Pub Date : 2024-06-26DOI: 10.1016/j.chip.2024.100099
Richard Soref , Francesco De Leonardis , Oussama Moutanabbir , Gerard Daligou
The commercially available 4000-Watt continuous-wave (CW) Erbium-doped-fiber laser, emitting at the 1567-nm wavelength where the atmosphere has high transmission, provides an opportunity for harvesting electric power at remote “off the grid” locations using a multi-module photovoltaic (PV) “receiver” panel. This paper proposes a 32-element monocrystalline thick-layer Germanium PV panel for efficient harvesting of a collimated 1.13-m-diam beam. The 0.78-m2 PV panel is constructed from commercial Ge wafers. For incident CW laser-beam power in the 4000 to 10,000 W range, our thermal, electrical, and infrared simulations predict 660 to 1510 Watts of electrical output at the panel temperatures of 350 to 423 K.
商用 4000 瓦连续波掺铒光纤激光器的波长为 1567 纳米,在大气层中具有较高的透射率,这为在偏远的 "离网 "地点使用多模块光伏(PV)"接收器 "面板收集电力提供了机会。本文提出了一种 32 元单晶厚层锗光电板,用于高效采集 1.13 米直径的准直光束。0.78 米的光伏板由商用锗晶片制成。对于 4000-10,000 W 范围内的入射 CW 激光束,我们的热学、电学和红外模拟预测在面板温度为 350-423 K 时可输出 660-1510 W 的电力。
{"title":"Remote electric powering by germanium photovoltaic conversion of an Erbium-fiber laser beam","authors":"Richard Soref , Francesco De Leonardis , Oussama Moutanabbir , Gerard Daligou","doi":"10.1016/j.chip.2024.100099","DOIUrl":"10.1016/j.chip.2024.100099","url":null,"abstract":"<div><p>The commercially available 4000-Watt continuous-wave (CW) Erbium-doped-fiber laser, emitting at the 1567-nm wavelength where the atmosphere has high transmission, provides an opportunity for harvesting electric power at remote “off the grid” locations using a multi-module photovoltaic (PV) “receiver” panel. This paper proposes a 32-element monocrystalline thick-layer Germanium PV panel for efficient harvesting of a collimated 1.13-m-diam beam. The 0.78-m<sup>2</sup> PV panel is constructed from commercial Ge wafers. For incident CW laser-beam power in the 4000 to 10,000 W range, our thermal, electrical, and infrared simulations predict 660 to 1510 Watts of electrical output at the panel temperatures of 350 to 423 K.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000170/pdfft?md5=d0ba424633e8badf6dfa158686b16e97&pid=1-s2.0-S2709472324000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.chip.2024.100096
Chengjun Li, Yubo Luo, Wang Li, Boyu Yang, Chengwei Sun, Wenyuan Ma, Zheng Ma, Yingchao Wei, Xin Li, Junyou Yang
With the development of 5G technology and increasing chip integration, traditional active cooling methods struggle to meet the growing thermal demands of chips. Thermoelectric coolers (TECs) have garnered great attention due to their rapid response, significant cooling differentials, strong compatibility, high stability and controllable device dimensions. In this review, starting from the fundamental principles of thermoelectric cooling and device design, high-performance thermoelectric cooling materials are summarized, and the progress of advanced on-chip TECs is comprehensively reviewed. Finally, the paper outlines the challenges and opportunities in TEC design, performance and applications, laying great emphasis on the critical role of thermoelectric cooling in addressing the evolving thermal management requirements in the era of emerging chip technologies.
