首页 > 最新文献

Cell metabolism最新文献

英文 中文
Thermal facial image analyses reveal quantitative hallmarks of aging and metabolic diseases 面部热图像分析揭示衰老和代谢性疾病的定量特征
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-02 DOI: 10.1016/j.cmet.2024.05.012
Zhengqing Yu, Yong Zhou, Kehang Mao, Bo Pang, Kai Wang, Tang Jin, Haonan Zheng, Haotian Zhai, Yiyang Wang, Xiaohan Xu, Hongxiao Liu, Yi Wang, Jing-Dong J. Han

Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20–90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.

虽然已知人体核心体温会随着年龄的增长而降低,但面部温度的年龄依赖性及其指示衰老率或衰老相关疾病的潜力仍不确定。在此,我们收集了2811名20-90岁汉族人的面部热图像,开发了ThermoFace方法来自动处理和分析图像,然后生成了热年龄和疾病预测模型。ThermoFace面部热年龄深度学习模型在交叉验证中的平均绝对偏差约为5岁,在独立队列中的平均绝对偏差为5.18岁。预测年龄与实际年龄之间的差异与新陈代谢参数、睡眠时间以及血液转录组中的 DNA 修复、脂肪分解和 ATPase 等基因表达通路高度相关,并且可以通过锻炼来改变。ThermoFace疾病预测因子预测脂肪肝等代谢性疾病的准确率很高(AUC >0.80),预测的疾病概率与代谢参数相关。
{"title":"Thermal facial image analyses reveal quantitative hallmarks of aging and metabolic diseases","authors":"Zhengqing Yu, Yong Zhou, Kehang Mao, Bo Pang, Kai Wang, Tang Jin, Haonan Zheng, Haotian Zhai, Yiyang Wang, Xiaohan Xu, Hongxiao Liu, Yi Wang, Jing-Dong J. Han","doi":"10.1016/j.cmet.2024.05.012","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.012","url":null,"abstract":"<p>Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20–90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC &gt; 0.80), with predicted disease probability correlated with metabolic parameters.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening 早年基因调控元件的活性在衰老过程中通过 AP-1 链接的染色质开放被劫持
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-02 DOI: 10.1016/j.cmet.2024.06.006
Ralph Patrick, Marina Naval-Sanchez, Nikita Deshpande, Yifei Huang, Jingyu Zhang, Xiaoli Chen, Ying Yang, Kanupriya Tiwari, Mohammadhossein Esmaeili, Minh Tran, Amin R. Mohamed, Binxu Wang, Di Xia, Jun Ma, Jacqueline Bayliss, Kahlia Wong, Michael L. Hun, Xuan Sun, Benjamin Cao, Denny L. Cottle, Christian M. Nefzger

A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.

