Pub Date : 2024-08-06DOI: 10.1016/j.cmet.2024.07.015
During aging, transcriptional programs of cell identity are partially eroded, reducing cellular fitness and resilience. Patrick et al.1 unveil a general mechanism for this process that consists of the progressive loss of transcription factor AP-1 from cell identity enhancers and its relocation by competition to stress-response elements.
{"title":"A pattern emerges in chromatin aging: AP-1 steals the show","authors":"","doi":"10.1016/j.cmet.2024.07.015","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.015","url":null,"abstract":"<p>During aging, transcriptional programs of cell identity are partially eroded, reducing cellular fitness and resilience. Patrick et al.<span><span><sup>1</sup></span></span> unveil a general mechanism for this process that consists of the progressive loss of transcription factor AP-1 from cell identity enhancers and its relocation by competition to stress-response elements.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"4 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.cmet.2024.07.001
A whole-body model is a computational representation of sex-specific and organ-resolved whole-body metabolism. In this issue of Cell Metabolism, Zaunseder et al. report whole-body models of infants that represent metabolic, physiological, energetic, and nutritional features, accurately simulating the growth of infants and providing foundations for personalized medicine for infants.
{"title":"Understanding the metabolism of infants using whole-body metabolic models","authors":"","doi":"10.1016/j.cmet.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.001","url":null,"abstract":"<p>A whole-body model is a computational representation of sex-specific and organ-resolved whole-body metabolism. In this issue of <em>Cell Metabolism</em>, Zaunseder et al. report whole-body models of infants that represent metabolic, physiological, energetic, and nutritional features, accurately simulating the growth of infants and providing foundations for personalized medicine for infants.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"42 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.cmet.2024.07.011
Patients with high ALDH1A3-expressing glioblastoma (ALDH1A3hi GBM) show limited benefit from postoperative chemoradiotherapy. Understanding the mechanisms underlying such resistance in these patients is crucial for the development of new treatments. Here, we show that the interaction between ALDH1A3 and PKM2 enhances the latter’s tetramerization and promotes lactate accumulation in glioblastoma stem cells (GSCs). By scanning the lactylated proteome in lactate-accumulating GSCs, we show that XRCC1 undergoes lactylation at lysine 247 (K247). Lactylated XRCC1 shows a stronger affinity for importin α, allowing for greater nuclear transposition of XRCC1 and enhanced DNA repair. Through high-throughput screening of a small-molecule library, we show that D34-919 potently disrupts the ALDH1A3-PKM2 interaction, preventing the ALDH1A3-mediated enhancement of PKM2 tetramerization. In vitro and in vivo treatment with D34-919 enhanced chemoradiotherapy-induced apoptosis of GBM cells. Together, our findings show that ALDH1A3-mediated PKM2 tetramerization is a potential therapeutic target to improve the response to chemoradiotherapy in ALDH1A3hi GBM.
{"title":"Glycometabolic reprogramming-induced XRCC1 lactylation confers therapeutic resistance in ALDH1A3-overexpressing glioblastoma","authors":"","doi":"10.1016/j.cmet.2024.07.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.011","url":null,"abstract":"<p>Patients with high ALDH1A3-expressing glioblastoma (ALDH1A3<sup>hi</sup> GBM) show limited benefit from postoperative chemoradiotherapy. Understanding the mechanisms underlying such resistance in these patients is crucial for the development of new treatments. Here, we show that the interaction between ALDH1A3 and PKM2 enhances the latter’s tetramerization and promotes lactate accumulation in glioblastoma stem cells (GSCs). By scanning the lactylated proteome in lactate-accumulating GSCs, we show that XRCC1 undergoes lactylation at lysine 247 (K247). Lactylated XRCC1 shows a stronger affinity for importin α, allowing for greater nuclear transposition of XRCC1 and enhanced DNA repair. Through high-throughput screening of a small-molecule library, we show that D34-919 potently disrupts the ALDH1A3-PKM2 interaction, preventing the ALDH1A3-mediated enhancement of PKM2 tetramerization. <em>In vitro</em> and <em>in vivo</em> treatment with D34-919 enhanced chemoradiotherapy-induced apoptosis of GBM cells. Together, our findings show that ALDH1A3-mediated PKM2 tetramerization is a potential therapeutic target to improve the response to chemoradiotherapy in ALDH1A3<sup>hi</sup> GBM.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"2 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.cmet.2024.06.015
In this issue of Cell Metabolism, Li et al. report that the highly expressed aldehyde dehydrogenase 1 family member A3 interacts with pyruvate kinase M2 (PKM2) in glioblastoma cells. Consequently, PKM2 tetramerization and activation promote lactate production, leading to the lactylation and nuclear translocation of XRCC1 for DNA damage repair and therapeutic resistance.