{"title":"The on-chip thermoelectric cooler: advances, applications and challenges","authors":"Chengjun Li, Yubo Luo, Wang Li, Boyu Yang, Chengwei Sun, Wenyuan Ma, Zheng Ma, Yingchao Wei, Xin Li, Junyou Yang","doi":"10.1016/j.chip.2024.100096","DOIUrl":"10.1016/j.chip.2024.100096","url":null,"abstract":"<div><p>With the development of 5G technology and increasing chip integration, traditional active cooling methods struggle to meet the growing thermal demands of chips. Thermoelectric coolers (TECs) have garnered great attention due to their rapid response, significant cooling differentials, strong compatibility, high stability and controllable device dimensions. In this review, starting from the fundamental principles of thermoelectric cooling and device design, high-performance thermoelectric cooling materials are summarized, and the progress of advanced on-chip TECs is comprehensively reviewed. Finally, the paper outlines the challenges and opportunities in TEC design, performance and applications, laying great emphasis on the critical role of thermoelectric cooling in addressing the evolving thermal management requirements in the era of emerging chip technologies.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000145/pdfft?md5=5df7bff3a72f84dd9ee90367220d271d&pid=1-s2.0-S2709472324000145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.chip.2024.100088
Yao Deng , Shenghong Liu , Manshi Li , Na Zhang , Yiming Feng , Junbo Han , Yury Kapitonov , Yuan Li , Tianyou Zhai
Two-dimensional metal chalcogenides have garnered significant attention as promising candidates for novel neuromorphic synaptic devices due to their exceptional structural and optoelectronic properties. However, achieving large-scale integration and practical applications of synaptic chips has proven to be challenging due to significant hurdles in materials preparation and the absence of effective nanofabrication techniques. In a recent breakthrough, we introduced a revolutionary allopatric defect-modulated Fe7S8@MoS2 synaptic heterostructure, which demonstrated remarkable optoelectronic synaptic response capabilities. Building upon this achievement, our current study takes a step further by presenting a sulfurization-seeding synergetic growth strategy, enabling the large-scale and arrayed preparation of Fe7S8@MoS2 heterostructures. Moreover, a three-dimensional vertical integration technique was developed for the fabrication of arrayed optoelectronic synaptic chips. Notably, we have successfully simulated the visual persistence function of the human eye with the adoption of the arrayed chip. Our synaptic devices exhibit a remarkable ability to replicate the preprocessing functions of the human visual system, resulting in significantly improved noise reduction and image recognition efficiency. This study might mark an important milestone in advancing the field of optoelectronic synaptic devices, which significantly prompts the development of mature integrated visual perception chips.
{"title":"Large-area growth of synaptic heterostructure arrays for integrated neuromorphic visual perception chips","authors":"Yao Deng , Shenghong Liu , Manshi Li , Na Zhang , Yiming Feng , Junbo Han , Yury Kapitonov , Yuan Li , Tianyou Zhai","doi":"10.1016/j.chip.2024.100088","DOIUrl":"10.1016/j.chip.2024.100088","url":null,"abstract":"<div><p>Two-dimensional metal chalcogenides have garnered significant attention as promising candidates for novel neuromorphic synaptic devices due to their exceptional structural and optoelectronic properties. However, achieving large-scale integration and practical applications of synaptic chips has proven to be challenging due to significant hurdles in materials preparation and the absence of effective nanofabrication techniques. In a recent breakthrough, we introduced a revolutionary allopatric defect-modulated Fe<sub>7</sub>S<sub>8</sub>@MoS<sub>2</sub> synaptic heterostructure, which demonstrated remarkable optoelectronic synaptic response capabilities. Building upon this achievement, our current study takes a step further by presenting a sulfurization-seeding synergetic growth strategy, enabling the large-scale and arrayed preparation of Fe<sub>7</sub>S<sub>8</sub>@MoS<sub>2</sub> heterostructures. Moreover, a three-dimensional vertical integration technique was developed for the fabrication of arrayed optoelectronic synaptic chips. Notably, we have successfully simulated the visual persistence function of the human eye with the adoption of the arrayed chip. Our synaptic devices exhibit a remarkable ability to replicate the preprocessing functions of the human visual system, resulting in significantly improved noise reduction and image recognition efficiency. This study might mark an important milestone in advancing the field of optoelectronic synaptic devices, which significantly prompts the development of mature integrated visual perception chips.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000066/pdfft?md5=3c43e3097235258d0932a5944fcc9d1f&pid=1-s2.0-S2709472324000066-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140406791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.chip.2024.100094
Zhenyun Tang , Zhe Wang , Zhigang Song , Wanhua Zheng
Tunneling-based staticrandom-accessmemory (SRAM) devices havebeen developed to fulfill the demands of high density and low power,andthe performance of SRAMshas also been greatly promoted.However, for a long time, there has not been a silicon based tunneling device with both high peak valley current ratio (PVCR) and practicality, which remains a gap to be filled.Based on the existing work, the current manuscript proposed the concept of a new silicon-based tunneling device, i.e., the silicon cross-coupled gated tunneling diode (Si XTD), which is quite simple in structure and almost completely compatible with mainstream technology. Withtechnology computer aided design (TCAD)simulations, it has been validated that this type of devicenot only exhibitssignificantnegative-differential-resistance(NDR) behavior with PVCRs up to 106, but also possessesreasonable process margins. Moreover, SPICE simulationshowedthe great potential of such devices to achieveultralow-powertunneling-based SRAMs with standby power down to 10−12W.
