Pub Date : 2024-12-20DOI: 10.1016/j.chip.2024.100120
Yinchi Liu , Hao Zhang , Jining Yang , Dmitriy Anatolyevich Golosov , Xiaohan Wu , Chenjie Gu , Shijin Ding , Wenjun Liu
In this work, we demonstrate an extremely low annealing processing at 300 °C for the crystallization of Hf0.5Zr0.5O2 (HZO) films with the adoption of microwave annealing (MWA). Compared to conventional annealing methods, an enhanced double remnant polarization (2Pr) of 55.4 μC/cm2, a higher maximum dielectric constant, and nearly wakeup-free were realized by modulating the power of the microwave. It is believed that the increasing loss factor of zirconia with rising temperature allows more energy to be extracted from the microwave and transferred to the ferroelectric HZO molecules, which facilitates the crystallization at low temperature. Furthermore, an amorphous indium gallium zinc oxide ferroelectric field-effect transistor treated with microwave annealing was fabricated, and a competitive memory window of 1.5 V was substantially achieved. These findings offer insights into the integration of HfO2 ferroelectric materials in non-volatile memory devices compatible with back-end-of-line (BEOL) in the future.
{"title":"Back-end-of-line compatible Hf0.5Zr0.5O2 ferroelectric devices enabled by microwave annealing","authors":"Yinchi Liu , Hao Zhang , Jining Yang , Dmitriy Anatolyevich Golosov , Xiaohan Wu , Chenjie Gu , Shijin Ding , Wenjun Liu","doi":"10.1016/j.chip.2024.100120","DOIUrl":"10.1016/j.chip.2024.100120","url":null,"abstract":"<div><div>In this work, we demonstrate an extremely low annealing processing at 300 °C for the crystallization of Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) films with the adoption of microwave annealing (MWA). Compared to conventional annealing methods, an enhanced double remnant polarization (2<em>P</em>r) of 55.4 μC/cm<sup>2</sup>, a higher maximum dielectric constant, and nearly wakeup-free were realized by modulating the power of the microwave. It is believed that the increasing loss factor of zirconia with rising temperature allows more energy to be extracted from the microwave and transferred to the ferroelectric HZO molecules, which facilitates the crystallization at low temperature. Furthermore, an amorphous indium gallium zinc oxide ferroelectric field-effect transistor treated with microwave annealing was fabricated, and a competitive memory window of 1.5 V was substantially achieved. These findings offer insights into the integration of HfO<sub>2</sub> ferroelectric materials in non-volatile memory devices compatible with back-end-of-line (BEOL) in the future.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1016/j.chip.2024.100119
Junhong Feng , Li Zheng , Xinhong Cheng , Lingyan Shen , Xuetong Zhou , Wenyu Lu , Jiayu Zeng
While silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) have entered commercial markets, they still rely on specialized device structural approaches tailored to meet specific application demands. The intricate and interdependent relationships among diverse physical parameters of SiC MOSFETs have not been fully elucidated to address the trade-offs that influence each other. This study aims to clarify these complex relationships and propose a well-balanced trade-off strategy. The proposed buried-MOS configuration ensures a harmonious balance among lower Ron,sp, reduced CGD, and milder EOX without compromising breakdown voltage (BV), thereby optimizing the interconnected physical parameters of SiC devices and significantly enhancing their high-voltage, high-frequency performance and reliability. The experimental results quantitatively demonstrate the advantages of the buried-MOS structure: high-frequency figure of merit high-frequency figure of merit (HF-FOM) (RDS,on × CGD) by 2.5×, HF-FOM (RDS,on × QGD) by 2.2× and Baliga figure of merit (BFOM = 4BV2/Ron,sp) by 1.7× compared with the conventional BOX-MOS. Importantly, this approach embodies both theoretical significance and practical applicability, which is compatible with the existing large-scale manufacturing processes and requires no additional steps.