衰老与发育之间的机理联系在很大程度上尚未被探索。通过分析 22 种小鼠细胞类型中与年龄相关的染色质和转录变化,并结合以前的小鼠和人类生物体成熟数据集进行分析,我们发现了这两个过程共有的转录因子结合位点(TFBS)特征。生命早期的候选顺式调控元件(cCRE)在成熟和衰老过程中逐渐失去可及性,而细胞类型特征 TFBS 则富集其中。相反,在整个生命过程中获得可及性的 cCREs 中,细胞特征 TFBS 的丰度较低,但激活蛋白 1(AP-1)的水平较高。我们认为,TF向这些富含AP-1 TFBS的cCRE重新分配,与细胞身份TF的轻度下调协同作用,推动了生命早期cCRE可及性的丧失,并改变了发育和代谢基因的表达。这种重塑可通过提高 AP-1 或消耗抑制性 H3K27me3 来触发。我们提出,与 AP-1 相关的染色质开放通过破坏富含细胞特征 TFBS 的 cCRE 来驱动生物体的成熟,从而重新编程转录组和细胞功能,而这种机制在衰老过程中会通过持续的染色质开放被劫持。
{"title":"The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening","authors":"Ralph Patrick, Marina Naval-Sanchez, Nikita Deshpande, Yifei Huang, Jingyu Zhang, Xiaoli Chen, Ying Yang, Kanupriya Tiwari, Mohammadhossein Esmaeili, Minh Tran, Amin R. Mohamed, Binxu Wang, Di Xia, Jun Ma, Jacqueline Bayliss, Kahlia Wong, Michael L. Hun, Xuan Sun, Benjamin Cao, Denny L. Cottle, Christian M. Nefzger","doi":"10.1016/j.cmet.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.06.006","url":null,"abstract":"<p>A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate <em>cis</em>-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor 替扎帕肽通过长效激活 GIP 受体调节脂肪细胞的营养代谢
IF 29 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-06-29 DOI: 10.1016/j.cmet.2024.06.012
Ajit Regmi, Eitaro Aihara, Michael E. Christe, Gabor Varga, Thomas P. Beyer, Xiaoping Ruan, Emily Beebe, Libbey S. O’Farrell, Melissa A. Bellinger, Aaron K. Austin, Yanzhu Lin, Haitao Hu, Debra L. Konkol, Samantha Wojnicki, Adrienne K. Holland, Jessica L. Friedrich, Robert A. Brown, Amanda S. Estelle, Hannah S. Badger, Gabriel S. Gaidosh, William Roell
No Abstract
无摘要
{"title":"Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor","authors":"Ajit Regmi, Eitaro Aihara, Michael E. Christe, Gabor Varga, Thomas P. Beyer, Xiaoping Ruan, Emily Beebe, Libbey S. O’Farrell, Melissa A. Bellinger, Aaron K. Austin, Yanzhu Lin, Haitao Hu, Debra L. Konkol, Samantha Wojnicki, Adrienne K. Holland, Jessica L. Friedrich, Robert A. Brown, Amanda S. Estelle, Hannah S. Badger, Gabriel S. Gaidosh, William Roell","doi":"10.1016/j.cmet.2024.06.012","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.06.012","url":null,"abstract":"No Abstract","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141463539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation 星形胶质细胞 LRP1 通过抑制 ARF1 乳化作用使线粒体转移到神经元并缓解脑缺血中风
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-20 DOI: 10.1016/j.cmet.2024.05.016
Jian Zhou, Lifang Zhang, Jianhua Peng, Xianhui Zhang, Fan Zhang, Yuanyuan Wu, An Huang, Fengling Du, Yuyan Liao, Yijing He, Yuke Xie, Long Gu, Chenghao Kuang, Wei Ou, Maodi Xie, Tianqi Tu, Jinwei Pang, Dingkun Zhang, Kecheng Guo, Yue Feng, Yong Jiang

Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.

低密度脂蛋白受体相关蛋白-1(LRP1)是一种内细胞/信号细胞表面受体,可调节细胞的多种功能,包括细胞存活、分化和增殖。LRP1 以前曾被认为与神经退行性疾病的发病机制有关,但其功能并不一致。因此,LRP1 是否以及如何维持大脑稳态仍有待明确。在这里,我们报告了星形胶质细胞 LRP1 通过减少乳酸的产生和 ADP 核糖基化因子 1(ARF1)的乳酸化来促进星形胶质细胞到神经元线粒体的转移。在星形胶质细胞中,LRP1抑制了葡萄糖摄取、糖酵解和乳酸产生,从而导致ARF1的乳化减少。在缺血性中风小鼠模型中,抑制星形胶质细胞 LRP1 会减少线粒体向受损神经元的转移,加重缺血再灌注损伤。此外,我们还检测了人类中风患者的乳酸水平。中风患者脑脊液(CSF)乳酸升高,并与星形胶质细胞线粒体成反比。这些发现揭示了 LRP1 通过线粒体介导的星形胶质细胞-神经元串联在脑缺血中风中的保护作用。
{"title":"Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation","authors":"Jian Zhou, Lifang Zhang, Jianhua Peng, Xianhui Zhang, Fan Zhang, Yuanyuan Wu, An Huang, Fengling Du, Yuyan Liao, Yijing He, Yuke Xie, Long Gu, Chenghao Kuang, Wei Ou, Maodi Xie, Tianqi Tu, Jinwei Pang, Dingkun Zhang, Kecheng Guo, Yue Feng, Yong Jiang","doi":"10.1016/j.cmet.2024.05.016","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.016","url":null,"abstract":"<p>Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain responses to intermittent fasting and the healthy living diet in older adults 老年人大脑对间歇性禁食和健康生活饮食的反应
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-19 DOI: 10.1016/j.cmet.2024.05.017
Dimitrios Kapogiannis, Apostolos Manolopoulos, Roger Mullins, Konstantinos Avgerinos, Francheska Delgado-Peraza, Maja Mustapic, Carlos Nogueras-Ortiz, Pamela J. Yao, Krishna A. Pucha, Janet Brooks, Qinghua Chen, Shalaila S. Haas, Ruiyang Ge, Lisa M. Hartnell, Mark R. Cookson, Josephine M. Egan, Sophia Frangou, Mark P. Mattson

Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer’s disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and SLC16A7 genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see ClinicalTrials.gov registration: NCT02460783.