{"title":"Silicon cross-coupled gated tunneling diodes","authors":"Zhenyun Tang , Zhe Wang , Zhigang Song , Wanhua Zheng","doi":"10.1016/j.chip.2024.100094","DOIUrl":"10.1016/j.chip.2024.100094","url":null,"abstract":"<div><p><strong>Tunneling-based static</strong> <strong>random-access</strong> <strong>memory (SRAM) devices ha</strong><strong>ve</strong> <strong>been developed to fulfill the demands of high density and low power,</strong> <strong>and</strong> <strong>the performance of SRAMs</strong> <strong>has also been greatly promoted</strong><strong>.</strong> <strong>However, for a long time, there has not been a silicon based tunneling device with both high peak valley current ratio (PVCR) and practicality, which remains a gap to be filled</strong><strong>.</strong> <strong>Based on the existing work, the current manuscript proposed the concept of a new silicon-based tunneling device, i.e., the silicon cross-coupled gated tunneling diode (Si XTD), which is quite simple in structure and almost completely compatible with mainstream technology</strong><strong>. With</strong> <strong>t</strong>echnology computer aided design (<strong>TCAD</strong><strong>)</strong> <strong>simulations, it has been validated that this type of device</strong> <strong>not only exhibit</strong><strong>s</strong> <strong>significant</strong> <strong>negative-differential-resistance</strong> <strong>(NDR) behavior with PVCRs up to 10</strong><sup><strong>6</strong></sup><strong>, but also possess</strong><strong>es</strong> <strong>reasonable process margins. Moreover, SPICE simulation</strong> <strong>showed</strong> <strong>the great potential of such devices to achieve</strong> <strong>ultralow-power</strong> <strong>tunneling-based SRAMs with standby power down to 10</strong><sup><strong>−12</strong></sup> <strong>W.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000121/pdfft?md5=ea45c5d42cfca2586f9abf13cbf43f07&pid=1-s2.0-S2709472324000121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140782378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.chip.2024.100093
Huihui Peng, Lin Gan, Xin Guo
Inspired by the structure and principles of the human brain, spike neural networks (SNNs) appear as the latest generation of artificial neural networks, attracting significant and universal attention due to their remarkable low-energy transmission by pulse and powerful capability for large-scale parallel computation. Current research on artificial neural networks gradually change from software simulation into hardware implementation. However, such a process is fraught with challenges. In particular, memristors are highly anticipated hardware candidates owing to their fast-programming speed, low power consumption, and compatibility with the complementary metal–oxide semiconductor (CMOS) technology. In this review, we start from the basic principles of SNNs, and then introduced memristor-based technologies for hardware implementation of SNNs, and further discuss the feasibility of integrating customized algorithm optimization to promote efficient and energy-saving SNN hardware systems. Finally, based on the existing memristor technology, we summarize the current problems and challenges in this field.
