Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.
Rosa odorata var. gigantea is a popular medicinal plant. Some studies have demonstrated that ethanolic extract of the fruits of R. odorata var. gigantea (FOE) has gastroprotective properties. The aim of this study was to investigate the gastroprotective activity of FOE on water immersion restrained stress (WIRS)-induced gastric mucosal injury in a rat model and elucidate the possible molecular mechanisms involved.
A rat stress ulcer model was established in this study using WIRS. After rats were treated with FOE orally for 7 d, the effect of FOE treatment was analyzed by hematoxylin and eosin (H&E) staining, and the changes of inflammatory factors, oxidative stress factors, and gastric-specific regulatory factors and pepsin in the blood and gastric tissues of rats were examined by ELISA assay. Molecular mechanism of FOE was investigated by immunohistochemical assay and Western blot.
Compared with the WIRS group, FOE could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. FOE significantly preserved the antioxidants glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT) contents; anti-inflammatory cytokines interleukin-10 (IL-10) and prostaglandin E2 (PGE2) levels as well as regulatory factors tumor necrosis factor-α (TGF-α) and somatostatin (SS) contents, while decreasing malondialdehyde (MDA), nitric oxide synthase (iNOS), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), gastrin (GAS) and endothelin (ET) levels. Moreover, FOE distinctly upregulated the expression of Nrf2, HO-1, Bcl2 and proliferating cell nuclear antigen (PCNA). In addition, FOE activated the expression of p-EGFR and downregulated the expression of NF-κB, Bax, Cleaved-caspase-3, Cyto-C and Cleaved-PARP1, thus promoting gastric mucosal cell survival.
The current work demonstrated that FOE exerted a gastroprotective activity against gastric mucosal injury induced by WIRS. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis systems.
To clear the amounts of the principal active/toxic components in herbs containing aristolochic acids (HCAAs), which are still used as medicine and/or seasoning in many ethnic minority areas of China.
In this study, six major active and toxic components in HCAAs were extracted with ultrasonic extraction. With 6-O-methyl guanosine as internal standard, the target compounds were analyzed qualitatively and quantitatively by using ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) with multiple reaction monitoring-information dependent acquisition-enhanced production ion scanning mode (MRM-IDA-EPI) combined with dynamic background subtraction (DBS) function.
The method showed good linearity in the linear range of the six analytes. The limit range of detection was from 0.01 ng/mL to 0.27 ng/mL. All of the detection repeatability, extraction repeatability and accuracy of the method were good. After extraction, the samples remained stable at 15 °C within 24 h. Six analytes were all found in samples except aristolactam (AL) in sample 2, and the contents varied greatly. The contents of these compounds decreased in fruits, leaves and stems of Aristolochia delavayi successively.
This method has the advantages of less sample dosage, simple operation, short analysis cycle, high sensitivity, specificity and accuracy. It laid a good foundation for guiding the safety of HCAAs, the in-depth study of pharmacological and toxicological effects and the scientific and standardized processing and compatibility of HCAAs.
Myocardial infarction (MI) is linked to an imbalance in the supply and demand of blood oxygen in the heart muscles. Beta-blockers and calcium antagonists are just two of the common medications used to treat MI. However, these have reportedly been shown to be either ineffective or to have undesirable side effects. Extract of Ginkgo biloba leaves (GBE), a Chinese herbal product offers special compatibility benefits in therapeutic settings relating to inflammatory diseases and oxidative stress. In order to better understand how GBE affects MI in rats insulted by isoprenaline (ISO), the current study was designed.
The heart weight index, serum lipid profile, cardiac marker enzymes, endogenous antioxidants [catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), nitrites and malondialdehyde (MDA)], inflammatory mediators [tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)], immunohistochemical expressions of B-cell lymphoma factor-2 (Bcl-2), extracellular signal-regulated kinase (ERK1/2), and mammalian target of rapamycin (mTOR) and histopathological analysis were used to assess the cardioprotective properties of GBE.
The findings showed that GBE effectively attenuated myocardial infarction by boosting the body’s natural antioxidant defense system and reducing the release of inflammatory cytokines as well as heart injury marker enzymes. The expression of Bcl-2, ERK1/2 and mTOR was increased while the histomorphological alterations were reversed.
The cardioprotective effects of GBE may be due to a mechanism involving increased Bcl-2/mTOR/ERK1/2/Na+, K+-ATPase activity.