{"title":"Comprehensive trade-off strategy for SiC MOSFETs using buried-MOS configuration","authors":"Junhong Feng , Li Zheng , Xinhong Cheng , Lingyan Shen , Xuetong Zhou , Wenyu Lu , Jiayu Zeng","doi":"10.1016/j.chip.2024.100119","DOIUrl":"10.1016/j.chip.2024.100119","url":null,"abstract":"<div><div>While silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) have entered commercial markets, they still rely on specialized device structural approaches tailored to meet specific application demands. The intricate and interdependent relationships among diverse physical parameters of SiC MOSFETs have not been fully elucidated to address the trade-offs that influence each other. This study aims to clarify these complex relationships and propose a well-balanced trade-off strategy. The proposed buried-MOS configuration ensures a harmonious balance among lower <em>R</em><sub>on,sp</sub>, reduced <em>C</em><sub>GD</sub>, and milder <em>E</em><sub>OX</sub> without compromising breakdown voltage (<em>BV</em>), thereby optimizing the interconnected physical parameters of SiC devices and significantly enhancing their high-voltage, high-frequency performance and reliability. The experimental results quantitatively demonstrate the advantages of the buried-MOS structure: high-frequency figure of merit high-frequency figure of merit (HF-FOM) (<em>R</em><sub>DS,on</sub> × <em>C</em><sub>GD</sub>) by 2.5×, HF-FOM (<em>R</em><sub>DS,on</sub> × <em>Q</em><sub>GD</sub>) by 2.2× and Baliga figure of merit (BFOM = 4BV<sup>2</sup>/<em>R</em><sub>on,sp</sub>) by 1.7× compared with the conventional BOX-MOS. Importantly, this approach embodies both theoretical significance and practical applicability, which is compatible with the existing large-scale manufacturing processes and requires no additional steps.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1016/j.chip.2024.100118
Tong Xu , Shulin Sha , Kai Tang , Xuefeng Fan , Jinguo Liu , Caixia Kan , Gangyi Zhu , Feifei Qin , Daning Shi , Mingming Jiang
The advantages of on-chip integrated photodetectors, such as miniaturization, high integration, and reliability, make them an indispensable and important part of electronic devices and systems. Herein, we experimentally exhibited a monolithically integrated ultraviolet photodetector utilizing GaN microcylinder epitaxial structure on Si wafer, with its photoresponse properties plasmonically boosted using Pt nanoparticles via specific sizes. When illuminated upon ultraviolet light at 0 V bias, the Pt/GaN device exhibits significant photovoltaic performances, including a peak responsivity of 200.1 mA W−1, external quantum efficiency of 65%, and other figures-of-merit. Finite element analysis and energy band theory confirm that the excellent photodetection properties of the Pt/GaN device are related to the strong plasmon absorption and the increase of hot electrons injected into the GaN conduction band, which considerably improves its photoresponse performance and robustness in application. To realize the multipurpose capability of the devices, we validated the application of Pt/GaN as turbidity sensing and achieved a resolution of up to 100 NTU. Moreover, the prepared devices can be used as optical data receivers for optical communication. These findings provide references for on-chip detectors to improve the overall system performance and promote the realization of more complex applications.