饮食可促进代谢受损老年人的大脑健康。在一项为期 8 周的随机临床试验中,我们研究了 5:2 间歇性禁食和健康生活饮食对大脑健康的影响。虽然间歇性禁食会导致体重减轻,但这两种饮食在改善神经元衍生细胞外囊泡中的胰岛素信号生物标志物、降低磁共振成像中的脑年龄差距估计值(反映大脑生物衰老的速度)、降低磁共振光谱中的脑葡萄糖、改善血液中的碳水化合物和脂质代谢生物标志物方面的效果相当,而阿尔茨海默氏症脑脊液生物标志物的变化极小。间歇性禁食和健康生活改善了执行功能和记忆力,其中间歇性禁食对某些认知指标更有利。在探索性分析中,性别、体重指数、载脂蛋白E和SLC16A7基因型对饮食效果有调节作用。这项研究为评估饮食干预对大脑的影响提供了一个蓝图,并激励人们进一步研究间歇性禁食和持续性饮食对大脑健康的优化作用。欲了解更多信息,请参阅 ClinicalTrials.gov 注册:NCT02460783。
{"title":"Brain responses to intermittent fasting and the healthy living diet in older adults","authors":"Dimitrios Kapogiannis, Apostolos Manolopoulos, Roger Mullins, Konstantinos Avgerinos, Francheska Delgado-Peraza, Maja Mustapic, Carlos Nogueras-Ortiz, Pamela J. Yao, Krishna A. Pucha, Janet Brooks, Qinghua Chen, Shalaila S. Haas, Ruiyang Ge, Lisa M. Hartnell, Mark R. Cookson, Josephine M. Egan, Sophia Frangou, Mark P. Mattson","doi":"10.1016/j.cmet.2024.05.017","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.017","url":null,"abstract":"<p>Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer’s disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and <em>SLC16A7</em> genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see <span>ClinicalTrials.gov</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"8px\" viewbox=\"0 0 8 8\" width=\"8px\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg> registration: NCT02460783.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PKD1 mutant clones within cirrhotic livers inhibit steatohepatitis without promoting cancer 肝硬化患者肝脏中的 PKD1 突变克隆可抑制脂肪性肝炎,但不会诱发癌症
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-19 DOI: 10.1016/j.cmet.2024.05.015
Min Zhu, Yunguan Wang, Tianshi Lu, Jason Guo, Lin Li, Meng-Hsiung Hsieh, Purva Gopal, Yi Han, Naoto Fujiwara, Darren P. Wallace, Alan S.L. Yu, Xiangyi Fang, Crystal Ransom, Sara Verschleisser, David Hsiehchen, Yujin Hoshida, Amit G. Singal, Adam Yopp, Tao Wang, Hao Zhu

Somatic mutations in non-malignant tissues are selected for because they confer increased clonal fitness. However, it is uncertain whether these clones can benefit organ health. Here, ultra-deep targeted sequencing of 150 liver samples from 30 chronic liver disease patients revealed recurrent somatic mutations. PKD1 mutations were observed in 30% of patients, whereas they were only detected in 1.3% of hepatocellular carcinomas (HCCs). To interrogate tumor suppressor functionality, we perturbed PKD1 in two HCC cell lines and six in vivo models, in some cases showing that PKD1 loss protected against HCC, but in most cases showing no impact. However, Pkd1 haploinsufficiency accelerated regeneration after partial hepatectomy. We tested Pkd1 in fatty liver disease, showing that Pkd1 loss was protective against steatosis and glucose intolerance. Mechanistically, Pkd1 loss selectively increased mTOR signaling without SREBP-1c activation. In summary, PKD1 mutations exert adaptive functionality on the organ level without increasing transformation risk.

