首页 > 最新文献

Cell metabolism最新文献

英文 中文
Endothelial metabolic control of insulin sensitivity through resident macrophages 内皮代谢通过常驻巨噬细胞控制胰岛素敏感性
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.cmet.2024.08.008
Jing Zhang, Kim Anker Sjøberg, Songlin Gong, Tongtong Wang, Fengqi Li, Andrew Kuo, Stephan Durot, Adam Majcher, Raphaela Ardicoglu, Thibaut Desgeorges, Charlotte Greta Mann, Ines Soro Arnáiz, Gillian Fitzgerald, Paola Gilardoni, E. Dale Abel, Shigeyuki Kon, Danyvid Olivares-Villagómez, Nicola Zamboni, Christian Wolfrum, Thorsten Hornemann, Katrien De Bock

Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.

内皮细胞(ECs)不仅构成被动的血液通道,而且还对营养物质运输和器官稳态做出积极贡献。然而,人们对内皮细胞在葡萄糖稳态中的作用知之甚少。在这里,我们发现在骨骼肌中,内皮细胞葡萄糖转运体 1(Glut1/Slc2a1)通过肌肉驻留巨噬细胞的血管代谢控制葡萄糖摄取,而不影响跨内皮细胞葡萄糖转运。通过基因耗竭(Glut1ΔEC)或短期高脂饮食降低内皮 Glut1 会增加血管内分泌性骨质素(OPN/Spp1)的分泌。这促进了常驻肌肉巨噬细胞的活化和增殖,从而损害了肌肉对胰岛素的敏感性。因此,共同删除 EC 中的 Spp1 可防止巨噬细胞聚集,并改善 Glut1ΔEC 小鼠的胰岛素敏感性。从机理上讲,Glut1 依赖性内皮葡萄糖代谢重新布线以丝氨酸代谢依赖性方式增加了 OPN。我们的数据说明了糖酵解内皮如何创造一种微环境,控制常驻肌肉巨噬细胞的表型和功能,并将常驻肌肉巨噬细胞与维持肌肉葡萄糖稳态直接联系起来。
{"title":"Endothelial metabolic control of insulin sensitivity through resident macrophages","authors":"Jing Zhang, Kim Anker Sjøberg, Songlin Gong, Tongtong Wang, Fengqi Li, Andrew Kuo, Stephan Durot, Adam Majcher, Raphaela Ardicoglu, Thibaut Desgeorges, Charlotte Greta Mann, Ines Soro Arnáiz, Gillian Fitzgerald, Paola Gilardoni, E. Dale Abel, Shigeyuki Kon, Danyvid Olivares-Villagómez, Nicola Zamboni, Christian Wolfrum, Thorsten Hornemann, Katrien De Bock","doi":"10.1016/j.cmet.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.008","url":null,"abstract":"<p>Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (<em>Glut1</em>/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages <em>without</em> affecting transendothelial glucose transport. Lowering endothelial <em>Glut1</em> via genetic depletion (<em>Glut1</em><sup>ΔEC</sup>) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/<em>Spp1</em>) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting <em>Spp1</em> from ECs prevented macrophage accumulation and improved insulin sensitivity in <em>Glut1</em><sup>ΔEC</sup> mice. Mechanistically, <em>Glut1-</em>dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"22 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis 膳食-丁宁诱导的肠道微生物群昼夜振荡调节类风湿性关节炎的炎症节律
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1016/j.cmet.2024.08.007
Fopei Ma, Zhuang Li, Haihua Liu, Shixian Chen, Songyuan Zheng, Junqing Zhu, Hao Shi, Haixin Ye, Zhantu Qiu, Lei Gao, Bingqi Han, Qian Yang, Xing Wang, Yang Zhang, Lifang Cheng, Huijie Fan, Shuaijun Lv, Xiaoshan Zhao, Hongwei Zhou, Juan Li, Mukeng Hong

Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by inflammatory activity with distinct rhythmic fluctuations. However, the precise mechanisms governing these inflammatory rhythms remain elusive. Here, we explore the interaction between dietary patterns, gut microbiota diurnal oscillations, and the rhythmicity of RA in both collagen-induced arthritis (CIA) mice and patients with RA and highlight the significance of dietary timing in modulating RA inflammatory rhythms linked to gut microbiota. Specifically, we discovered that Parabacteroides distasonis (P. distasonis) uses β-glucosidase (β-GC) to release glycitein (GLY) from the diet in response to daily nutritional cues, influencing RA inflammatory rhythms dependent on the sirtuin 5-nuclear factor-κB (SIRT5-NF-κB) axis. Notably, we validated the daily fluctuations of P. distasonis-β-GC-GLY in patients with RA through continuous sampling across day-night cycles. These findings underscore the crucial role of dietary timing in RA rhythmicity and propose potential clinical implications for novel therapeutic strategies to alleviate arthritis.

类风湿性关节炎(RA)是一种慢性自身免疫性疾病,其特点是炎症活动具有明显的节律性波动。然而,支配这些炎症节律的确切机制仍然难以捉摸。在这里,我们探讨了饮食模式、肠道微生物群昼夜振荡与胶原诱导关节炎(CIA)小鼠和 RA 患者的 RA 节律性之间的相互作用,并强调了饮食时间在调节与肠道微生物群相关的 RA 炎症节律中的重要性。具体而言,我们发现,远端副乳头瘤菌(P. distasonis)利用β-葡萄糖苷酶(β-GC)从饮食中释放亚甘氨酸(GLY)以响应每日营养线索,从而影响依赖于sirtuin 5-核因子-κB(SIRT5-NF-κB)轴的RA炎症节律。值得注意的是,我们通过跨昼夜周期的连续采样,验证了P. distasonis-β-GC-GLY在RA患者中的日波动性。这些发现强调了饮食时间在 RA 节律性中的关键作用,并为缓解关节炎的新型治疗策略提出了潜在的临床意义。
{"title":"Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis","authors":"Fopei Ma, Zhuang Li, Haihua Liu, Shixian Chen, Songyuan Zheng, Junqing Zhu, Hao Shi, Haixin Ye, Zhantu Qiu, Lei Gao, Bingqi Han, Qian Yang, Xing Wang, Yang Zhang, Lifang Cheng, Huijie Fan, Shuaijun Lv, Xiaoshan Zhao, Hongwei Zhou, Juan Li, Mukeng Hong","doi":"10.1016/j.cmet.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.007","url":null,"abstract":"<p>Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by inflammatory activity with distinct rhythmic fluctuations. However, the precise mechanisms governing these inflammatory rhythms remain elusive. Here, we explore the interaction between dietary patterns, gut microbiota diurnal oscillations, and the rhythmicity of RA in both collagen-induced arthritis (CIA) mice and patients with RA and highlight the significance of dietary timing in modulating RA inflammatory rhythms linked to gut microbiota. Specifically, we discovered that <em>Parabacteroides distasonis</em> (<em>P. distasonis</em>) uses β-glucosidase (β-GC) to release glycitein (GLY) from the diet in response to daily nutritional cues, influencing RA inflammatory rhythms dependent on the sirtuin 5-nuclear factor-κB (SIRT5-NF-κB) axis. Notably, we validated the daily fluctuations of <em>P. distasonis-</em>β-GC-GLY in patients with RA through continuous sampling across day-night cycles. These findings underscore the crucial role of dietary timing in RA rhythmicity and propose potential clinical implications for novel therapeutic strategies to alleviate arthritis.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
m6A mRNA methylation in brown fat regulates systemic insulin sensitivity via an inter-organ prostaglandin signaling axis independent of UCP1 棕色脂肪中的 m6A mRNA 甲基化通过独立于 UCP1 的器官间前列腺素信号轴调节全身胰岛素敏感性
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-09 DOI: 10.1016/j.cmet.2024.08.006
Ling Xiao, Dario F. De Jesus, Cheng-Wei Ju, Jiang Bo Wei, Jiang Hu, Ava DiStefano-Forti, Tadataka Tsuji, Cheryl Cero, Ville Männistö, Suvi M. Manninen, Siying Wei, Oluwaseun Ijaduola, Matthias Blüher, Aaron M. Cypess, Jussi Pihlajamäki, Yu-Hua Tseng, Chuan He, Rohit N. Kulkarni