{"title":"Memristor-based spiking neural networks: cooperative development of neural network architecture/algorithms and memristors","authors":"Huihui Peng, Lin Gan, Xin Guo","doi":"10.1016/j.chip.2024.100093","DOIUrl":"10.1016/j.chip.2024.100093","url":null,"abstract":"<div><p>Inspired by the structure and principles of the human brain, spike neural networks (SNNs) appear as the latest generation of artificial neural networks, attracting significant and universal attention due to their remarkable low-energy transmission by pulse and powerful capability for large-scale parallel computation. Current research on artificial neural networks gradually change from software simulation into hardware implementation. However, such a process is fraught with challenges. In particular, memristors are highly anticipated hardware candidates owing to their fast-programming speed, low power consumption, and compatibility with the complementary metal–oxide semiconductor (CMOS) technology. In this review, we start from the basic principles of SNNs, and then introduced memristor-based technologies for hardware implementation of SNNs, and further discuss the feasibility of integrating customized algorithm optimization to promote efficient and energy-saving SNN hardware systems. Finally, based on the existing memristor technology, we summarize the current problems and challenges in this field.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S270947232400011X/pdfft?md5=45bccc10058e80fbaed47545c5fd2f62&pid=1-s2.0-S270947232400011X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140767491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1016/j.chip.2024.100097
Silicon technology offers the enticing opportunity for monolithic integration of quantum and classical electronic circuits. However, the power consumption levels of classical electronics may compromise the local chip temperature and hence affect the fidelity of qubit operations. In the current work, a quantum-dot-based thermometer embedded in an industry-standard silicon field-effect transistor (FET) was adopted to assess the local temperature increase produced by an active FET placed in close proximity. The impact of both static and dynamic operation regimes was thoroughly investigated. When the FET was operated statically, a power budget of 45 nW at 100-nm separation was found, whereas at 216 μm, the power budget was raised to 150 μW. Negligible temperature increase for the switch frequencies tested up to 10 MHz was observed when operating dynamically. The current work introduced a method to accurately map out the available power budget at a distance from a solid-state quantum processor, and indicated the possible conditions under which cryoelectronics circuits may allow the operation of hybrid quantum–classical systems.
{"title":"Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon","authors":"","doi":"10.1016/j.chip.2024.100097","DOIUrl":"10.1016/j.chip.2024.100097","url":null,"abstract":"<div><p>Silicon technology offers the enticing opportunity for monolithic integration of quantum and classical electronic circuits. However, the power consumption levels of classical electronics may compromise the local chip temperature and hence affect the fidelity of qubit operations. In the current work, a quantum-dot-based thermometer embedded in an industry-standard silicon field-effect transistor (FET) was adopted to assess the local temperature increase produced by an active FET placed in close proximity. The impact of both static and dynamic operation regimes was thoroughly investigated. When the FET was operated statically, a power budget of 45 nW at 100-nm separation was found, whereas at 216 μm, the power budget was raised to 150 μW. Negligible temperature increase for the switch frequencies tested up to 10 MHz was observed when operating dynamically. The current work introduced a method to accurately map out the available power budget at a distance from a solid-state quantum processor, and indicated the possible conditions under which cryoelectronics circuits may allow the operation of hybrid quantum–classical systems.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000157/pdfft?md5=08ee00550d4fd08f99bd72e49daa1de1&pid=1-s2.0-S2709472324000157-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.chip.2024.100095
The mass production and the practical number of cryogenic quantum devices producible in a single chip are limited to the number of electrical contact pads and wiring of the cryostat or dilution refrigerator. It is, therefore, beneficial to contrast the measurements of hundreds of devices fabricated in a single chip in one cooldown process to promote the scalability, integrability, reliability, and reproducibility of quantum devices and to save evaluation time, cost and energy. Here, we used a cryogenic on-chip multiplexer architecture and investigated the statistics of the 0.7 anomaly observed on the first three plateaus of the quantized conductance of semiconductor quantum point contact (QPC) transistors. Our single chips contain 256 split gate field-effect QPC transistors (QFET) each, with two 16-branch multiplexed source-drain and gate pads, allowing individual transistors to be selected, addressed and controlled through an electrostatic gate voltage process. A total of 1280 quantum transistors with nano-scale dimensions are patterned in 5 different chips of GaAs heterostructures. From the measurements of 571 functioning QFETs taken at temperatures T = 1.4 K and T = 40 mK, it is found that the spontaneous polarisation model and Kondo effect do not fit our results. Furthermore, some of the features in our data largely agreed with van Hove model with short-range interactions. Our approach provides further insight into the quantum mechanical properties and microscopic origin of the 0.7 anomaly in QFETs, paving the way for the development of semiconducting quantum circuits and integrated cryogenic electronics, for scalable quantum logic control, readout, synthesis, and processing applications.
