Pub Date : 2025-02-25DOI: 10.1016/j.chip.2025.100133
Zhiyong Ye , Ganyuan Deng , Dongmiao Liu , Jingyan Wang , Xiaodi Gao , Kwai Hei Li , Ling Zhu
Lead-acid batteries are indispensable in various applications, and it is crucial to monitor their status. However, the existing sensing units for lead-acid batteries are limited by their bulky size, slow response time, and lack of temperature sensing and compensation capabilities. In the current work, a compact GaN-based sensing device was proposed to simultaneously measure the electrolyte density and temperature. The device comprises a light-emitting diode (LED) and a photodetector (PD) integrated on a GaN-on-sapphire chip in a monolithic configuration. The forward voltage of the LED reflects the electrolyte temperature, while the photocurrent of the PD varies with electrolyte density due to optical reflection changes at the exposed sapphire interface. The measured signals were processed using a decoupling matrix to achieve temperature compensation. The device exhibits a sensitivity of −29.1 μA/(g/cm3) for density in the range of 1.09 g/cm3 to 1.29 g/cm3, and -1.07 mV/°C for temperature in the range of 25 to 45 °C. The performance of the device was also validated through comparisons with commercial meters and real-time monitoring during the charging and discharging of the batteries. The device has notable advantages in size, cost, and fast response/recovery time (134.3/201.4 ms), rendering it a promising tool for monitoring lead-acid batteries.
{"title":"GaN chips for monitoring density and temperature of lead-acid batteries","authors":"Zhiyong Ye , Ganyuan Deng , Dongmiao Liu , Jingyan Wang , Xiaodi Gao , Kwai Hei Li , Ling Zhu","doi":"10.1016/j.chip.2025.100133","DOIUrl":"10.1016/j.chip.2025.100133","url":null,"abstract":"<div><div>Lead-acid batteries are indispensable in various applications, and it is crucial to monitor their status. However, the existing sensing units for lead-acid batteries are limited by their bulky size, slow response time, and lack of temperature sensing and compensation capabilities. In the current work, a compact GaN-based sensing device was proposed to simultaneously measure the electrolyte density and temperature. The device comprises a light-emitting diode (LED) and a photodetector (PD) integrated on a GaN-on-sapphire chip in a monolithic configuration. The forward voltage of the LED reflects the electrolyte temperature, while the photocurrent of the PD varies with electrolyte density due to optical reflection changes at the exposed sapphire interface. The measured signals were processed using a decoupling matrix to achieve temperature compensation. The device exhibits a sensitivity of −29.1 μA/(g/cm<sup>3</sup>) for density in the range of 1.09 g/cm<sup>3</sup> to 1.29 g/cm<sup>3</sup>, and -1.07 mV/°C for temperature in the range of 25 to 45 °C. The performance of the device was also validated through comparisons with commercial meters and real-time monitoring during the charging and discharging of the batteries. The device has notable advantages in size, cost, and fast response/recovery time (134.3/201.4 ms), rendering it a promising tool for monitoring lead-acid batteries.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 3","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144261297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1016/j.chip.2025.100132
Xincheng Jiang , Peicheng Lin , Yeang Zhang , Ting Xu , Yan-qing Lu , Jun-long Kou
Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.
{"title":"Complex-Amplitude-Modulated Meta-Device for Optical Image Processing","authors":"Xincheng Jiang , Peicheng Lin , Yeang Zhang , Ting Xu , Yan-qing Lu , Jun-long Kou","doi":"10.1016/j.chip.2025.100132","DOIUrl":"10.1016/j.chip.2025.100132","url":null,"abstract":"<div><div>Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143799508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1016/j.chip.2025.100131
Yitong Wang , Fangpei Li , Wenbo Peng , Yongning He
High-performance electronics and optoelectronics play vital roles in modern society, as they are the fundamental building blocks of functional devices and systems. Two-dimensional semiconductor materials (2D-SCMs) are potential candidates for high-performance electronics and optoelectronics due to their excellent physical, chemical, electrical, and photonic properties. Owing to their special crystalline structure, they also present unique piezoelectricity, which opens a new door to the innovative fields of piezotronics and piezo-phototronics. Piezotronics and piezo-phototronics utilize the piezoelectric polarization charges produced when the 2D-SCMs undergo externally applied strains/stresses to modulate the performance of 2D-SCMs-based electronics and optoelectronics. In this review, firstly, the growth methods and piezoelectric properties of 2D-SCMs are stated, and the mechanisms of piezotronics and piezo-phototronics are also introduced. Afterwards, the recent progress of piezotronics and piezo-phototronics in high-performance 2D-SMCs-based electronics and optoelectronics are systematically reviewed. In addition, the functional devices and systems based on the piezotronics and piezo-phototronics in 2D-SMCs have been summarized. Finally, the research progresses are summarized, and future perspectives are proposed.