Brown adipose tissue (BAT) regulates systemic metabolism by releasing signaling lipids. N6-methyladenosine (m6A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. Here, we demonstrate that the absence of m6A methyltransferase-like 14 (METTL14) modifies the BAT secretome to improve systemic insulin sensitivity independent of UCP1. Using lipidomics, we identify prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as BAT-secreted insulin sensitizers. PGE2 and PGF2a inversely correlate with insulin sensitivity in humans and protect mice from high-fat-diet-induced insulin resistance by suppressing specific AKT phosphatases. Mechanistically, METTL14-mediated m6A promotes the decay of PTGES2 and CBR1, the genes encoding PGE2 and PGF2a biosynthesis enzymes, in brown adipocytes via YTHDF2/3. Consistently, BAT-specific knockdown of Ptges2 or Cbr1 reverses the insulin-sensitizing effects in M14KO mice. Overall, these findings reveal a novel biological mechanism through which m6A-dependent regulation of the BAT secretome regulates systemic insulin sensitivity.

棕色脂肪组织(BAT)通过释放信号脂质调节全身代谢。N6-甲基腺苷(m6A)是最普遍和最丰富的转录后 mRNA 修饰,据报道可调节 BAT 的脂肪生成和能量消耗。在这里,我们证明了 m6A 甲基转移酶样 14(METTL14)的缺失会改变 BAT 的分泌组,从而改善全身胰岛素敏感性,而与 UCP1 无关。利用脂质组学,我们发现前列腺素 E2 (PGE2) 和前列腺素 F2a (PGF2a) 是 BAT 分泌的胰岛素增敏剂。PGE2 和 PGF2a 与人类的胰岛素敏感性成反比,并通过抑制特定的 AKT 磷酸酶保护小鼠免受高脂饮食引起的胰岛素抵抗。从机理上讲,METTL14 介导的 m6A 会通过 YTHDF2/3 促进棕色脂肪细胞中编码 PGE2 和 PGF2a 生物合成酶的基因 PTGES2 和 CBR1 的衰变。同样,特异性敲除 Ptges2 或 Cbr1 可逆转 M14KO 小鼠的胰岛素致敏效应。总之,这些发现揭示了一种新的生物学机制,即依赖于 m6A 的 BAT 分泌组调控系统性胰岛素敏感性。
{"title":"m6A mRNA methylation in brown fat regulates systemic insulin sensitivity via an inter-organ prostaglandin signaling axis independent of UCP1","authors":"Ling Xiao, Dario F. De Jesus, Cheng-Wei Ju, Jiang Bo Wei, Jiang Hu, Ava DiStefano-Forti, Tadataka Tsuji, Cheryl Cero, Ville Männistö, Suvi M. Manninen, Siying Wei, Oluwaseun Ijaduola, Matthias Blüher, Aaron M. Cypess, Jussi Pihlajamäki, Yu-Hua Tseng, Chuan He, Rohit N. Kulkarni","doi":"10.1016/j.cmet.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.006","url":null,"abstract":"<p>Brown adipose tissue (BAT) regulates systemic metabolism by releasing signaling lipids. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. Here, we demonstrate that the absence of m<sup>6</sup>A methyltransferase-like 14 (METTL14) modifies the BAT secretome to improve systemic insulin sensitivity independent of UCP1. Using lipidomics, we identify prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as BAT-secreted insulin sensitizers. PGE2 and PGF2a inversely correlate with insulin sensitivity in humans and protect mice from high-fat-diet-induced insulin resistance by suppressing specific AKT phosphatases. Mechanistically, METTL14-mediated m<sup>6</sup>A promotes the decay of <em>PTGES2</em> and <em>CBR1</em>, the genes encoding PGE2 and PGF2a biosynthesis enzymes, in brown adipocytes via YTHDF2/3. Consistently, BAT-specific knockdown of <em>Ptges2</em> or <em>Cbr1</em> reverses the insulin-sensitizing effects in M14<sup>KO</sup> mice. Overall, these findings reveal a novel biological mechanism through which m<sup>6</sup>A-dependent regulation of the BAT secretome regulates systemic insulin sensitivity.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"17 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SGLT2 inhibitor promotes ketogenesis to improve MASH by suppressing CD8+ T cell activation SGLT2 抑制剂通过抑制 CD8+ T 细胞活化促进酮体生成以改善 MASH
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-06 DOI: 10.1016/j.cmet.2024.08.005
Wenhui Liu, Danming You, Jiayang Lin, Huren Zou, Lei Zhang, Shenjian Luo, Youwen Yuan, Zhiyi Wang, Jingwen Qi, Weiwei Wang, Xueru Ye, Xiaoyu Yang, Yajuan Deng, Fei Teng, Xiaojun Zheng, Yuhao Lin, Zhiwei Huang, Yan Huang, Zhi Yang, Xuan Zhou, Huijie Zhang

