Marcela Achimovičová, Katarína Gáborová, Vladimír Girman, Erika Dutková, Jaroslav Briančin, Petr Levinský, Viktor Puchý
Silver(I) selenide, Ag2Se was very simply and conveniently prepared from Ag and Se powders in a stoichiometric ratio by one-step mechanochemical synthesis after 10 min of milling in a planetary ball mill. The kinetics of this synthesis and the structural, morphological, optical, and thermoelectric properties of the product were studied. The crystal structure, physical properties, and morphology were characterized by X-ray diffraction (XRD), specific surface area measurements, particle size distribution analysis, scanning, and transmission electron microscopy. XRD confirmed the orthorhombic crystal structure of naumannite, Ag2Se. The electron microscopy revealed that the nanostructured product consisted of isolated rod-shaped particles and agglomerated nanoparticles of irregular shape which formed clusters with a size >30 μm. Crystallinity was inspected by selected area diffraction. The optical properties were studied using ultraviolet-visible and photoluminescence spectroscopy. The determined band gap energy of 1.15 eV was blue-shifted relative to the bulk Ag2Se. For the densification of mechanochemically synthesized powdered Ag2Se, the spark plasma sintering method was applied to prepare a suitable sample for thermoelectric characterization. High-temperature thermoelectric properties were evaluated in terms of the potential application of mechanochemically synthesized Ag2Se in energy conversion.
在行星式球磨机中研磨 10 分钟后,通过一步机械化学合成法以原子和硒粉末为原料,非常简单方便地制备出了硒化银(I),即 Ag2Se。研究了这种合成的动力学以及产品的结构、形态、光学和热电特性。通过 X 射线衍射、比表面积测量、粒度分布分析、扫描和透射电子显微镜对晶体结构、物理性质和形态进行了表征。X 射线衍射证实了瑙锰矿 Ag2Se 的正长方晶体结构。电子显微镜显示,纳米结构产品由孤立的棒状颗粒和不规则形状的团聚纳米颗粒组成,这些颗粒形成的团块尺寸大于 30 微米。结晶度通过选区衍射法进行检测。利用紫外可见光谱和光致发光光谱对其光学特性进行了研究。所测定的 1.15 eV 带隙能与块状 Ag2Se 相比发生了蓝移。为了使机械化学合成的 Ag2Se 粉末致密化,采用了火花等离子烧结法制备出适合热电特性分析的样品。本文受版权保护。本文受版权保护。
{"title":"Simple mechanochemical synthesis, characterization, optical and thermoelectric properties of a nanostructured silver (I) selenide semiconductor","authors":"Marcela Achimovičová, Katarína Gáborová, Vladimír Girman, Erika Dutková, Jaroslav Briančin, Petr Levinský, Viktor Puchý","doi":"10.1002/appl.202300076","DOIUrl":"10.1002/appl.202300076","url":null,"abstract":"<p>Silver(I) selenide, Ag<sub>2</sub>Se was very simply and conveniently prepared from Ag and Se powders in a stoichiometric ratio by one-step mechanochemical synthesis after 10 min of milling in a planetary ball mill. The kinetics of this synthesis and the structural, morphological, optical, and thermoelectric properties of the product were studied. The crystal structure, physical properties, and morphology were characterized by X-ray diffraction (XRD), specific surface area measurements, particle size distribution analysis, scanning, and transmission electron microscopy. XRD confirmed the orthorhombic crystal structure of naumannite, Ag<sub>2</sub>Se. The electron microscopy revealed that the nanostructured product consisted of isolated rod-shaped particles and agglomerated nanoparticles of irregular shape which formed clusters with a size >30 μm. Crystallinity was inspected by selected area diffraction. The optical properties were studied using ultraviolet-visible and photoluminescence spectroscopy. The determined band gap energy of 1.15 eV was blue-shifted relative to the bulk Ag<sub>2</sub>Se. For the densification of mechanochemically synthesized powdered Ag<sub>2</sub>Se, the spark plasma sintering method was applied to prepare a suitable sample for thermoelectric characterization. High-temperature thermoelectric properties were evaluated in terms of the potential application of mechanochemically synthesized Ag<sub>2</sub>Se in energy conversion.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139837977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myco degradation is an effective technique for breaking down waste plant substances made of lignin, cellulose, and hemicellulose, which are collectively known as lignocellulose. This abundant organic material is found throughout the world. Due to its recalcitrant nature, lignocellulose poses a challenge for efficient conversion into biofuels, biochemicals, and other valuable products. Myco degradation, which involves the use of fungi to degrade lignocellulosic materials, offers a sustainable and cost-efficient resolution to this challenge. This review provides an overview of the mechanisms and applications of myco degradation for lignocellulosic biomass degradation. The review discusses the various types of fungi involved in lignocellulose degradation, their enzymatic systems, and the factors that influences their performance. Furthermore, the potential applications of myco degradation products, such as biofuels, enzymes, and bioplastics, are reviewed. It also highlights the implications of myco degradation for waste management and sustainable development. Overall, myco degradation represents a promising technology for the efficient deprivation of lignocellulosic waste biomass, and further research in this field holds great potential for the sustainable creation of bio-based products.