单个芯片中可量产的低温量子器件的实际数量受限于低温恒温器或稀释冰箱的电接触垫和布线数量。因此,在一次冷却过程中对单个芯片中制造的数百个器件进行对比测量,有利于提高量子器件的可扩展性、可集成性、可靠性和可重复性,并节省评估时间、成本和能源。在这里,我们使用了低温片上多路复用器架构,并研究了在半导体量子点接触(QPC)晶体管量子化电导的前三个高原上观察到的 0.7 异常的统计数据。我们的单芯片包含 256 个分离栅场效应 QPC 晶体管(QFET),每个晶体管有两个 16 支路复用源极-漏极和栅极焊盘,允许通过静电栅极电压过程选择、寻址和控制单个晶体管。在 5 种不同的砷化镓异质结构芯片中,共图案化了 1280 个具有纳米级尺寸的量子晶体管。在温度 T = 1.4 K 和 T = 40 mK 下对 571 个正常工作的 QFET 进行测量后发现,自发极化模型和近藤效应与我们的结果不符。此外,我们数据中的一些特征与具有短程相互作用的范霍夫模型基本吻合。我们的研究方法进一步揭示了量子场效应晶体管的量子力学特性和 0.7 反常点的微观起源,为开发半导体量子电路和集成低温电子器件,实现可扩展的量子逻辑控制、读出、合成和处理应用铺平了道路。
{"title":"Statistical evaluation of 571 GaAs quantum point contact transistors showing the 0.7 anomaly in quantized conductance using cryogenic on-chip multiplexing","authors":"","doi":"10.1016/j.chip.2024.100095","DOIUrl":"10.1016/j.chip.2024.100095","url":null,"abstract":"<div><p>The mass production and the practical number of cryogenic quantum devices producible in a single chip are limited to the number of electrical contact pads and wiring of the cryostat or dilution refrigerator. It is, therefore, beneficial to contrast the measurements of hundreds of devices fabricated in a single chip in one cooldown process to promote the scalability, integrability, reliability, and reproducibility of quantum devices and to save evaluation time, cost and energy. Here, we used a cryogenic on-chip multiplexer architecture and investigated the statistics of the 0.7 anomaly observed on the first three plateaus of the quantized conductance of semiconductor quantum point contact (QPC) transistors. Our single chips contain 256 split gate field-effect QPC transistors (QFET) each, with two 16-branch multiplexed source-drain and gate pads, allowing individual transistors to be selected, addressed and controlled through an electrostatic gate voltage process. A total of 1280 quantum transistors with nano-scale dimensions are patterned in 5 different chips of GaAs heterostructures. From the measurements of 571 functioning QFETs taken at temperatures <em>T</em> = 1.4 K and <em>T</em> = 40 mK, it is found that the spontaneous polarisation model and Kondo effect do not fit our results. Furthermore, some of the features in our data largely agreed with van Hove model with short-range interactions. Our approach provides further insight into the quantum mechanical properties and microscopic origin of the 0.7 anomaly in QFETs, paving the way for the development of semiconducting quantum circuits and integrated cryogenic electronics, for scalable quantum logic control, readout, synthesis, and processing applications.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000133/pdfft?md5=5f30d302d84e157cb03adf3d6b99680b&pid=1-s2.0-S2709472324000133-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140757484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1016/j.chip.2024.100089
Li-Hua Zhang , Bang Liu , Zong-Kai Liu , Zheng-Yuan Zhang , Shi-Yao Shao , Qi-Feng Wang , Yu Ma , Tian-Yu Han , Guang-Can Guo , Dong-Sheng Ding , Bao-Sen Shi
Detecting microwave signals over a wide frequency rangeis endowed withnumerous advantages as it enables simultaneous transmission of a large amount of informationand access to more spectrum resources. This capability is crucial for applications such as microwave communication, remote sensingand radar. However, conventional microwave receiving systems are limited by amplifiers andband-passfilters that can only operate efficiently in a specific frequency range. Typically, these systems can only process signals within athree-foldfrequency range, which limits the data transfer bandwidth of the microwave communication systems. Developing novelatom-integratedmicrowave sensors, for example, radio-frequency (RF)chip–coupled Rydberg atomic receiver, provides opportunities for a large working bandwidth of microwave sensing at the atomic level.In the current work, anultra-widedual-band RF sensing schemewasdemonstrated byspace-divisionmultiplexing twoRF-chip-integratedatomic receiver modules. The system can simultaneously receivedual-bandmicrowave signals that span a frequency range exceeding 6 octaves (300 MHz and 24 GHz). This work paves the way formulti-bandmicrowave reception applications within anultra-widerange byRF-chip-integratedRydberg atomic sensor.