During the progression of metabolic dysfunction-associated steatohepatitis (MASH), the accumulation of auto-aggressive CD8+ T cells significantly contributes to liver injury and inflammation. Empagliflozin (EMPA), a highly selective inhibitor of sodium-glucose co-transporter 2 (SGLT2), exhibits potential therapeutic benefits for liver steatosis; however, the underlying mechanism remains incompletely elucidated. Here, we found that EMPA significantly reduced the hepatic accumulation of auto-aggressive CD8+ T cells and lowered granzyme B levels in mice with MASH. Mechanistically, EMPA increased β-hydroxybutyric acid by promoting the ketogenesis of CD8+ T cells via elevating 3-hydroxybutyrate dehydrogenase 1 (Bdh1) expression. The β-hydroxybutyric acid subsequently inhibited interferon regulatory factor 4 (Irf4), which is crucial for CD8+ T cell activation. Furthermore, the ablation of Bdh1 in T cells aggravated the manifestation of MASH and hindered the therapeutic efficacy of EMPA. Moreover, a case-control study also showed that SGLT2 inhibitor treatment repressed CD8+ T cell infiltration and improved liver injury in patients with MASH. In summary, our study indicates that SGLT2 inhibitors can target CD8+ T cells and may be an effective strategy for treating MASH.