{"title":"Advances in piezotronics and piezo-phototronics of two-dimensional semiconductor materials","authors":"Yitong Wang , Fangpei Li , Wenbo Peng , Yongning He","doi":"10.1016/j.chip.2025.100131","DOIUrl":"10.1016/j.chip.2025.100131","url":null,"abstract":"<div><div>High-performance electronics and optoelectronics play vital roles in modern society, as they are the fundamental building blocks of functional devices and systems. Two-dimensional semiconductor materials (2D-SCMs) are potential candidates for high-performance electronics and optoelectronics due to their excellent physical, chemical, electrical, and photonic properties. Owing to their special crystalline structure, they also present unique piezoelectricity, which opens a new door to the innovative fields of piezotronics and piezo-phototronics. Piezotronics and piezo-phototronics utilize the piezoelectric polarization charges produced when the 2D-SCMs undergo externally applied strains/stresses to modulate the performance of 2D-SCMs-based electronics and optoelectronics. In this review, firstly, the growth methods and piezoelectric properties of 2D-SCMs are stated, and the mechanisms of piezotronics and piezo-phototronics are also introduced. Afterwards, the recent progress of piezotronics and piezo-phototronics in high-performance 2D-SMCs-based electronics and optoelectronics are systematically reviewed. In addition, the functional devices and systems based on the piezotronics and piezo-phototronics in 2D-SMCs have been summarized. Finally, the research progresses are summarized, and future perspectives are proposed.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1016/j.chip.2025.100130
Deng Yang , Xiaoqin Liu , Lingyun Zhang , Guozhe Xuan , Xiangzheng Sun , Jiahao Zhao
Long-term continuous monitoring is essential for the Internet of Things (IoT), with efficient power use and sustainable energy supply as core challenges. This study presents a MEMS-based self-holding acoustic switch designed for uninterrupted monitoring of specific acoustic signals with zero power consumption. Microelectromechanical systems (MEMS) refer to miniaturized devices that integrate mechanical and electrical components on a single microchip. A mathematical model is developed to analyze the switch's acoustic frequency response. Simulations and experiments demonstrate its acoustic-driven properties. Acoustic switches with different structural parameters are designed, achieving resonant frequencies ranging from 192 Hz to 862 Hz. Electrostatic voltages are applied to enable self-holding functionality, and the acoustic switch exhibits a contact resistance as low as 29.3 Ω. The acoustic switch successfully performs various functions, including acoustic sensing, frequency identification, on–off control, and self-holding, all without drawing power from an external power supply. By integrating this acoustic switch, a zero-power self-aware microsystem platform is realized, allowing zero-power sleep states without closed-loop circuits while remaining responsive to target acoustic signals. This technology effectively supports long-term, large-scale deployment of unattended IoT terminals.