非恶性组织中的体细胞突变是经过选择的,因为它们能提高克隆的适应性。然而,目前还不确定这些克隆是否有益于器官健康。在这里,对30名慢性肝病患者的150份肝脏样本进行的超深度靶向测序发现了复发性体细胞突变。在30%的患者中观察到了PKD1突变,而在1.3%的肝细胞癌(HCC)中只检测到了PKD1突变。为了研究肿瘤抑制因子的功能,我们在两种 HCC 细胞系和六种体内模型中扰乱了 PKD1。然而,Pkd1单倍体缺失会加速部分肝切除术后的再生。我们对脂肪肝中的 Pkd1 进行了测试,结果表明 Pkd1 缺失对脂肪变性和葡萄糖不耐受有保护作用。从机理上讲,Pkd1缺失可选择性地增加mTOR信号传导,而不激活SREBP-1c。总之,PKD1突变在器官水平上发挥了适应性功能,而不会增加转化风险。
{"title":"PKD1 mutant clones within cirrhotic livers inhibit steatohepatitis without promoting cancer","authors":"Min Zhu, Yunguan Wang, Tianshi Lu, Jason Guo, Lin Li, Meng-Hsiung Hsieh, Purva Gopal, Yi Han, Naoto Fujiwara, Darren P. Wallace, Alan S.L. Yu, Xiangyi Fang, Crystal Ransom, Sara Verschleisser, David Hsiehchen, Yujin Hoshida, Amit G. Singal, Adam Yopp, Tao Wang, Hao Zhu","doi":"10.1016/j.cmet.2024.05.015","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.015","url":null,"abstract":"<p>Somatic mutations in non-malignant tissues are selected for because they confer increased clonal fitness. However, it is uncertain whether these clones can benefit organ health. Here, ultra-deep targeted sequencing of 150 liver samples from 30 chronic liver disease patients revealed recurrent somatic mutations. <em>PKD1</em> mutations were observed in 30% of patients, whereas they were only detected in 1.3% of hepatocellular carcinomas (HCCs). To interrogate tumor suppressor functionality, we perturbed <em>PKD1</em> in two HCC cell lines and six <em>in vivo</em> models, in some cases showing that <em>PKD1</em> loss protected against HCC, but in most cases showing no impact. However, <em>Pkd1</em> haploinsufficiency accelerated regeneration after partial hepatectomy. We tested <em>Pkd1</em> in fatty liver disease, showing that <em>Pkd1</em> loss was protective against steatosis and glucose intolerance. Mechanistically, <em>Pkd1</em> loss selectively increased mTOR signaling without SREBP-1c activation. In summary, <em>PKD1</em> mutations exert adaptive functionality on the organ level without increasing transformation risk.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinamide metabolism face-off between macrophages and fibroblasts manipulates the microenvironment in gastric cancer 巨噬细胞和成纤维细胞之间的烟酰胺代谢对峙可操控胃癌的微环境
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-18 DOI: 10.1016/j.cmet.2024.05.013
Yu Jiang, Yawen Wang, Guofeng Chen, Fei Sun, Qijing Wu, Qiong Huang, Dongqiang Zeng, Wenjun Qiu, Jiao Wang, Zhiqi Yao, Bishan Liang, Shaowei Li, Jianhua Wu, Na Huang, Yuanyuan Wang, Jingsong Chen, Xiaohui Zhai, Li Huang, Beibei Xu, Masami Yamamoto, Min Shi

Immune checkpoint blockade has led to breakthroughs in the treatment of advanced gastric cancer. However, the prominent heterogeneity in gastric cancer, notably the heterogeneity of the tumor microenvironment, highlights the idea that the antitumor response is a reflection of multifactorial interactions. Through transcriptomic analysis and dynamic plasma sample analysis, we identified a metabolic “face-off” mechanism within the tumor microenvironment, as shown by the dual prognostic significance of nicotinamide metabolism. Specifically, macrophages and fibroblasts expressing the rate-limiting enzymes nicotinamide phosphoribosyltransferase and nicotinamide N-methyltransferase, respectively, regulate the nicotinamide/1-methylnicotinamide ratio and CD8+ T cell function. Mechanistically, nicotinamide N-methyltransferase is transcriptionally activated by the NOTCH pathway transcription factor RBP-J and is further inhibited by macrophage-derived extracellular vesicles containing nicotinamide phosphoribosyltransferase via the SIRT1/NICD axis. Manipulating nicotinamide metabolism through autologous injection of extracellular vesicles restored CD8+ T cell cytotoxicity and the anti-PD-1 response in gastric cancer.