片上集成光电探测器具有小型化、高集成度、高可靠性等优点,是电子器件和系统中不可缺少的重要组成部分。在此,我们通过实验展示了一种单片集成的紫外探测器,该探测器利用硅晶片上的GaN微柱外延结构,通过特定尺寸的Pt纳米颗粒等离子体提高了其光响应性能。当偏置为0 V的紫外光照射时,Pt/GaN器件表现出显著的光伏性能,包括200.1 mA W−1的峰值响应度,65%的外量子效率和其他性能指标。有限元分析和能带理论证实,Pt/GaN器件优异的光探测性能与强等离子体吸收和注入GaN导带的热电子的增加有关,这大大提高了其光响应性能和应用中的鲁棒性。为了实现器件的多用途能力,我们验证了Pt/GaN作为浊度传感的应用,并实现了高达100 NTU的分辨率。此外,所制备的器件还可以用作光通信的光数据接收器。这些发现为片上检测器提高系统整体性能和促进更复杂应用的实现提供了参考。
{"title":"On-chip integrated plasmon-induced high-performance self-powered Pt/GaN ultraviolet photodetector","authors":"Tong Xu , Shulin Sha , Kai Tang , Xuefeng Fan , Jinguo Liu , Caixia Kan , Gangyi Zhu , Feifei Qin , Daning Shi , Mingming Jiang","doi":"10.1016/j.chip.2024.100118","DOIUrl":"10.1016/j.chip.2024.100118","url":null,"abstract":"<div><div>The advantages of on-chip integrated photodetectors, such as miniaturization, high integration, and reliability, make them an indispensable and important part of electronic devices and systems. Herein, we experimentally exhibited a monolithically integrated ultraviolet photodetector utilizing GaN microcylinder epitaxial structure on Si wafer, with its photoresponse properties plasmonically boosted using Pt nanoparticles via specific sizes. When illuminated upon ultraviolet light at 0 V bias, the Pt/GaN device exhibits significant photovoltaic performances, including a peak responsivity of 200.1 mA W<sup>−1</sup>, external quantum efficiency of 65%, and other figures-of-merit. Finite element analysis and energy band theory confirm that the excellent photodetection properties of the Pt/GaN device are related to the strong plasmon absorption and the increase of hot electrons injected into the GaN conduction band, which considerably improves its photoresponse performance and robustness in application. To realize the multipurpose capability of the devices, we validated the application of Pt/GaN as turbidity sensing and achieved a resolution of up to 100 NTU. Moreover, the prepared devices can be used as optical data receivers for optical communication. These findings provide references for on-chip detectors to improve the overall system performance and promote the realization of more complex applications.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100118"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.chip.2024.100115
Feifei Qin , Xueyao Lu , Xiaoxuan Wang , Chunxiang Guo , Jiaqi Wu , Xuefeng Fan , Mingming Jiang , Peng Wan , Junfeng Lu , Yongjin Wang , Gangyi Zhu
Featured with light emission and detection coexistence phenomenon,nitride-basedmultiple-quantum-well (MQW) diodes integrated chip has been proven to be an attractive structure for application prospects in various fields such as lighting, sensing, optical communication, and other fields. However, most of the recent reports are based on planar structures.Three-dimensional(3D) structuresare endowed withextra advantages in direction,polarization,and absorption modulation and maypioneera new way to make the same thing over and overagainwith interesting properties. In this paper, we designed and fabricated asingle-cantileverInGaN/GaN MQW diode with warped 3D microstructure via standard microfabrication technology. Experimental results indicate that the strain architecture of themulti-layermaterials is the key principle for theself-warpeddevice. The planar structure will bear greater compressive stress while the warped beam part has less stress,whichresultsin differences in the optical and electrical performance. Thestrain-inducedband bending highly influences the emission and detection properties, while the warped structure will introduce direction selectivity to the 3D device. As an emitter, 3D structuresexhibita directional emission with lowerturn-onvoltage, higher capacitance, increased luminous intensity, higher external quantum efficiency (EQE), high –3 dB bandwidth, and redshifted peak wavelength. Besides, it can serve as an emitter fordirectional-relatedoptical communication. As a receiver, 3D structures have lowerdark-current,higher photocurrent, andred-shiftedresponse spectrum and also show directional dependence. These findings not only deepen the understanding of the working principle of thesingle-cantileverGaN devices but also provide important references for device performance optimization and new applications in visible light communication (VLC) technology.
