Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
{"title":"Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis","authors":"Yan Wang, Yize Li, Yuqing Lu, Jingjing Li","doi":"10.1002/tcr.202400087","DOIUrl":"10.1002/tcr.202400087","url":null,"abstract":"<p>Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 9","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.
{"title":"Research Advances of Cathode Materials for Rechargeable Aluminum Batteries","authors":"Yanhong Gao, Dan Zhang, Shengrui Zhang, Le Li","doi":"10.1002/tcr.202400085","DOIUrl":"10.1002/tcr.202400085","url":null,"abstract":"<p>Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al<sup>3+</sup> ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 9","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deepika Thakur, Dr. Sushmita, Shivam A. Meena, Prof. Akhilesh K. Verma
Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.
{"title":"Advancement in Synthetic Strategies of Phosphorus Heterocycles: Recent Progress from Synthesis to Emerging Class of Optoelectronic Materials","authors":"Deepika Thakur, Dr. Sushmita, Shivam A. Meena, Prof. Akhilesh K. Verma","doi":"10.1002/tcr.202400058","DOIUrl":"10.1002/tcr.202400058","url":null,"abstract":"<p>Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen oxides (NOx) should be purified according to environmental regulations, being restricted increasingly year by year. A wide variety of denitration technologies, such as selective catalytic reduction (SCR) of NOx to nitrogen (N2) and NOx storage reduction (NSR) to N2 by injecting reducing agents like ammonia (NH3), has so far been developed practically. Sophisticated catalytic approaches are perhaps mandatory for the sustainability in energy including complete purification of NOx. As one of the solutions to overcome problems for environment and resource simultaneously, this concept article focuses on the utilization of reactive nitrogen (Nr) compounds, mainly NOx, for encouraging an opening to consider nitrogen circular economy. For the recycling of NOx via NH3, a challenging but rational catalytic technology can be proposed by an alternate switching the inlet gas between NOx containing oxidative gas and H2 containing reductive one without an operation to change the reaction temperature. Considering the reactivity of NOx higher than that of N2, this kind of NOx to NH3 (NTA) process is promising for synthesizing NH3, being valuable not only as fertilizer but also as fuel in near future.
{"title":"Utilization of Reactive Nitrogen Compounds for Nitrogen Circular Economy","authors":"Dr. Tatsuo Kimura","doi":"10.1002/tcr.202400094","DOIUrl":"10.1002/tcr.202400094","url":null,"abstract":"<p>Nitrogen oxides (NO<sub><i>x</i></sub>) should be purified according to environmental regulations, being restricted increasingly year by year. A wide variety of denitration technologies, such as selective catalytic reduction (SCR) of NO<sub><i>x</i></sub> to nitrogen (N<sub>2</sub>) and NO<sub><i>x</i></sub> storage reduction (NSR) to N<sub>2</sub> by injecting reducing agents like ammonia (NH<sub>3</sub>), has so far been developed practically. Sophisticated catalytic approaches are perhaps mandatory for the sustainability in energy including complete purification of NO<sub><i>x</i></sub>. As one of the solutions to overcome problems for environment and resource simultaneously, this concept article focuses on the utilization of reactive nitrogen (N<sub><i>r</i></sub>) compounds, mainly NO<sub><i>x</i></sub>, for encouraging an opening to consider nitrogen circular economy. For the recycling of NO<sub><i>x</i></sub> via NH<sub>3</sub>, a challenging but rational catalytic technology can be proposed by an alternate switching the inlet gas between NO<sub><i>x</i></sub> containing oxidative gas and H<sub>2</sub> containing reductive one without an operation to change the reaction temperature. Considering the reactivity of NO<sub><i>x</i></sub> higher than that of N<sub>2</sub>, this kind of NO<sub><i>x</i></sub> to NH<sub>3</sub> (NTA) process is promising for synthesizing NH<sub>3</sub>, being valuable not only as fertilizer but also as fuel in near future.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tuan-Dung Hoang, Dr. Nguyen Van Anh, Dr. Mohammad Yusuf, Dr. Muhammed Ali S. A, Yathavan Subramanian, Dr. Nguyen Hoang Nam, Dr. Nguyen Minh Ky, Dr. Van-Giang Le, Dr. Nguyen Thi Thanh Huyen, Alien Abi Bianasari, Dr. Abul K Azad
Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to “value-added” products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
{"title":"Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies","authors":"Tuan-Dung Hoang, Dr. Nguyen Van Anh, Dr. Mohammad Yusuf, Dr. Muhammed Ali S. A, Yathavan Subramanian, Dr. Nguyen Hoang Nam, Dr. Nguyen Minh Ky, Dr. Van-Giang Le, Dr. Nguyen Thi Thanh Huyen, Alien Abi Bianasari, Dr. Abul K Azad","doi":"10.1002/tcr.202300333","DOIUrl":"10.1002/tcr.202300333","url":null,"abstract":"<p>Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to “value-added” products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Ravi Sankar, Mohan Neetha, Prof. Dr. Gopinathan Anilkumar
Lactones represent a class of fundamental structural motifs ubiquitous in nature, holding significance across diverse scientific domains such as pharmaceuticals, natural products, drug discovery, and industry. Despite their simplicity, the synthesis of lactones has garnered considerable interest due to their pivotal roles. Gold, traditionally regarded as a noble metal, has emerged as an efficient catalyst, challenging conventional perceptions. The utilization of gold in lactone synthesis has captivated researchers, leading to the development of numerous effective methodologies. Motivated by this, we present a comprehensive compilation of reports on the gold-catalyzed synthesis of lactones, encompassing literature till date.
{"title":"Gold-Catalyzed Lactone Synthesis: Advancements and Insights","authors":"D. Ravi Sankar, Mohan Neetha, Prof. Dr. Gopinathan Anilkumar","doi":"10.1002/tcr.202400071","DOIUrl":"10.1002/tcr.202400071","url":null,"abstract":"<p>Lactones represent a class of fundamental structural motifs ubiquitous in nature, holding significance across diverse scientific domains such as pharmaceuticals, natural products, drug discovery, and industry. Despite their simplicity, the synthesis of lactones has garnered considerable interest due to their pivotal roles. Gold, traditionally regarded as a noble metal, has emerged as an efficient catalyst, challenging conventional perceptions. The utilization of gold in lactone synthesis has captivated researchers, leading to the development of numerous effective methodologies. Motivated by this, we present a comprehensive compilation of reports on the gold-catalyzed synthesis of lactones, encompassing literature till date.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Kaleem Shabbir, Fozia Arif, Haleema Asghar, Sanam Irum Memon, Urooj Khanum, Javeed Akhtar, Akbar Ali, Zeeshan Ramzan, Aliya Aziz, Ayaz Ali Memon, Prof. Khalid Hussain Thebo
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
{"title":"Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities","authors":"Muhammad Kaleem Shabbir, Fozia Arif, Haleema Asghar, Sanam Irum Memon, Urooj Khanum, Javeed Akhtar, Akbar Ali, Zeeshan Ramzan, Aliya Aziz, Ayaz Ali Memon, Prof. Khalid Hussain Thebo","doi":"10.1002/tcr.202400047","DOIUrl":"10.1002/tcr.202400047","url":null,"abstract":"<p>MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 8","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li
Despite initial skepticism, hexagonal boron nitride (h-BN) has become a promising photocatalyst due to its unique two-dimensional structure, remarkable stability, and potential for adjustability through various modification strategies. This review provides a comprehensive analysis of the inherent characteristics of h-BN-based nanomaterials, recent advancements in their environmental and energy applications, practical modification techniques, and the challenges and prospects in photocatalysis. More details can be found in article number e202300334 by Shengjuan Li and co-workers. (DOl: 10.1002/tcr.202300334.