在本期《细胞新陈代谢》(Cell Metabolism)杂志上,Li等人报告说,在胶质母细胞瘤细胞中,高表达的醛脱氢酶1家族成员A3与丙酮酸激酶M2(PKM2)相互作用。因此,PKM2 的四聚体化和活化会促进乳酸的产生,从而导致 XRCC1 的乳化和核转运,以实现 DNA 损伤修复和抗药性。
{"title":"Lactylation: Linking the Warburg effect to DNA damage repair","authors":"","doi":"10.1016/j.cmet.2024.06.015","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.06.015","url":null,"abstract":"<p>In this issue of <em>Cell Metabolism</em>, Li et al. report that the highly expressed aldehyde dehydrogenase 1 family member A3 interacts with pyruvate kinase M2 (PKM2) in glioblastoma cells. Consequently, PKM2 tetramerization and activation promote lactate production, leading to the lactylation and nuclear translocation of XRCC1 for DNA damage repair and therapeutic resistance.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"82 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.cmet.2024.07.009
Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu2+ entry into cells and is required for Cu2+-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu2+ and Zn2+ share the same primary binding site, allowing Zn2+ to compete for Cu2+ uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu2+ transport. Specific knockout of the ZnT1 gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn2+ and Cu2+ transporter and potentially serves as a target for using Zn2+ in the treatment of Wilson's disease caused by Cu overload.
{"title":"Zinc transporter 1 functions in copper uptake and cuproptosis","authors":"","doi":"10.1016/j.cmet.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.009","url":null,"abstract":"<p>Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu<sup>2+</sup> entry into cells and is required for Cu<sup>2+</sup>-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu<sup>2+</sup> and Zn<sup>2+</sup> share the same primary binding site, allowing Zn<sup>2+</sup> to compete for Cu<sup>2+</sup> uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu<sup>2+</sup> transport. Specific knockout of the <em>ZnT1</em> gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn<sup>2+</sup> and Cu<sup>2+</sup> transporter and potentially serves as a target for using Zn<sup>2+</sup> in the treatment of Wilson's disease caused by Cu overload.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"21 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.cmet.2024.07.003
The transcriptional response to hypoxia is temporally regulated, yet the molecular underpinnings and physiological implications are unknown. We examined the roles of hepatic Bmal1 and Hif1α in the circadian response to hypoxia in mice. We found that the majority of the transcriptional response to hypoxia is dependent on either Bmal1 or Hif1α, through shared and distinct roles that are daytime determined. We further show that hypoxia-inducible factor (HIF)1α accumulation upon hypoxia is temporally regulated and Bmal1 dependent. Unexpectedly, mice lacking both hepatic Bmal1 and Hif1α are hypoxemic and exhibit increased mortality upon hypoxic exposure in a daytime-dependent manner. These mice display mild liver dysfunction with pulmonary vasodilation likely due to extracellular signaling regulated kinase (ERK) activation, endothelial nitric oxide synthase, and nitric oxide accumulation in lungs, suggestive of hepatopulmonary syndrome. Our findings indicate that hepatic BMAL1 and HIF1α are key time-dependent regulators of the hypoxic response and can provide molecular insights into the pathophysiology of hepatopulmonary syndrome.
{"title":"Hepatic BMAL1 and HIF1α regulate a time-dependent hypoxic response and prevent hepatopulmonary-like syndrome","authors":"","doi":"10.1016/j.cmet.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.003","url":null,"abstract":"<p>The transcriptional response to hypoxia is temporally regulated, yet the molecular underpinnings and physiological implications are unknown. We examined the roles of hepatic <em>Bmal1</em> and <em>Hif1α</em> in the circadian response to hypoxia in mice. We found that the majority of the transcriptional response to hypoxia is dependent on either <em>Bmal1</em> or <em>Hif1α</em>, through shared and distinct roles that are daytime determined. We further show that hypoxia-inducible factor (HIF)1α accumulation upon hypoxia is temporally regulated and <em>Bmal1</em> dependent. Unexpectedly, mice lacking both hepatic <em>Bmal1</em> and <em>Hif1α</em> are hypoxemic and exhibit increased mortality upon hypoxic exposure in a daytime-dependent manner. These mice display mild liver dysfunction with pulmonary vasodilation likely due to extracellular signaling regulated kinase (ERK) activation, endothelial nitric oxide synthase, and nitric oxide accumulation in lungs, suggestive of hepatopulmonary syndrome. Our findings indicate that hepatic BMAL1 and HIF1α are key time-dependent regulators of the hypoxic response and can provide molecular insights into the pathophysiology of hepatopulmonary syndrome.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"29 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.cmet.2024.07.005
Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of Ucp1. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.