免疫检查点阻断疗法为晚期胃癌的治疗带来了突破性进展。然而,胃癌突出的异质性,尤其是肿瘤微环境的异质性,凸显了抗肿瘤反应是多因素相互作用的反映这一观点。通过转录组分析和动态血浆样本分析,我们发现了肿瘤微环境中的代谢 "对峙 "机制,这体现在烟酰胺代谢的双重预后意义上。具体来说,巨噬细胞和成纤维细胞分别表达烟酰胺磷酸核糖转移酶和烟酰胺N-甲基转移酶,它们调节烟酰胺/1-甲基烟酰胺的比例和CD8+ T细胞的功能。从机理上讲,烟酰胺 N-甲基转移酶被 NOTCH 途径转录因子 RBP-J 转录激活,并通过 SIRT1/NICD 轴进一步被含有烟酰胺磷酸核糖基转移酶的巨噬细胞源性细胞外囊泡抑制。通过自体注射细胞外囊泡操纵烟酰胺代谢可恢复 CD8+ T 细胞的细胞毒性和胃癌患者的抗 PD-1 反应。
{"title":"Nicotinamide metabolism face-off between macrophages and fibroblasts manipulates the microenvironment in gastric cancer","authors":"Yu Jiang, Yawen Wang, Guofeng Chen, Fei Sun, Qijing Wu, Qiong Huang, Dongqiang Zeng, Wenjun Qiu, Jiao Wang, Zhiqi Yao, Bishan Liang, Shaowei Li, Jianhua Wu, Na Huang, Yuanyuan Wang, Jingsong Chen, Xiaohui Zhai, Li Huang, Beibei Xu, Masami Yamamoto, Min Shi","doi":"10.1016/j.cmet.2024.05.013","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.013","url":null,"abstract":"<p>Immune checkpoint blockade has led to breakthroughs in the treatment of advanced gastric cancer. However, the prominent heterogeneity in gastric cancer, notably the heterogeneity of the tumor microenvironment, highlights the idea that the antitumor response is a reflection of multifactorial interactions. Through transcriptomic analysis and dynamic plasma sample analysis, we identified a metabolic “face-off” mechanism within the tumor microenvironment, as shown by the dual prognostic significance of nicotinamide metabolism. Specifically, macrophages and fibroblasts expressing the rate-limiting enzymes nicotinamide phosphoribosyltransferase and nicotinamide N-methyltransferase, respectively, regulate the nicotinamide/1-methylnicotinamide ratio and CD8<sup>+</sup> T cell function. Mechanistically, nicotinamide N-methyltransferase is transcriptionally activated by the NOTCH pathway transcription factor RBP-J and is further inhibited by macrophage-derived extracellular vesicles containing nicotinamide phosphoribosyltransferase via the SIRT1/NICD axis. Manipulating nicotinamide metabolism through autologous injection of extracellular vesicles restored CD8<sup>+</sup> T cell cytotoxicity and the anti-PD-1 response in gastric cancer.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-term cold exposure induces persistent epigenomic memory in brown fat 短期寒冷暴露诱导棕色脂肪中持久的表观基因组记忆
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-17 DOI: 10.1016/j.cmet.2024.05.011
Shin-ichi Inoue, Matthew J. Emmett, Hee-Woong Lim, Mohit Midha, Hannah J. Richter, Isaac J. Celwyn, Rashid Mehmood, Maria Chondronikola, Samuel Klein, Amy K. Hauck, Mitchell A. Lazar

Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPβ was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPβ in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPβ-dependent and HDAC3-independent cold-adaptive epigenomic memory.

棕色脂肪组织(BAT)中表观基因组调节剂组蛋白去乙酰化酶3(HDAC3)的缺乏会损害小鼠在接近冰点的温度下生存的能力。在这里,我们报告了短期暴露于轻度低温(STEMCT:15°C,持续24小时)可避免BAT中缺乏HDAC3的小鼠(HDAC3 BAT KO)暴露于4°C的致命低体温。STEMCT 恢复了 22°C 下生热辅助激活因子 PGC-1α 和 UCP1 的诱导,而在 HDAC3 缺失的 BAT 中,UCP1 和 PGC-1α 的诱导功能严重受损。值得注意的是,这种保护作用可持续长达 7 天。在小鼠和人类 BAT 中,转录激活因子 C/EBPβ 通过短期寒冷暴露被诱导,并且在 STEMCT 之后的 7 天内一直保持高水平。在 HDAC3 BAT KO 小鼠中,腺相关病毒介导的 BAT C/EBPβ 敲除消除了 STEMCT 的持久记忆,揭示了 C/EBPβ 依赖性和 HDAC3 非依赖性冷适应性表观记忆的存在。
{"title":"Short-term cold exposure induces persistent epigenomic memory in brown fat","authors":"Shin-ichi Inoue, Matthew J. Emmett, Hee-Woong Lim, Mohit Midha, Hannah J. Richter, Isaac J. Celwyn, Rashid Mehmood, Maria Chondronikola, Samuel Klein, Amy K. Hauck, Mitchell A. Lazar","doi":"10.1016/j.cmet.2024.05.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.011","url":null,"abstract":"<p>Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPβ was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPβ in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPβ-dependent and HDAC3-independent cold-adaptive epigenomic memory.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive oxygen species regulation by NCF1 governs ferroptosis susceptibility of Kupffer cells to MASH NCF1 对活性氧的调控决定了 Kupffer 细胞对 MASH 的铁中毒敏感性
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-07 DOI: 10.1016/j.cmet.2024.05.008
Jing Zhang, Yu Wang, Meiyang Fan, Yanglong Guan, Wentao Zhang, Fumeng Huang, Zhengqiang Zhang, Xiaomeng Li, Bingyu Yuan, Wenbin Liu, Manman Geng, Xiaowei Li, Jing Xu, Congshan Jiang, Wenjuan Zhao, Feng Ye, Wenhua Zhu, Liesu Meng, Shemin Lu, Rikard Holmdahl