{"title":"Zero-power self-aware microsystem platform enabled by passive acoustic switch","authors":"Deng Yang , Xiaoqin Liu , Lingyun Zhang , Guozhe Xuan , Xiangzheng Sun , Jiahao Zhao","doi":"10.1016/j.chip.2025.100130","DOIUrl":"10.1016/j.chip.2025.100130","url":null,"abstract":"<div><div>Long-term continuous monitoring is essential for the Internet of Things (IoT), with efficient power use and sustainable energy supply as core challenges. This study presents a MEMS-based self-holding acoustic switch designed for uninterrupted monitoring of specific acoustic signals with zero power consumption. Microelectromechanical systems (MEMS) refer to miniaturized devices that integrate mechanical and electrical components on a single microchip. A mathematical model is developed to analyze the switch's acoustic frequency response. Simulations and experiments demonstrate its acoustic-driven properties. Acoustic switches with different structural parameters are designed, achieving resonant frequencies ranging from 192 Hz to 862 Hz. Electrostatic voltages are applied to enable self-holding functionality, and the acoustic switch exhibits a contact resistance as low as 29.3 Ω. The acoustic switch successfully performs various functions, including acoustic sensing, frequency identification, on–off control, and self-holding, all without drawing power from an external power supply. By integrating this acoustic switch, a zero-power self-aware microsystem platform is realized, allowing zero-power sleep states without closed-loop circuits while remaining responsive to target acoustic signals. This technology effectively supports long-term, large-scale deployment of unattended IoT terminals.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100130"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143937229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1016/j.chip.2025.100129
Jinshun Bi , Muhammad Faizan , Xuefei Liu , Yue Ma , Xu Wang , Viktor Stempitsky
The identification of ferroelectricity in oxides such as hafnium oxide, which are compatible with the contemporary semiconductor fabrication techniques, has contributed to a resurgence of ferroelectric devices in cutting-edge microelectronics. In a transistor structure, ferroelectric devices play the role of connecting a ferroelectric material to a semiconductor, which combines memory and logic operations at the level of a single device, thus meeting some of the most essential hardware requirements for new paradigms for artificial intelligence (A.I) chips. In this review, we addressed the issues associated with high-volume fabrication at advanced technology nodes ( at the material and device level. Moreover, we also reviewed the advancement of A.I chips such as neuro-inspired computer chips. For neuro-inspired A.I chips based on nonvolatile memory, four important metrics are suggested for benchmarking: computing density, energy efficiency, learning capability, and computing accuracy. It is inferred that ferroelectric devices can be a major hardware element in the design of future A.I chips, which will leads to an innovative approach to electronics that is termed ferroelectronics.
{"title":"Ferroelectric devices for artificial intelligence chips","authors":"Jinshun Bi , Muhammad Faizan , Xuefei Liu , Yue Ma , Xu Wang , Viktor Stempitsky","doi":"10.1016/j.chip.2025.100129","DOIUrl":"10.1016/j.chip.2025.100129","url":null,"abstract":"<div><div>The identification of ferroelectricity in oxides such as hafnium oxide, which are compatible with the contemporary semiconductor fabrication techniques, has contributed to a resurgence of ferroelectric devices in cutting-edge microelectronics. In a transistor structure, ferroelectric devices play the role of connecting a ferroelectric material to a semiconductor, which combines memory and logic operations at the level of a single device, thus meeting some of the most essential hardware requirements for new paradigms for artificial intelligence (A.I) chips. In this review, we addressed the issues associated with high-volume fabrication at advanced technology nodes (<span><math><mo>≤</mo><mn>10</mn><mspace></mspace><mi>nm</mi><mo>)</mo></math></span> at the material and device level. Moreover, we also reviewed the advancement of A.I chips such as neuro-inspired computer chips. For neuro-inspired A.I chips based on nonvolatile memory, four important metrics are suggested for benchmarking: computing density, energy efficiency, learning capability, and computing accuracy. It is inferred that ferroelectric devices can be a major hardware element in the design of future A.I chips, which will leads to an innovative approach to electronics that is termed ferroelectronics.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cross-entropy benchmarking is a central technique adopted to certify a quantum chip in recent investigations. To better understand its mathematical foundation and develop new benchmarking schemes, the concept of ergodicity was introduced to random circuit sampling and it was found that the Haar random quantum circuit could satisfy an ergodicity condition—the average of certain types of postprocessing function over the output bit strings is close to the average over the unitary ensemble. For noiseless random circuits, it was proven that the ergodicity holds for polynomials of degree t with positive coefficients when the random circuits form a unitary 2t-design. For strong enough noise, the ergodicity condition is violated, which suggests that ergodicity is a property that can be exploited to certify a quantum chip. The deviation of ergodicity was formulated as a measure for quantum chip benchmarking, and it was demonstrated that it can be used to estimate the circuit fidelity for global depolarizing noise and weakly correlated noise. For a quadratic postprocessing function, our framework recovered Google's result on estimating the circuit fidelity via linear cross-entropy benchmarking (XEB), and we gave a sufficient condition on the noise model characterizing when such estimation is valid. The results establish an interesting connection between ergodicity and noise in random circuits and provide new insights into designing quantum benchmarking schemes.