在代谢功能障碍相关性脂肪性肝炎(MASH)的进展过程中,自身攻击性CD8+ T细胞的聚集在很大程度上导致了肝损伤和炎症。恩格列净(Empagliflozin,EMPA)是钠-葡萄糖协同转运体2(SGLT2)的高选择性抑制剂,对肝脏脂肪变性具有潜在的治疗作用;然而,其潜在机制仍未完全阐明。在这里,我们发现 EMPA 能显著减少 MASH 小鼠肝脏中自身攻击性 CD8+ T 细胞的积聚,并降低颗粒酶 B 的水平。从机理上讲,EMPA通过提高3-羟丁酸脱氢酶1(Bdh1)的表达,促进CD8+ T细胞的酮体生成,从而增加了β-羟丁酸。随后,β-羟丁酸抑制了对 CD8+ T 细胞活化至关重要的干扰素调节因子 4(Irf4)。此外,消减 T 细胞中的 Bdh1 会加重 MASH 的表现,阻碍 EMPA 的疗效。此外,一项病例对照研究也表明,SGLT2 抑制剂治疗可抑制 CD8+ T 细胞浸润,改善 MASH 患者的肝损伤。总之,我们的研究表明,SGLT2 抑制剂可以靶向 CD8+ T 细胞,可能是治疗 MASH 的有效策略。
{"title":"SGLT2 inhibitor promotes ketogenesis to improve MASH by suppressing CD8+ T cell activation","authors":"Wenhui Liu, Danming You, Jiayang Lin, Huren Zou, Lei Zhang, Shenjian Luo, Youwen Yuan, Zhiyi Wang, Jingwen Qi, Weiwei Wang, Xueru Ye, Xiaoyu Yang, Yajuan Deng, Fei Teng, Xiaojun Zheng, Yuhao Lin, Zhiwei Huang, Yan Huang, Zhi Yang, Xuan Zhou, Huijie Zhang","doi":"10.1016/j.cmet.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.005","url":null,"abstract":"<p>During the progression of metabolic dysfunction-associated steatohepatitis (MASH), the accumulation of auto-aggressive CD8<sup>+</sup> T cells significantly contributes to liver injury and inflammation. Empagliflozin (EMPA), a highly selective inhibitor of sodium-glucose co-transporter 2 (SGLT2), exhibits potential therapeutic benefits for liver steatosis; however, the underlying mechanism remains incompletely elucidated. Here, we found that EMPA significantly reduced the hepatic accumulation of auto-aggressive CD8<sup>+</sup> T cells and lowered granzyme B levels in mice with MASH. Mechanistically, EMPA increased β-hydroxybutyric acid by promoting the ketogenesis of CD8<sup>+</sup> T cells via elevating 3-hydroxybutyrate dehydrogenase 1 (<em>Bdh1</em>) expression. The β-hydroxybutyric acid subsequently inhibited interferon regulatory factor 4 (<em>Irf4</em>), which is crucial for CD8<sup>+</sup> T cell activation. Furthermore, the ablation of Bdh1 in T cells aggravated the manifestation of MASH and hindered the therapeutic efficacy of EMPA. Moreover, a case-control study also showed that SGLT2 inhibitor treatment repressed CD8<sup>+</sup> T cell infiltration and improved liver injury in patients with MASH. In summary, our study indicates that SGLT2 inhibitors can target CD8<sup>+</sup> T cells and may be an effective strategy for treating MASH.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"7 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteroides acidifaciens: Linking dietary fiber to liver health 酸性乳杆菌:膳食纤维与肝脏健康的联系
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.cmet.2024.08.002
Viacheslav A. Petrov, Cédric C. Laczny, Paul Wilmes

While innumerous associative microbiome studies have been published, mechanistic links between the microbiome and host physiology remain much scarcer. In Cell Host & Microbe, Shen et al. report the effect of soluble dietary fibers in alcohol-related liver disease. Through microbiome remodeling, dietary fiber triggers upregulation of liver ornithine aminotransferase and a subsequent reduction in hepatic damage.

虽然已经发表了大量微生物组关联研究,但微生物组与宿主生理学之间的机理联系仍然少得多。在《Cell Host & Microbe》杂志上,Shen 等人报告了可溶性膳食纤维对酒精相关肝病的影响。通过微生物组的重塑,膳食纤维引发了肝脏鸟氨酸氨基转移酶的上调,从而减轻了肝损伤。
{"title":"Bacteroides acidifaciens: Linking dietary fiber to liver health","authors":"Viacheslav A. Petrov, Cédric C. Laczny, Paul Wilmes","doi":"10.1016/j.cmet.2024.08.002","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.002","url":null,"abstract":"<p>While innumerous associative microbiome studies have been published, mechanistic links between the microbiome and host physiology remain much scarcer. In <em>Cell Host &amp; Microbe</em>, Shen et al. report the effect of soluble dietary fibers in alcohol-related liver disease. Through microbiome remodeling, dietary fiber triggers upregulation of liver ornithine aminotransferase and a subsequent reduction in hepatic damage.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"107 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The crosstalk between metabolism and translation 新陈代谢与翻译之间的相互影响
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.cmet.2024.07.022
Stefano Biffo, Davide Ruggero, Massimo Mattia Santoro

Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.