{"title":"On-chip warped three-dimensional InGaN/GaN quantum well diode with transceiver coexistence characters","authors":"Feifei Qin , Xueyao Lu , Xiaoxuan Wang , Chunxiang Guo , Jiaqi Wu , Xuefeng Fan , Mingming Jiang , Peng Wan , Junfeng Lu , Yongjin Wang , Gangyi Zhu","doi":"10.1016/j.chip.2024.100115","DOIUrl":"10.1016/j.chip.2024.100115","url":null,"abstract":"<div><div><strong>Featured with light emission and detection coexistence phenomenon,</strong> <strong>nitride-based</strong> <strong>multiple-quantum-well (MQW) diodes integrated chip has been proven to be an attractive structure for application prospects in various fields such as lighting, sensing, optical communication, and other fields. However, most of the recent reports are based on planar structures.</strong> <strong>Three-dimensional</strong> <strong>(3D) structures</strong> <strong>are endowed with</strong> <strong>extra advantages in direction</strong><strong>,</strong> <strong>p</strong><strong>olarization</strong><strong>,</strong> <strong>and absorption modulation and may</strong> <strong>pioneer</strong> <strong>a new way to make the same thing over and over</strong> <strong>again</strong> <strong>with interesting properties. In this paper, we designed and fabricated a</strong> <strong>single-cantilever</strong> <strong>InGaN/GaN MQW diode with warped 3D microstructure via standard microfabrication technology. Experimental results indicate that the strain architecture of the</strong> <strong>multi-layer</strong> <strong>materials is the key principle for the</strong> <strong>self-warped</strong> <strong>device. The planar structure will bear greater compressive stress while the warped beam part has less stress,</strong> <strong>which</strong> <strong>result</strong><strong>s</strong> <strong>in differences in the optical and electrical performance. The</strong> <strong>strain-induced</strong> <strong>band bending highly influences the emission and detection properties, while the warped structure will introduce direction selectivity to the 3D device. As an emitter, 3D structures</strong> <strong>exhibit</strong> <strong>a directional emission with lower</strong> <strong>turn-on</strong> <strong>voltage, higher capacitance, increased luminous intensity, higher external quantum efficiency (EQE), high –3 dB bandwidth, and redshifted peak wavelength. Besides, it can serve as an emitter for</strong> <strong>directional-related</strong> <strong>optical communication. As a receiver, 3D structures have lower</strong> <strong>dark-current,</strong> <strong>higher photocurrent, and</strong> <strong>red-shifted</strong> <strong>response spectrum and also show directional dependence. These findings not only deepen the understanding of the working principle of the</strong> <strong>single-cantilever</strong> <strong>GaN devices but also provide important references for device performance optimization and new applications in visible light communication (VLC) technology.</strong></div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.chip.2024.100109
Tianyue Li , Mengjiao Liu , Jiahao Hou , Xing Yang , Shubo Wang , Shuming Wang , Shining Zhu , Din Ping Tsai , Zhenlin Wang
Research about singularities has been driving scientific advancements across mathematics and physics. Comprehending and harnessing the novel properties of singularities in photonics can facilitate the development of integrated micro-nano devices in diverse platforms. Herein, we provide a comprehensive overview of photonic singularities emerging in structured light fields and metamaterial structures. We classify them into several representative types: real-space singularities, momentum-space singularities, and parameter-space singularities, with discussions of their intriguing topological and dynamical properties. Moreover, we report on the latest applications of photonic singularities in broad areas, ranging from light routing, lasing, sensing, and optical manipulation to imaging and display. This review connects the singularity phenomena in different photonic systems, bridging the abstract concepts with emerging practical applications. It underscores the significance of photonic singularities in both fundamental science and various on-chip applications.
{"title":"Chip-scale metaphotonic singularities: topological, dynamical, and practical aspects","authors":"Tianyue Li , Mengjiao Liu , Jiahao Hou , Xing Yang , Shubo Wang , Shuming Wang , Shining Zhu , Din Ping Tsai , Zhenlin Wang","doi":"10.1016/j.chip.2024.100109","DOIUrl":"10.1016/j.chip.2024.100109","url":null,"abstract":"<div><div>Research about singularities has been driving scientific advancements across mathematics and physics. Comprehending and harnessing the novel properties of singularities in photonics can facilitate the development of integrated micro-nano devices in diverse platforms. Herein, we provide a comprehensive overview of photonic singularities emerging in structured light fields and metamaterial structures. We classify them into several representative types: real-space singularities, momentum-space singularities, and parameter-space singularities, with discussions of their intriguing topological and dynamical properties. Moreover, we report on the latest applications of photonic singularities in broad areas, ranging from light routing, lasing, sensing, and optical manipulation to imaging and display. This review connects the singularity phenomena in different photonic systems, bridging the abstract concepts with emerging practical applications. It underscores the significance of photonic singularities in both fundamental science and various on-chip applications.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents an integrated multi-quantum well (MQW) optoelectronic sensor leveraging III-nitride materials for multifunctionality on a monolithic chip. The sensor was fabricated using standard microfabrication techniques and adopted the identical InGaN/GaN MQWs, which enables simultaneous emission and detection. The sensor is featured with a double concentric circle structure which supports both on-chip and off-chip detection mechanisms, being capable of detecting environmental parameters like rotational speed, proximity, and sucrose concentration. It exhibits stable photocurrent response to rotational speed up to 8000 rpm, a 3 cm vertical detection range, and a linear response with 3.9 nA/% sensitivity to changes in sucrose concentration, which demonstrates the potential for diverse applications in industrial and biomedical fields.