{"title":"Generalized cross-entropy benchmarking for random circuits with ergodicity","authors":"Bin Cheng , Fei Meng , Zhi-Jiong Zhang , Man-Hong Yung","doi":"10.1016/j.chip.2025.100127","DOIUrl":"10.1016/j.chip.2025.100127","url":null,"abstract":"<div><div>Cross-entropy benchmarking is a central technique adopted to certify a quantum chip in recent investigations. To better understand its mathematical foundation and develop new benchmarking schemes, the concept of ergodicity was introduced to random circuit sampling and it was found that the Haar random quantum circuit could satisfy an ergodicity condition—the average of certain types of postprocessing function over the output bit strings is close to the average over the unitary ensemble. For noiseless random circuits, it was proven that the ergodicity holds for polynomials of degree <em>t</em> with positive coefficients when the random circuits form a unitary 2<em>t</em>-design. For strong enough noise, the ergodicity condition is violated, which suggests that ergodicity is a property that can be exploited to certify a quantum chip. The deviation of ergodicity was formulated as a measure for quantum chip benchmarking, and it was demonstrated that it can be used to estimate the circuit fidelity for global depolarizing noise and weakly correlated noise. For a quadratic postprocessing function, our framework recovered Google's result on estimating the circuit fidelity via linear cross-entropy benchmarking (XEB), and we gave a sufficient condition on the noise model characterizing when such estimation is valid. The results establish an interesting connection between ergodicity and noise in random circuits and provide new insights into designing quantum benchmarking schemes.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143881528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1016/j.chip.2025.100128
Youtian Hu , Qingyun Li , Fan Yang , Jing Hu , Ximing Li , Jiale Ou , Zhenjun Zang , Bangyi Zhu , Qinyu Zeng , Huangpu Han , Yujie Ma , Wang Zhang , Shuangchen Ruan , Bingxi Xiang
Thin-film lithium niobate (TFLN) is considered a crucial platform innext-generationintegrated optoelectronics due to its excellent optical properties. Photodetectors are essential components for constructing fully functional photonic circuits. However, due to the low electrical conductivity and weak light absorption, TFLN cannot be directly used for fabricating photodetectors. In this study, we proposedand demonstratedahigh-performanceMoTe2/TFLN heterostructure integrated Schottky photodetector operating at telecommunication wavelengths (1310 nm and 1550 nm). This structure enhances the photovoltaic effect by bending MoTe2at the edge of one electrode, thereby achievingself-poweredoperation. At a wavelength of 1310 nm, the photodetector achieves aself-poweredresponsivity of 70 mA/W, which is among the highest forwaveguide-integratedphotodetectors. Additionally, due to the strong rectification effect of the Schottky junction, the photodetector exhibits an extremely low dark current of only 25 pA at −0.5 V bias voltage. The on/off ratios reach 2.6 × 104 at 0 V and 4.1 × 104 at −0.5 V bias. Theself-poweredresponse timesweremeasured, showing fast response and recovery times of 160 μs and 169 μs, respectively.
{"title":"Self-powered asymmetric Schottky photodetector integrated with thin-film lithium niobate waveguide","authors":"Youtian Hu , Qingyun Li , Fan Yang , Jing Hu , Ximing Li , Jiale Ou , Zhenjun Zang , Bangyi Zhu , Qinyu Zeng , Huangpu Han , Yujie Ma , Wang Zhang , Shuangchen Ruan , Bingxi Xiang","doi":"10.1016/j.chip.2025.100128","DOIUrl":"10.1016/j.chip.2025.100128","url":null,"abstract":"<div><div><strong>Thin-film lithium niobate (TFLN) is considered a crucial platform in</strong> <strong>next-generation</strong> <strong>integrated optoelectronics due to its excellent optical properties. Photodetectors are essential components for constructing fully functional photonic circuits. However, due to the low electrical conductivity and weak light absorption, TFLN cannot be directly used for fabricating photodetectors. In this study, we propose</strong><strong>d</strong> <strong>and demonstrate</strong><strong>d</strong> <strong>a</strong> <strong>high-performance</strong> <strong>MoTe</strong><sub><strong>2</strong></sub><strong>/TFLN heterostructure integrated Schottky photodetector operating at telecommunication wavelengths (1310 nm and 1550 nm). This structure enhances the photovoltaic effect by bending MoTe</strong><sub><strong>2</strong></sub> <strong>at the edge of one electrode, thereby achieving</strong> <strong>self-powered</strong> <strong>operation. At a wavelength of 1310 nm, the photodetector achieves a</strong> <strong>self-powered</strong> <strong>responsivity of 70 mA/W, which is among the highest for</strong> <strong>waveguide-integrated</strong> <strong>photodetectors. Additionally, due to the strong rectification effect of the Schottky junction, the photodetector exhibits an extremely low dark current of only 25 pA at −0.5 V bias voltage. The on/off ratios reach 2.6 × 10<sup>4</sup> at 0 V and 4.1 × 10<sup>4</sup> at −0.5 V bias. The</strong> <strong>self-powered</strong> <strong>response times</strong> <strong>were</strong> <strong>measured, showing fast response and recovery times of 160 μs and 169 μs, respectively.</strong></div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143799507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1016/j.chip.2024.100125