This study is designed to investigate the mode of action of the synergistic effect of 5-fluorouracil (5-FU) and magnolol against cervical cancer.
Network pharmacological approach was applied to predict the molecular mechanism of 5-FU combined with magnolol against cervical cancer. CCK-8 assay, colony formation assay, immunofluorescence staining, adhesion assay, wound healing mobility assay, cell migration and invasion assay and Western blot analysis were conducted to validate the results of in silico study.
Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was identified as the key pathway in silico study. The experimental results showed that 5-FU combined with magnolol strongly inhibited cervical cancer cell proliferation, induced the morphological change of HeLa cells by down-regulating the expression of α-actinin, tensin-2 and vinculin. Moreover, magnolol enhanced inhibitory effect of 5-FU on the cell adhesion, migration and invasion. The phosphorylation of AKT and PI3K and the expression of mTOR were strongly inhibited by the combination of 5-FU and magnolol. Moreover, the expression of E-cadherin and β-catenin was upregulated and the expression of Snail, Slug and vimentin was down-regulated by the 5-FU together with magnolol.
Taken together, this study suggests that 5-FU combined with magnolol exerts a synergistic anti-cervical cancer effect by regulating the PI3K/AKT/mTOR and epithelial-mesenchymal transition (EMT) signaling pathways.
To identify phytochemical constituents present in the extract of flowers of Xanthoceras sorbifolia and evaluate their anti-oxidant and anti-hyperglycemic capacities.
The AlCl3 colorimetric method and Prussian Blue assay were used to determine the contents of total flavonoids and total phenolic acids in extraction layers, and the bioactive layers was screened through anti − oxidative activity in vitro. The Waters ACQUITY UPLC system and a Waters ACQUITY UPLC BEH C18 column (2.0 mm × 150 mm, 5 μm) were used to identify the ingredients. And anti-oxidative ingredients were screened by off-line UPLC-QTOF-MS/MS-free radical scavenging. The ameliorative role of it was further evaluated in a high-fat, streptozotocin-induced type 2 diabetic rat model and the study was carried out on NADPH oxidase (PDB ID: 2CDU) by molecular docking.
Combined with the results of activity screening in vitro, the anti − oxidative part was identified as the ethyl acetate layer. A total of 24 chemical constituents were identified by liquid chromatography-mass spectrometry in the ethyl acetate layer and 13 main anti-oxidative active constituents were preliminarily screened out through off-line UPLC-QTOF-MS/MS-free radical scavenging. In vivo experiments showed that flowers of X. sorbifolia could significantly reduce the blood glucose level of diabetic mice and alleviate liver cell damage. Based on the results of docking analysis related to the identified phytocompounds and oxidase which involved in type 2 diabetes, quercetin 3-O-rutinoside, kaempferol-3-O-rhamnoside, isorhamnetin-3-O-glucoside, and isoquercitrin showed a better inhibitory profile.
The ethyl acetate layer was rich in flavonoids and phenolic acids and had significant anti-oxidant activity, which could prevent hyperglycemia. This observed activity profile suggested X. sorbifolia flowers as a promising new source of tea to develop alternative natural anti-diabetic products with a high safety margin.
Cultivated Cordyceps sinensis powder has been used as clinical drug and healthy food to nourish the lung and kidney, which solves the problem of serious shortage of wild C. sinensis. This study aims to explore the chemical components and compared their anti-fibrotic effects in cultivated C. sinensis.
Nucleosides, sterols and polysaccharides were separated and purified from cultivated C. sinensis, and analyzed by high performance liquid chromatography, gas chromatography-mass spectrometry and chemical chromogenic methods, respectively. In high glucose-induced rat mesangial cell models, fibronectin and type 1 collagen were used as evaluation indicators.
There were 10 kinds of nucleosides and one sterol in cultivated C. sinensis. The contents of nucleosides, sterols and polysaccharides in the cultivated C. sinensis were close to 2%, 0.55% and 4.4%, respectively. Furthermore, nucleoside, sterol and polysaccharide components exhibited varying degrees of anti-fibrotic activity. The nucleoside components and sterol components inhibited the expression of extracellular matrix more effectively in the three main components.
Cultivated C. sinensis remains the similar compounds with the wild C. sinensis, and nucleosides and sterols may be the main active substances that contribute to its anti-fibrotic effects. The project of this study may provide valuable information on further optimization of more effective remedies with few side effects based on cultivated C. sinensis.