{"title":"III-nitride MQW-based optoelectronic sensors for multifunctional environmental monitoring","authors":"Xumin Gao , Dongmei Wu , Tianlong Xie , Jialei Yuan , Mingyuan Xie , Yongjin Wang , Haitao Zhao , Gangyi Zhu , Zheng Shi","doi":"10.1016/j.chip.2024.100113","DOIUrl":"10.1016/j.chip.2024.100113","url":null,"abstract":"<div><div>This work presents an integrated multi-quantum well (MQW) optoelectronic sensor leveraging III-nitride materials for multifunctionality on a monolithic chip. The sensor was fabricated using standard microfabrication techniques and adopted the identical InGaN/GaN MQWs, which enables simultaneous emission and detection. The sensor is featured with a double concentric circle structure which supports both on-chip and off-chip detection mechanisms, being capable of detecting environmental parameters like rotational speed, proximity, and sucrose concentration. It exhibits stable photocurrent response to rotational speed up to 8000 rpm, a 3 cm vertical detection range, and a linear response with 3.9 nA/% sensitivity to changes in sucrose concentration, which demonstrates the potential for diverse applications in industrial and biomedical fields.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.chip.2024.100114
Xinxin Su , Meng Chao , Xiuyou Han , Han Liang , Wenfu Zhang , Shuanglin Fu , Weiheng Wang , Mingshan Zhao
Compared with the traditional frequency division duplex and time division duplex, the in-band full-duplex (IBFD) technology can double the spectrum utilization efficiency and information transmission rate. However, radio frequency (RF) self-interference remains a key issue to be resolved for the application of IBFD. The photonic RF self-interference cancellation (SIC) scheme is endowed with the advantages of wide bandwidth, high amplitude and time delay tuning precision, and immunity to electromagnetic interference. To meet the requirements of the new generation of mobile terminals and satellite payloads, the photonic RF SIC system is desired to be miniaturized, integrated, and low power consumption. In this study, the integrated photonic RF SIC scheme was proposed and demonstrated on a silicon-based platform. By utilizing the opposite bias points of the on-chip dual Mach-Zehnder modulators, the phase inversion relationship for SIC was realized over a broad frequency band. The time delay structure combining the optically switched waveguide and compact spiral waveguide enables continuous tuning of time over a wide bandwidth. The optical amplitude adjuster provides efficient amplitude control with a large dynamic range. After being packaged with optical, direct current, and RF design, the photonic RF SIC chip exhibits the interference cancellation capabilities across L, S, C, X, Ku, K, and Ka bands. In the S and C bands, a cancellation depth exceeding 20 dB was measured across a bandwidth of 4.8 GHz. An impressive cancellation depth of over 40 dB was achieved within a bandwidth of 80 MHz at a central frequency of 2 GHz. For the application of over-the-air IBFD communication at the newly promulgated center frequency of 6 GHz for 5G communication, the cancellation depth of 21.7 dB was demonstrated in the bandwidth of 100 MHz, and the low-power signals of interest were recovered successfully.