Peiding Liu , Xing Zhang , Bolei Zhang , Yong Wang , Wanbiao Hu , Feng Qiu
Highly optical-absorption hybrid perovskites with upgraded stability and superior photoelectronic properties are essential for optoelectronics. However, various defects are generated by the solution-based film quality inevitably produces during the crystallization process, which leads to non-radiative recombination and interface mismatch. In this work, polyvinylpyrrolidone (PVP) molecule layer was implemented as the interfacially multifunctional layer and selective transport layer to fabricate an effective photodetector. Interfacial PVP is conductive to the bond coordination between the PVP molecule and the MAPbI3 surface, which could lower the work function of the perovskite film and effectively improve its surface morphology so as to isolate it from water and oxygen molecules. The interfacial passivation for the undercoordinated Pb2+ defects was also verified via first-principles calculations. The electron injection barrier can be regulated via interfacial molecule engineering, leading to the result that the dark current is suppressed by five orders of magnitude to 1.57 × 10−11 A, and the specific detectivity improved by about three orders of magnitude reaching 2.9 × 1012 Jones. These results provide a feasible route to fabricate highly sensitive and stable hybrid perovskite photodetectors.
{"title":"Molecular engineering enables high-performance hybrid perovskite photodetector","authors":"Peiding Liu , Xing Zhang , Bolei Zhang , Yong Wang , Wanbiao Hu , Feng Qiu","doi":"10.1016/j.chip.2024.100125","DOIUrl":"10.1016/j.chip.2024.100125","url":null,"abstract":"<div><div>Highly optical-absorption hybrid perovskites with upgraded stability and superior photoelectronic properties are essential for optoelectronics. However, various defects are generated by the solution-based film quality inevitably produces during the crystallization process, which leads to non-radiative recombination and interface mismatch. In this work, polyvinylpyrrolidone (PVP) molecule layer was implemented as the interfacially multifunctional layer and selective transport layer to fabricate an effective photodetector. Interfacial PVP is conductive to the bond coordination between the PVP molecule and the MAPbI<sub>3</sub> surface, which could lower the work function of the perovskite film and effectively improve its surface morphology so as to isolate it from water and oxygen molecules. The interfacial passivation for the undercoordinated Pb<sup>2+</sup> defects was also verified via first-principles calculations. The electron injection barrier can be regulated via interfacial molecule engineering, leading to the result that the dark current is suppressed by five orders of magnitude to 1.57 × 10<sup>−11</sup> A, and the specific detectivity improved by about three orders of magnitude reaching 2.9 × 10<sup>12</sup> Jones. These results provide a feasible route to fabricate highly sensitive and stable hybrid perovskite photodetectors.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.chip.2024.100121
Yiqing Liu , Jinwen Lv , Ye Fan , Meixue Zong , Shubin Zhang , Zhengji Xu
Metasurface-enabled bound states in the continuum (BICs) provide a novel solution for achieving exceptionally high quality factors (Q factors), which could overcome the limitations of traditional mid-infrared filters, sensors, lasers, and nonlinear sources. However, most BIC metasurfaces are restricted by their sensitivity to specific incident angles, limiting their practical applications. Here, we introduced a germanium-based metasurface that supports two BIC modes for different polarizations, exhibiting robust angle insensitivity. By leveraging geometric asymmetry, we effectively controlled BIC leakage and coupling. The device maintained infinite Q factors under oblique incidence with preserved symmetry, and exhibited stable quasi-BIC resonance wavelengths and linewidths even with broken symmetry, regardless of TE or TM polarization. This angular robustness has been validated both theoretically and experimentally, demonstrating its potential for broadening the applicability of high-performance mid-infrared optical devices.