{"title":"Ultra-wide dual-band Rydberg atomic receiver based on space division multiplexing radio-frequency chip modules","authors":"Li-Hua Zhang , Bang Liu , Zong-Kai Liu , Zheng-Yuan Zhang , Shi-Yao Shao , Qi-Feng Wang , Yu Ma , Tian-Yu Han , Guang-Can Guo , Dong-Sheng Ding , Bao-Sen Shi","doi":"10.1016/j.chip.2024.100089","DOIUrl":"10.1016/j.chip.2024.100089","url":null,"abstract":"<div><p><strong>Detecting microwave signals over a wide frequency range</strong> <strong>is endowed with</strong> <strong>numerous advantages as it enables simultaneous transmission of a large amount of information</strong> <strong>and access to more spectrum resources. This capability is crucial for applications such as microwave communication, remote sensing</strong> <strong>and radar. However, conventional microwave receiving systems are limited by amplifiers and</strong> <strong>band-pass</strong> <strong>filters that can only operate efficiently in a specific frequency range. Typically, these systems can only process signals within a</strong> <strong>three-fold</strong> <strong>frequency range, which limits the data transfer bandwidth of the microwave communication systems. Developing novel</strong> <strong>atom-integrated</strong> <strong>microwave sensors, for example, radio</strong><strong>-</strong><strong>frequency (RF)</strong> <strong>chip</strong><strong>–</strong><strong>coupled Rydberg atomic receiver, provides opportunities for a large working bandwidth of microwave sensing at the atomic level.</strong> <strong>In the current work</strong><strong>, an</strong> <strong>ultra-wide</strong> <strong>dual-band RF sensing scheme</strong> <strong>was</strong> <strong>demonstrated by</strong> <strong>space-division</strong> <strong>multiplexing two</strong> <strong>RF-chip-integrated</strong> <strong>atomic receiver modules. The system can simultaneously receive</strong> <strong>dual-band</strong> <strong>microwave signals that span a frequency range exceeding 6 octaves (300 MHz and 24 GHz). This work paves the way for</strong> <strong>multi-band</strong> <strong>microwave reception applications within an</strong> <strong>ultra-wide</strong> <strong>range by</strong> <strong>RF-chip-integrated</strong> <strong>Rydberg atomic sensor.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000078/pdfft?md5=6b62de975bdc50202a62cd77b359ecd7&pid=1-s2.0-S2709472324000078-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.chip.2023.100081
Ruo-Ran Meng , Xiao Liu , Ming Jin , Zong-Quan Zhou , Chuan-Feng Li , Guang-Can Guo
High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction oflarge-scalequantum networks. Notably, quantum systems based on single emitters can achieve deterministicspin–photonentanglement,whichgreatly simplifiesthe difficulty of constructing quantum network nodes. Among them, optically interfaced spins embedded insolid-statesystems, asatomic-likeemitters, are important candidate systems for implementinglong-livedquantum memory due to their stable physical properties and robustness to decoherence in scalable and compact hardware. To enhance thestrength of light-matter interactions, optical microcavities can be exploited as an important tool to generatehigh-qualityspin–photonentanglement for scalable quantum networks. They can enhance the photon collection probability and photon generation rate of specific optical transitions and improve the coherence and spectral purity of emitted photons. Forsolid-statesystems, open Fabry–Pérot cavities can couple single