新陈代谢和 mRNA 翻译是调节基因表达和细胞生理的关键步骤。作为细胞中消耗能量最多的过程,mRNA 翻译与细胞新陈代谢密切相关,并与之同步。事实上,新陈代谢途径中的一些 mRNA 在翻译水平上受到调控,因此翻译是新陈代谢的协调者。另一方面,人们越来越认识到新陈代谢如何影响 RNA 生物学的多个方面。例如,代谢途径和代谢物直接控制着翻译机制的选择性和效率,以及 RNA 的转录后修饰,从而对蛋白质合成进行微调。翻译控制与细胞新陈代谢之间错综复杂的相互作用发生了改变,这已成为人类疾病的一个重要基础。如果能更好地了解这些事件,就能预见人类疾病的创新治疗策略。
{"title":"The crosstalk between metabolism and translation","authors":"Stefano Biffo, Davide Ruggero, Massimo Mattia Santoro","doi":"10.1016/j.cmet.2024.07.022","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.022","url":null,"abstract":"<p>Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"8 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport 运动中能量相对缺乏小鼠模型的多器官转录组图谱
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.cmet.2024.08.001
Laura van Rosmalen, Jiaoyue Zhu, Geraldine Maier, Erica G. Gacasan, Terry Lin, Elena Zhemchuzhnikova, Vince Rothenberg, Swithin Razu, Shaunak Deota, Ramesh K. Ramasamy, Robert L. Sah, Andrew D. McCulloch, Roelof A. Hut, Satchidananda Panda

Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the “exercise-for-food” paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.

能量摄入不足,无法满足体育活动的能量消耗需求,会导致全身神经内分泌和代谢异常,形成活动依赖性厌食症和运动性相对能量缺乏症(REDs)。REDs影响着40%的运动员,但缺乏潜在的分子变化一直是更好地了解REDs及其治疗的障碍。为了评估能量缺乏时的分子变化,我们采用了 "运动换食物 "范式,在该范式中,食物奖励的大小由轮跑活动决定。通过使用这种范例,我们在雌性和雄性小鼠中复制了REDs的几个方面,即高体力活动和逐渐减少食物摄入,从而导致体重下降、骨骼健康受损、器官特异性质量变化和休息-活动模式改变。通过整合 19 个不同器官的转录组学,我们提供了一个全面的数据集,它将指导未来对 REDs 的理解,并可能对代谢健康和(运动)表现产生重要影响。
{"title":"Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport","authors":"Laura van Rosmalen, Jiaoyue Zhu, Geraldine Maier, Erica G. Gacasan, Terry Lin, Elena Zhemchuzhnikova, Vince Rothenberg, Swithin Razu, Shaunak Deota, Ramesh K. Ramasamy, Robert L. Sah, Andrew D. McCulloch, Roelof A. Hut, Satchidananda Panda","doi":"10.1016/j.cmet.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.001","url":null,"abstract":"<p>Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects &gt;40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the “exercise-for-food” paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"8 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defying “IL-11ness” by inhibiting inflammation: Strategy for health and longevity 通过抑制炎症对抗 "IL-11":健康与长寿战略
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.cmet.2024.08.003
Hee-Hoon Kim, Vishwa Deep Dixit

Organismal aging involves several hallmark pathways, including chronic inflammation and metabolic dysfunction. However, the origin of age-related inflammation is incompletely understood. In a recent study published in Nature,1 Widjaja et al. show that blocking the age-related increase in IL-11 restores immune-metabolic homeostasis and extends healthspan and lifespan in mice.

机体衰老涉及几种标志性途径,包括慢性炎症和代谢功能障碍。然而,人们对与年龄有关的炎症的起源还不甚了解。最近发表在《自然》1 上的一项研究显示,Widjaja 等人阻断了与年龄相关的 IL-11 的增加,从而恢复了小鼠的免疫代谢平衡,延长了小鼠的健康和寿命。
{"title":"Defying “IL-11ness” by inhibiting inflammation: Strategy for health and longevity","authors":"Hee-Hoon Kim, Vishwa Deep Dixit","doi":"10.1016/j.cmet.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.003","url":null,"abstract":"<p>Organismal aging involves several hallmark pathways, including chronic inflammation and metabolic dysfunction. However, the origin of age-related inflammation is incompletely understood. In a recent study published in <em>Nature</em>,<span><span><sup>1</sup></span></span> Widjaja et al. show that blocking the age-related increase in IL-11 restores immune-metabolic homeostasis and extends healthspan and lifespan in mice.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"149 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene-metabolite linkage marks stored red blood cell quality 基因-代谢物联系标志着储存的红细胞质量
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.cmet.2024.08.004
Changhan Chen, Wuping Liu, Yang Xia