{"title":"Angle-insensitive dual bound states in the continuum on germanium metasurface","authors":"Yiqing Liu , Jinwen Lv , Ye Fan , Meixue Zong , Shubin Zhang , Zhengji Xu","doi":"10.1016/j.chip.2024.100121","DOIUrl":"10.1016/j.chip.2024.100121","url":null,"abstract":"<div><div>Metasurface-enabled bound states in the continuum (BICs) provide a novel solution for achieving exceptionally high quality factors (<em>Q</em> factors), which could overcome the limitations of traditional mid-infrared filters, sensors, lasers, and nonlinear sources. However, most BIC metasurfaces are restricted by their sensitivity to specific incident angles, limiting their practical applications. Here, we introduced a germanium-based metasurface that supports two BIC modes for different polarizations, exhibiting robust angle insensitivity. By leveraging geometric asymmetry, we effectively controlled BIC leakage and coupling. The device maintained infinite <em>Q</em> factors under oblique incidence with preserved symmetry, and exhibited stable quasi-BIC resonance wavelengths and linewidths even with broken symmetry, regardless of TE or TM polarization. This angular robustness has been validated both theoretically and experimentally, demonstrating its potential for broadening the applicability of high-performance mid-infrared optical devices.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.chip.2024.100122
Dongsheng Cui , Mengjiao Pei , Zhenhua Lin , Yifei Wang , Hong Zhang , Xiangxiang Gao , Haidong Yuan , Yun Li , Jincheng Zhang , Yue Hao , Jingjing Chang
The human brain possesses a highly developed capability for sensing-memory-computing, and the integration of hardware with brain-like functions represents a novel approach to overcoming the von Neumann bottleneck. In this study, Ga2O3 photoelectric memristors were successfully fabricated, enabling efficient visual information processing and complex recognition through the integration of optoelectronic synapses with digital storage. The memristors with a Pt/Ga2O3/Pt sandwich structure exhibit the coexistence of unipolar resistive switching (URS) and bipolar resistive switching (BRS), coupled with an impressive switching ratio and stable retention characteristics. The device demonstrates robust photo-responsive properties to ultraviolet (UV) light, which enables the realization of an array of 16 photoconductor types through the manipulation of four-timeframe pulse sequences. Exposure of the device to UV light elicits stable synaptic behaviors, including paired-pulse facilitation (PPF), short-term memory (STM), long-term memory (LTM), as well as learning-forgetting-relearning behavior. Moreover, the device exhibits outstanding image sensing, image memory, and neuromorphic visual pre-processing capabilities as a neuromorphic vision sensor (NVS). The integration of light pulse potentiation with electrical pulse depression yields a remarkable 100 conductances with superior linearity. This advanced functionality is further validated by the ability of the device to facilitate the recognition of 85.3% of handwritten digits by artificial neural networks (ANNs), which underscores the significant potential of artificial synapses in mimicking biological neural.
{"title":"Coexistence of unipolar and bipolar resistive switching in optical synaptic memristors and neuromorphic computing","authors":"Dongsheng Cui , Mengjiao Pei , Zhenhua Lin , Yifei Wang , Hong Zhang , Xiangxiang Gao , Haidong Yuan , Yun Li , Jincheng Zhang , Yue Hao , Jingjing Chang","doi":"10.1016/j.chip.2024.100122","DOIUrl":"10.1016/j.chip.2024.100122","url":null,"abstract":"<div><div>The human brain possesses a highly developed capability for sensing-memory-computing, and the integration of hardware with brain-like functions represents a novel approach to overcoming the von Neumann bottleneck. In this study, Ga<sub>2</sub>O<sub>3</sub> photoelectric memristors were successfully fabricated, enabling efficient visual information processing and complex recognition through the integration of optoelectronic synapses with digital storage. The memristors with a Pt/Ga<sub>2</sub>O<sub>3</sub>/Pt sandwich structure exhibit the coexistence of unipolar resistive switching (URS) and bipolar resistive switching (BRS), coupled with an impressive switching ratio and stable retention characteristics. The device demonstrates robust photo-responsive properties to ultraviolet (UV) light, which enables the realization of an array of 16 photoconductor types through the manipulation of four-timeframe pulse sequences. Exposure of the device to UV light elicits stable synaptic behaviors, including paired-pulse facilitation (PPF), short-term memory (STM), long-term memory (LTM), as well as learning-forgetting-relearning behavior. Moreover, the device exhibits outstanding image sensing, image memory, and neuromorphic visual pre-processing capabilities as a neuromorphic vision sensor (NVS). The integration of light pulse potentiation with electrical pulse depression yields a remarkable 100 conductances with superior linearity. This advanced functionality is further validated by the ability of the device to facilitate the recognition of 85.3% of handwritten digits by artificial neural networks (ANNs), which underscores the significant potential of artificial synapses in mimicking biological neural.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}