emitters that are not in proximity to the surface, avoiding significant spectral diffusion induced by the interfaces while maintaining the wide tunability, whichenables addressing of multiple single emitters in the frequency and spatial domain within a single device. This review describedthe characteristics of single emitters as quantum memories with a comparison to atomic ensembles, thecavity-enhancementeffect for single emitters and the advantages of different cavities, especially fiber Fabry–Pérot microcavities. Finally, recent experimental progress onsolid-statesingle emitters coupled with fiber Fabry–Pérot microcavitieswas alsoreviewed, with a focus on color centers in diamond and silicon carbide, as well asrare-earthdopants.
{"title":"Solid-state quantum nodes based on color centers and rare-earth ions coupled with fiber Fabry–Pérot microcavities","authors":"Ruo-Ran Meng , Xiao Liu , Ming Jin , Zong-Quan Zhou , Chuan-Feng Li , Guang-Can Guo","doi":"10.1016/j.chip.2023.100081","DOIUrl":"10.1016/j.chip.2023.100081","url":null,"abstract":"<div><p><strong>High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction of</strong> <strong>large-scale</strong> <strong>quantum networks. Notably, quantum systems based on single emitters can achieve deterministic</strong> <strong>spin</strong><strong>–</strong><strong>photon</strong> <strong>entanglement,</strong> <strong>which</strong> <strong>greatly simplif</strong><strong>ies</strong> <strong>the difficulty of constructing quantum network nodes. Among them, optically interfaced spins embedded in</strong> <strong>solid-state</strong> <strong>systems, as</strong> <strong>atomic-like</strong> <strong>emitters, are important candidate systems for implementing</strong> <strong>long-lived</strong> <strong>quantum memory due to their stable physical properties and robustness to decoherence in scalable and compact hardware. To enhance the</strong> <strong>strength of light-matter interactions</strong><strong>, optical microcavities can be exploited as an important tool to generate</strong> <strong>high-</strong><strong>quality</strong> <strong>spin</strong><strong>–</strong><strong>photon</strong> <strong>entanglement for scalable quantum networks. They can enhance the photon collection probability and photon generation rate of specific optical transitions and improve the coherence and spectral purity of emitted photons. For</strong> <strong>solid-state</strong> <strong>systems, open Fabry</strong><strong>–</strong><strong>Pérot cavities can couple single emitters that are not in proximity to the surface, avoiding significant spectral diffusion induced by the interfaces while maintaining the wide tunability, which</strong> <strong>enables addressing of multiple single emitters in the frequency and spatial domain within a single device. This review describe</strong><strong>d</strong> <strong>the characteristics of single emitters as quantum memories with a comparison to atomic ensembles, the</strong> <strong>cavity-enhancement</strong> <strong>effect for single emitters and the advantages of different cavities, especially fiber Fabry</strong><strong>–</strong><strong>Pérot microcavities. Finally, recent experimental progress on</strong> <strong>solid-state</strong> <strong>single emitters coupled with fiber Fabry</strong><strong>–</strong><strong>Pérot microcavities</strong> <strong>was also</strong> <strong>reviewed, with a focus on color centers in diamond and silicon carbide, as well as</strong> <strong>rare-earth</strong> <strong>dopants.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 1","pages":"Article 100081"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000448/pdfft?md5=33e99ce5127b3e4b65c832933ad49fec&pid=1-s2.0-S2709472323000448-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139104479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}