{"title":"Silicon photonic integrated wideband radio frequency self-interference cancellation chip for over-the-air in-band full-duplex communication","authors":"Xinxin Su , Meng Chao , Xiuyou Han , Han Liang , Wenfu Zhang , Shuanglin Fu , Weiheng Wang , Mingshan Zhao","doi":"10.1016/j.chip.2024.100114","DOIUrl":"10.1016/j.chip.2024.100114","url":null,"abstract":"<div><div>Compared with the traditional frequency division duplex and time division duplex, the in-band full-duplex (IBFD) technology can double the spectrum utilization efficiency and information transmission rate. However, radio frequency (RF) self-interference remains a key issue to be resolved for the application of IBFD. The photonic RF self-interference cancellation (SIC) scheme is endowed with the advantages of wide bandwidth, high amplitude and time delay tuning precision, and immunity to electromagnetic interference. To meet the requirements of the new generation of mobile terminals and satellite payloads, the photonic RF SIC system is desired to be miniaturized, integrated, and low power consumption. In this study, the integrated photonic RF SIC scheme was proposed and demonstrated on a silicon-based platform. By utilizing the opposite bias points of the on-chip dual Mach-Zehnder modulators, the phase inversion relationship for SIC was realized over a broad frequency band. The time delay structure combining the optically switched waveguide and compact spiral waveguide enables continuous tuning of time over a wide bandwidth. The optical amplitude adjuster provides efficient amplitude control with a large dynamic range. After being packaged with optical, direct current, and RF design, the photonic RF SIC chip exhibits the interference cancellation capabilities across L, S, C, X, Ku, K, and Ka bands. In the S and C bands, a cancellation depth exceeding 20 dB was measured across a bandwidth of 4.8 GHz. An impressive cancellation depth of over 40 dB was achieved within a bandwidth of 80 MHz at a central frequency of 2 GHz. For the application of over-the-air IBFD communication at the newly promulgated center frequency of 6 GHz for 5G communication, the cancellation depth of 21.7 dB was demonstrated in the bandwidth of 100 MHz, and the low-power signals of interest were recovered successfully.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.chip.2024.100116
Xiaoshuai An , Sizhe Gui , Yingxin Li , Zhiqin Chu , Kwai Hei Li
A versatile optoelectronic device with ultrasensitive negative-positive pressure sensing capabilities, which is integrated with a wireless monitoring system, was fabricated and demonstrated in the current work. The device comprises a monolithic GaN chip with a polydimethylsiloxane cavity and nanograting, which effectively transduces pressure stimuli into optical changes detected by the GaN chip. The developed device exhibits an ultra-low detection limit for a mass of 0.03 mg, a pressure of 2.94 Pa, and a water depth of 0.3 mm, with a detection range of −100 kPa to 30.5 kPa and high stability. The versatility of the device is demonstrated by its ability to monitor heart pulse, grip strength, and respiration. Its integration with a wireless data transmission system enables real-time monitoring of human activity and heart rate underwater, making it suitable for precise measurements in various practical applications.
{"title":"A versatile optoelectronic device for ultrasensitive negative-positive pressure sensing applications","authors":"Xiaoshuai An , Sizhe Gui , Yingxin Li , Zhiqin Chu , Kwai Hei Li","doi":"10.1016/j.chip.2024.100116","DOIUrl":"10.1016/j.chip.2024.100116","url":null,"abstract":"<div><div>A versatile optoelectronic device with ultrasensitive negative-positive pressure sensing capabilities, which is integrated with a wireless monitoring system, was fabricated and demonstrated in the current work. The device comprises a monolithic GaN chip with a polydimethylsiloxane cavity and nanograting, which effectively transduces pressure stimuli into optical changes detected by the GaN chip. The developed device exhibits an ultra-low detection limit for a mass of 0.03 mg, a pressure of 2.94 Pa, and a water depth of 0.3 mm, with a detection range of −100 kPa to 30.5 kPa and high stability. The versatility of the device is demonstrated by its ability to monitor heart pulse, grip strength, and respiration. Its integration with a wireless data transmission system enables real-time monitoring of human activity and heart rate underwater, making it suitable for precise measurements in various practical applications.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern computational technologies are gradually encountering significant limitations, driving a shift toward alternative paradigms such as optical computing. In this study, novel all-optical combinational logic units based on diffractive neural networks (D2NNs) were introduced, which were designed to perform high-order logical operations efficiently and swiftly with the adoption of only two modulation layers. This innovative design exhibits increased processing speed, improved energy efficiency, robust environmental stability, and high error tolerance, making it exceptionally well-suited for a broad spectrum of applications in optical computing and communications. By leveraging the transfer learning, we successfully developed a fifth-order cascaded combinational logic circuit for a practical information transmission system. Furthermore, we revealed a pioneering application of the device in optical time division multiplexing (OTDM), demonstrating its capability to manage high-speed data transfer seamlessly without the need for electronic conversion. Extensive simulations and experimental validations demonstrate the potential of the model as a foundational technology for future optical computing architectures, which paves the way toward more sustainable and efficient optical data processing platforms.