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.

Kupffer 细胞(KCs)自我更新受损会导致代谢功能障碍相关性脂肪性肝炎(MASH)中的炎症。在这里,我们发现中性粒细胞胞浆因子 1(NCF1)是 KCs 中铁稳态的关键调节因子。在患有代谢功能障碍相关性脂肪性肝病的人和 MASH 小鼠体内,肝巨噬细胞和树突状细胞中的 NCF1 上调。巨噬细胞 NCF1(而非树突状细胞 NCF1)会引发 KC 铁超载、铁凋亡和单核巨噬细胞浸润,从而加剧 MASH 的进展。从机理上讲,巨噬细胞 NCF1 诱导的氧化磷脂升高促进了 Toll 样受体(TLR4)依赖性肝细胞降血脂素的产生,导致 KC 铁沉积增加和随后的 KC 铁蜕变。重要的是,人类低功能多态性变体 NCF190H 可减轻小鼠的 KC 铁沉积和 MASH。总之,巨噬细胞NCF1通过氧化磷脂损害KC的铁稳态,引发肝细胞促血红素释放和MASH中的KC铁跃迁,突出表明NCF1是改善KC命运和限制MASH进展的治疗靶点。
{"title":"Reactive oxygen species regulation by NCF1 governs ferroptosis susceptibility of Kupffer cells to MASH","authors":"Jing Zhang, Yu Wang, Meiyang Fan, Yanglong Guan, Wentao Zhang, Fumeng Huang, Zhengqiang Zhang, Xiaomeng Li, Bingyu Yuan, Wenbin Liu, Manman Geng, Xiaowei Li, Jing Xu, Congshan Jiang, Wenjuan Zhao, Feng Ye, Wenhua Zhu, Liesu Meng, Shemin Lu, Rikard Holmdahl","doi":"10.1016/j.cmet.2024.05.008","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.008","url":null,"abstract":"<p>Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF1<sup>90H</sup> alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear SMAD5 dances to a different tune in regulating insulin secretion 核SMAD5在调节胰岛素分泌过程中舞动着不同的旋律
IF 29 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-04 DOI: 10.1016/j.cmet.2024.05.009
John Orlowski

In this issue of Cell Metabolism, Fang et al.1 report a novel pH-sensitive cellular signaling mechanism involving the transcription factor SMAD5 that regulates the vesicular secretion of insulin from pancreatic β cells in response to dietary challenges. Dysregulation of this pathway may contribute to metabolic disorders such as type 2 diabetes mellitus.

在本期《细胞新陈代谢》(Cell Metabolism)杂志上,Fang 等人1 报告了一种新的 pH 值敏感的细胞信号传导机制,该机制涉及转录因子 SMAD5,它能调节胰岛β细胞在饮食挑战下的胰岛素囊泡分泌。这一途径的失调可能导致代谢紊乱,如 2 型糖尿病。
{"title":"Nuclear SMAD5 dances to a different tune in regulating insulin secretion","authors":"John Orlowski","doi":"10.1016/j.cmet.2024.05.009","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.05.009","url":null,"abstract":"<p>In this issue of <em>Cell Metabolism</em>, Fang et al.<span><sup>1</sup></span> report a novel pH-sensitive cellular signaling mechanism involving the transcription factor SMAD5 that regulates the vesicular secretion of insulin from pancreatic β cells in response to dietary challenges. Dysregulation of this pathway may contribute to metabolic disorders such as type 2 diabetes mellitus.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1