMS) designed to minimize grid dependence and energy bills while ensuring reliable load delivery. A hybrid architecture prototype was implemented, integrating a photovoltaic (PV) array, battery storage, and the electrical grid. The system combines Maximum Power Point Tracking (MPPT) solar chargers and Pure Sine Wave (PSW) inverters for efficient energy management. The Home Energy Management Whale Optimization Algorithm (HEMWOA) was employed to optimize energy usage and achieve cost reduction while enhancing user comfort. Real-time pricing (RTP) tariffs incentivizing flexible energy consumption during peak hours were incorporated. OSHEMS manages, schedules, and monitors energy sources and appliances, determining the optimal consumption mix. Experimental results demonstrate a significant decrease in grid reliance (46.6 %) and energy costs (57.7 %) compared to non-scheduling scenarios. These findings highlight the potential of OSHEMS in promoting sustainable and cost-effective energy consumption in smart homes.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105410"},"PeriodicalIF":6.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}