{"title":"Utilizing fungal biodegradation for valorisation of lignocellulosic waste biomass and its diverse applications","authors":"Prerna Mehta, Dinesh K. Chelike","doi":"10.1002/appl.202300119","DOIUrl":"10.1002/appl.202300119","url":null,"abstract":"<p>Myco degradation is an effective technique for breaking down waste plant substances made of lignin, cellulose, and hemicellulose, which are collectively known as lignocellulose. This abundant organic material is found throughout the world. Due to its recalcitrant nature, lignocellulose poses a challenge for efficient conversion into biofuels, biochemicals, and other valuable products. Myco degradation, which involves the use of fungi to degrade lignocellulosic materials, offers a sustainable and cost-efficient resolution to this challenge. This review provides an overview of the mechanisms and applications of myco degradation for lignocellulosic biomass degradation. The review discusses the various types of fungi involved in lignocellulose degradation, their enzymatic systems, and the factors that influences their performance. Furthermore, the potential applications of myco degradation products, such as biofuels, enzymes, and bioplastics, are reviewed. It also highlights the implications of myco degradation for waste management and sustainable development. Overall, myco degradation represents a promising technology for the efficient deprivation of lignocellulosic waste biomass, and further research in this field holds great potential for the sustainable creation of bio-based products.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eléonore Masarweh, Mariia Arseenko, Philippe Guaino, Denis Flandre
Measurements of Young's modulus and residual stresses of screen-printed ink layers using a bulge test on coated polyimide-based membranes are proposed in this work. The applied bulge test monitors the deflection of membranes under pressure with interferometry. The obtained Young's modulus ranges from 6 to 8 GPa for a carbon blend-based ink and is around 12 GPa for a silver nanoparticle ink. These values are compared with standard nanoindentation and show good agreement. Besides, the residual stresses range from −4 to 8 MPa for the carbon blend-based ink, while the silver ink is measured around −10 MPa. The use of the membrane-based method underlines the influence of exact deposition and curing conditions on the ink film material properties. The impact of the substrate on the ink layer properties, such as the thickness and its uniformity, is discussed, especially with regard to the heat treatment of the membrane.
{"title":"Membrane-based mechanical characterization of screen-printed inks: Deflection analysis of ink layers on polyimide membranes","authors":"Eléonore Masarweh, Mariia Arseenko, Philippe Guaino, Denis Flandre","doi":"10.1002/appl.202300113","DOIUrl":"10.1002/appl.202300113","url":null,"abstract":"<p>Measurements of Young's modulus and residual stresses of screen-printed ink layers using a bulge test on coated polyimide-based membranes are proposed in this work. The applied bulge test monitors the deflection of membranes under pressure with interferometry. The obtained Young's modulus ranges from 6 to 8 GPa for a carbon blend-based ink and is around 12 GPa for a silver nanoparticle ink. These values are compared with standard nanoindentation and show good agreement. Besides, the residual stresses range from −4 to 8 MPa for the carbon blend-based ink, while the silver ink is measured around −10 MPa. The use of the membrane-based method underlines the influence of exact deposition and curing conditions on the ink film material properties. The impact of the substrate on the ink layer properties, such as the thickness and its uniformity, is discussed, especially with regard to the heat treatment of the membrane.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139787651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Odhiambo Aguk, Collins Kalwale Mweresa, Monica Awuor Ayieko