{"title":"All-optical combinational logical units featuring fifth-order cascade","authors":"Haiqi Gao , Yu Shao , Yipeng Chen , Junren Wen , Yuchuan Shao , Yueguang Zhang , Weidong Shen , Chenying Yang","doi":"10.1016/j.chip.2024.100112","DOIUrl":"10.1016/j.chip.2024.100112","url":null,"abstract":"<div><div>Modern computational technologies are gradually encountering significant limitations, driving a shift toward alternative paradigms such as optical computing. In this study, novel all-optical combinational logic units based on diffractive neural networks (D<sup>2</sup>NNs) were introduced, which were designed to perform high-order logical operations efficiently and swiftly with the adoption of only two modulation layers. This innovative design exhibits increased processing speed, improved energy efficiency, robust environmental stability, and high error tolerance, making it exceptionally well-suited for a broad spectrum of applications in optical computing and communications. By leveraging the transfer learning, we successfully developed a fifth-order cascaded combinational logic circuit for a practical information transmission system. Furthermore, we revealed a pioneering application of the device in optical time division multiplexing (OTDM), demonstrating its capability to manage high-speed data transfer seamlessly without the need for electronic conversion. Extensive simulations and experimental validations demonstrate the potential of the model as a foundational technology for future optical computing architectures, which paves the way toward more sustainable and efficient optical data processing platforms.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.chip.2024.100117
Jiayi Ouyang , Shengping Liu , Ziyue Yang , Wei Wang , Xue Feng , Yongzhuo Li , Yidong Huang
A programmable photonic solver for quadratic unconstrained binary optimization (QUBO) problems is demonstrated with a hybrid optoelectronic scheme, which consists of a photonic chip and an electronic driving board. The photonic chip is employed to perform the optical vector-matrix multiplication (OVMM) to calculate the cost function of the QUBO problem, while the electronic processor runs the heuristic algorithm to search for the optimal solution. Due to the parallel and low-latency propagation of lightwaves, the calculation of the cost function can be accelerated. The photonic chip was fabricated on the silicon on insulator (SOI) substrate and integrated 16 high-speed electro-optic modulators, 88 thermo-optic phase shifters, and 16 balanced photodetectors. The computing speed of the photonic chip is 1.66 TFLOP/s. As a proof of principle, two randomly generated 16-dimensional QUBO problems are solved with high successful probabilities. These results present the potential of fast-solving optimization problems with integrated photonic systems.
{"title":"16-channel photonic solver for optimization problems on a silicon chip","authors":"Jiayi Ouyang , Shengping Liu , Ziyue Yang , Wei Wang , Xue Feng , Yongzhuo Li , Yidong Huang","doi":"10.1016/j.chip.2024.100117","DOIUrl":"10.1016/j.chip.2024.100117","url":null,"abstract":"<div><div>A programmable photonic solver for quadratic unconstrained binary optimization (QUBO) problems is demonstrated with a hybrid optoelectronic scheme, which consists of a photonic chip and an electronic driving board. The photonic chip is employed to perform the optical vector-matrix multiplication (OVMM) to calculate the cost function of the QUBO problem, while the electronic processor runs the heuristic algorithm to search for the optimal solution. Due to the parallel and low-latency propagation of lightwaves, the calculation of the cost function can be accelerated. The photonic chip was fabricated on the silicon on insulator (SOI) substrate and integrated 16 high-speed electro-optic modulators, 88 thermo-optic phase shifters, and 16 balanced photodetectors. The computing speed of the photonic chip is 1.66 TFLOP/s. As a proof of principle, two randomly generated 16-dimensional QUBO problems are solved with high successful probabilities. These results present the potential of fast-solving optimization problems with integrated photonic systems.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}