Red blood cell (RBC) transfusion has long been the cornerstone of treatment for multiple diseases, but there is a knowledge gap between biological and genetic factors impacting RBC storage quality and transfusion efficacy. In this issue of Cell Metabolism, Nemkov et al. present a multiomics approach to identify gene-metabolite associations in fresh and stored RBCs. These findings provide potential strategies to mark the quality of stored RBCs and improve their storage and transfusion performance.

长期以来,输注红细胞(RBC)一直是治疗多种疾病的基石,但在影响 RBC 储存质量和输注效果的生物和遗传因素之间还存在知识空白。在本期《细胞代谢》杂志上,Nemkov 等人介绍了一种多组学方法,用于识别新鲜和储存的 RBC 中的基因代谢物关联。这些发现为确定储存红细胞的质量、改善其储存和输血效果提供了潜在的策略。
{"title":"Gene-metabolite linkage marks stored red blood cell quality","authors":"Changhan Chen, Wuping Liu, Yang Xia","doi":"10.1016/j.cmet.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.004","url":null,"abstract":"<p>Red blood cell (RBC) transfusion has long been the cornerstone of treatment for multiple diseases, but there is a knowledge gap between biological and genetic factors impacting RBC storage quality and transfusion efficacy. In this issue of <em>Cell Metabolism</em>, Nemkov et al. present a multiomics approach to identify gene-metabolite associations in fresh and stored RBCs. These findings provide potential strategies to mark the quality of stored RBCs and improve their storage and transfusion performance.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"16 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease 胰高血糖素促进脂肪肝患者肝线粒体氧化和丙酮酸羧化酶通量的增加
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-27 DOI: 10.1016/j.cmet.2024.07.023
Kitt Falk Petersen, Sylvie Dufour, Wajahat Z. Mehal, Gerald I. Shulman

We assessed in vivo rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized 1H magnetic resonance spectroscopy (MRS). We found that in vivo rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased in vivo rates of hepatic mitochondrial oxidation by 50%–75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.

我们通过位置同位素核磁共振示踪分析(PINTA)评估了代谢功能障碍相关性脂肪肝(MASL)(脂肪肝)和代谢功能障碍相关性脂肪肝疾病(MASLD)(脂肪性肝炎)患者与无肝脏脂肪变性的 BMI 匹配对照组患者的肝脏线粒体氧化、葡萄糖生成和 β-hydroxybutyrate (β-OHB) 转化率。肝脏脂肪含量通过局部 1H 磁共振波谱(MRS)进行量化。我们发现,与对照组相比,MASL 组和 MASLD 组肝脏线粒体的体内氧化率没有变化。血浆胰高血糖素浓度的生理性增加会使 MASL 组和非 MASL 组的肝线粒体氧化率增加 50%-75%,并使 MASL 组的葡萄糖生成率增加 50%,这可能部分归因于线粒体丙酮酸羧化酶通量增加了 30%。这些结果表明:(1) MASL 和 MASLD 患者的肝线粒体氧化率没有发生实质性改变;(2) 胰高血糖素会增加肝线粒体氧化率。
{"title":"Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease","authors":"Kitt Falk Petersen, Sylvie Dufour, Wajahat Z. Mehal, Gerald I. Shulman","doi":"10.1016/j.cmet.2024.07.023","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.023","url":null,"abstract":"<p>We assessed <em>in vivo</em> rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized <sup>1</sup>H magnetic resonance spectroscopy (MRS). We found that <em>in vivo</em> rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased <em>in vivo</em> rates of hepatic mitochondrial oxidation by 50%–75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"16 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1