Desert locusts (Schistocerca gregaria) pose a significant threat to food security. However, they also serve as a nutrient-rich delicacy in many African and Arabic communities where they are traditionally harvested for food and feed. Traditional harvesting methods are inefficient, laborious, and time-consuming; hence, there is a need to explore more convenient and efficient techniques. This study assessed preferential selection and feeding behavior of desert locusts to identify trap plants that could attract and aggregate them for easy harvesting. Four trap plants (cowpea, finger millet, sorghum, and amaranth) and four repellent plants (neem, pencil cactus, garlic, and cayenne red pepper) were evaluated through multiple-choice experiments. A randomized complete block design involving mature adult, immature adult, and hopper stages of desert locusts was used. Analysis of variance was used to determine the effects of repellent and trap plants on feeding preferences of desert locusts. Mean differences between treatments at p < 0.05 were separated using post hoc Tukey's honestly significant difference. Cowpea as the most preferred trap plant attracted 62.7%, 70.7%, and 76.9% of mature adult, immature adult, and hopper locust stages, respectively. Neem exhibited the most potent repellent effect and attracted no desert locusts for feeding. Neem repelled locusts, thereby reducing infestation and damage of cowpea as a pull plant when both plants were grown in the same pot in a “push–pull” system. The push–pull attracted 3.7%, 24.3%, and 7.8% of mature adult, immature adult, and hopper locust stages, respectively. However, cowpea attracted large numbers of locusts (96.3% mature adults, 75.7% immature adults, and 92.2% hoppers) when grown separately from neem. These findings provide valuable insights on the potential of exploiting traps and repellents to enhance aggregation and harvesting of desert locusts as food and feed.
{"title":"Enhancing attraction and aggregation of desert locusts for efficient harvesting: Push–pull approach","authors":"Joseph Odhiambo Aguk, Collins Kalwale Mweresa, Monica Awuor Ayieko","doi":"10.1002/appl.202300108","DOIUrl":"10.1002/appl.202300108","url":null,"abstract":"<p>Desert locusts (<i>Schistocerca gregaria</i>) pose a significant threat to food security. However, they also serve as a nutrient-rich delicacy in many African and Arabic communities where they are traditionally harvested for food and feed. Traditional harvesting methods are inefficient, laborious, and time-consuming; hence, there is a need to explore more convenient and efficient techniques. This study assessed preferential selection and feeding behavior of desert locusts to identify trap plants that could attract and aggregate them for easy harvesting. Four trap plants (cowpea, finger millet, sorghum, and amaranth) and four repellent plants (neem, pencil cactus, garlic, and cayenne red pepper) were evaluated through multiple-choice experiments. A randomized complete block design involving mature adult, immature adult, and hopper stages of desert locusts was used. Analysis of variance was used to determine the effects of repellent and trap plants on feeding preferences of desert locusts. Mean differences between treatments at <i>p</i> < 0.05 were separated using post hoc Tukey's honestly significant difference. Cowpea as the most preferred trap plant attracted 62.7%, 70.7%, and 76.9% of mature adult, immature adult, and hopper locust stages, respectively. Neem exhibited the most potent repellent effect and attracted no desert locusts for feeding. Neem repelled locusts, thereby reducing infestation and damage of cowpea as a pull plant when both plants were grown in the same pot in a “push–pull” system. The push–pull attracted 3.7%, 24.3%, and 7.8% of mature adult, immature adult, and hopper locust stages, respectively. However, cowpea attracted large numbers of locusts (96.3% mature adults, 75.7% immature adults, and 92.2% hoppers) when grown separately from neem. These findings provide valuable insights on the potential of exploiting traps and repellents to enhance aggregation and harvesting of desert locusts as food and feed.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139796533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Likius S. Daniel, Rocha T. Kaffer, Loini M. Kalipi, Ateeq Rahman, Mbela Kalengay, Veikko Uahengo
The photo-response threshold of the Ag-NP/TiO2 composite thin films was enhanced and shifted into the visible and near-infrared when the chlorophyll dye extracted from mopane (Colophospermum mopane) leaves was adsorbed onto them. This allows the fabrication of a new generation of photocathodic p-DSSCs with previously unheard of unprecedentedly high concentrations of Ag (up to 80 mol%) evenly scattered in a TiO2 matrix, and this efficacy is the highest ever reported for a p-type working Ag/TiO2/chlorophyll/iodine electrode. This may enable the use of this electrode as a component of photo-sensitizer tandem devices. Read the article here: https://onlinelibrary.wiley.com/doi/full/10.1002/appl.202300044.