脂肪组织可以招募分解代谢脂肪细胞,利用化学能散热。这一过程要么是通过解偶联蛋白 1(UCP1)进行解偶联呼吸,要么是利用依赖于 ATP 的徒劳循环(FCs)。然而,由于这两个过程都依赖线粒体膜电位,因此目前仍不清楚这两种途径是如何共存的。我们利用单核 RNA 测序来解构小鼠和人类皮下脂肪组织的异质性,发现至少有两种不同的米色脂肪细胞亚群:FC-脂肪细胞和 UCP1-米色脂肪细胞。重要的是,我们证明 FC 脂肪细胞亚群具有高度的代谢活性,并利用 FCs 消散能量,从而促进独立于 Ucp1 的产热。此外,FC-脂肪细胞是全身能量平衡的重要驱动因素,与人类的糖代谢和肥胖抵抗有关。综上所述,我们的研究发现了一个非典型的产热脂肪细胞亚群,它可能是哺乳动物能量平衡的一个重要调节因子。
{"title":"Single-nucleus transcriptomics identifies separate classes of UCP1 and futile cycle adipocytes","authors":"","doi":"10.1016/j.cmet.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.005","url":null,"abstract":"<p>Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of <em>Ucp1</em>. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"143 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.cmet.2024.07.002
Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs in vivo but has been difficult to model in vitro; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.
{"title":"Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle","authors":"","doi":"10.1016/j.cmet.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.002","url":null,"abstract":"<p>Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs <em>in vivo</em> but has been difficult to model <em>in vitro</em>; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"61 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.cmet.2024.07.004
Time-restricted feeding (TRF) is a potent dietary intervention for improving metabolic diseases, including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH). However, the mechanism of this efficacy has remained elusive. Here, we show that TRF improves MASLD, which is associated with a significant enrichment of Ruminococcus torques (R. torques). Mechanistically, R. torques suppresses the intestinal HIF-2α-ceramide pathway via the production of 2-hydroxy-4-methylpentanoic acid (HMP). We identify rtMor as a 4-methyl-2-oxopentanoate reductase that synthesizes HMP in R. torques. Finally, we show that either the colonization of R. torques or oral HMP supplementation can ameliorate inflammation and fibrosis in a MASH mouse model. These findings identify R. torques and HMP as potential TRF mimetics for the treatment of metabolic disorders.
{"title":"A microbial metabolite inhibits the HIF-2α-ceramide pathway to mediate the beneficial effects of time-restricted feeding on MASH","authors":"","doi":"10.1016/j.cmet.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.07.004","url":null,"abstract":"<p>Time-restricted feeding (TRF) is a potent dietary intervention for improving metabolic diseases, including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH). However, the mechanism of this efficacy has remained elusive. Here, we show that TRF improves MASLD, which is associated with a significant enrichment of <em>Ruminococcus torques</em> (<em>R. torques</em>). Mechanistically, <em>R. torques</em> suppresses the intestinal HIF-2α-ceramide pathway via the production of 2-hydroxy-4-methylpentanoic acid (HMP). We identify <em>rtMor</em> as a 4-methyl-2-oxopentanoate reductase that synthesizes HMP in <em>R. torques</em>. Finally, we show that either the colonization of <em>R. torques</em> or oral HMP supplementation can ameliorate inflammation and fibrosis in a MASH mouse model. These findings identify <em>R. torques</em> and HMP as potential TRF mimetics for the treatment of metabolic disorders.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"356 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.cmet.2024.06.013
Although fasting is increasingly applied for disease prevention and treatment, consensus on terminology is lacking. Using Delphi methodology, an international, multidisciplinary panel of researchers and clinicians standardized definitions of various fasting approaches in humans. Five online surveys and a live online conference were conducted with 38 experts, 25 of whom completed all 5 surveys. Consensus was achieved for the following terms: “fasting” (voluntary abstinence from some or all foods or foods and beverages), “modified fasting” (restriction of energy intake to max. 25% of energy needs), “fluid-only fasting,” “alternate-day fasting,” “short-term fasting” (lasting 2–3 days), “prolonged fasting” (≥4 consecutive days), and “religious fasting.” “Intermittent fasting” (repetitive fasting periods lasting ≤48 h), “time-restricted eating,” and “fasting-mimicking diet” were discussed most. This study provides expert recommendations on fasting terminology for future research and clinical applications, facilitating communication and cross-referencing in the field.
{"title":"International consensus on fasting terminology","authors":"","doi":"10.1016/j.cmet.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.06.013","url":null,"abstract":"<p>Although fasting is increasingly applied for disease prevention and treatment, consensus on terminology is lacking. Using Delphi methodology, an international, multidisciplinary panel of researchers and clinicians standardized definitions of various fasting approaches in humans. Five online surveys and a live online conference were conducted with 38 experts, 25 of whom completed all 5 surveys. Consensus was achieved for the following terms: “fasting” (voluntary abstinence from some or all foods or foods and beverages), “modified fasting” (restriction of energy intake to max. 25% of energy needs), “fluid-only fasting,” “alternate-day fasting,” “short-term fasting” (lasting 2–3 days), “prolonged fasting” (≥4 consecutive days), and “religious fasting.” “Intermittent fasting” (repetitive fasting periods lasting ≤48 h), “time-restricted eating,” and “fasting-mimicking diet” were discussed most. This study provides expert recommendations on fasting terminology for future research and clinical applications, facilitating communication and cross-referencing in the field.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"47 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}