Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931603
H. Ceric, W. Zisser, M. Rovitto, S. Selberherr
The mechanical and electrical properties of solder bumps influence the overall reliability of 3D ICs. A characteristic of solder bumps is that during technology processing and usage their material composition changes. This compositional transformation is enhanced by electromigration and leads to the formation of voids which can cause a complete failure of a solder bump. In this paper we present a compact model for prediction of the mean-time-to-failure of solder bumps under the influence of electromigration.
{"title":"Electromigration in solder bumps: A mean-time-to-failure TCAD study","authors":"H. Ceric, W. Zisser, M. Rovitto, S. Selberherr","doi":"10.1109/SISPAD.2014.6931603","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931603","url":null,"abstract":"The mechanical and electrical properties of solder bumps influence the overall reliability of 3D ICs. A characteristic of solder bumps is that during technology processing and usage their material composition changes. This compositional transformation is enhanced by electromigration and leads to the formation of voids which can cause a complete failure of a solder bump. In this paper we present a compact model for prediction of the mean-time-to-failure of solder bumps under the influence of electromigration.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121239348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931621
Xingsheng Wang, D. Reid, Liping Wang, A. Burenkov, C. Millar, B. Cheng, André Lange, J. Lorenz, E. Baer, A. Asenov
In this paper a variability-aware compact modeling strategy is presented for 20-nm bulk planar technology, taking into account the critical dimension long-range process variation and local statistical variability. Process and device simulations and statistical simulations for a wide range of combinations of L and W are carefully carried out using a design of experiments approach. The variability aware compact model strategy features a comprehensively extracted nominal model and two groups of selected parameters for extractions of the long-range process variation and statistical variability. The unified variability compact modeling method can provide a simulation frame for variability aware technology circuit co-optimization.
{"title":"Variability-aware compact model strategy for 20-nm bulk MOSFETs","authors":"Xingsheng Wang, D. Reid, Liping Wang, A. Burenkov, C. Millar, B. Cheng, André Lange, J. Lorenz, E. Baer, A. Asenov","doi":"10.1109/SISPAD.2014.6931621","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931621","url":null,"abstract":"In this paper a variability-aware compact modeling strategy is presented for 20-nm bulk planar technology, taking into account the critical dimension long-range process variation and local statistical variability. Process and device simulations and statistical simulations for a wide range of combinations of L and W are carefully carried out using a design of experiments approach. The variability aware compact model strategy features a comprehensively extracted nominal model and two groups of selected parameters for extractions of the long-range process variation and statistical variability. The unified variability compact modeling method can provide a simulation frame for variability aware technology circuit co-optimization.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121063601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931604
H. Mutoh
The physical models and algorithms of device simulation for ultra-high speed devices are proposed. The propagation of electromagnetic field induced by electrodes cannot be ignored for analyses of ultra-high speed devices. In order to obtain the consistent basic equations for the both of device and electromagnetic field propagation simulations, we newly introduce Nakanishi-Lautrup (NL) field of quantum electrodynamics (QED) to the electromagnetic field model. The models and algorithms are reported with some calculation results.
{"title":"Modelinig and algorithms of device simulation for ultra-high speed devices","authors":"H. Mutoh","doi":"10.1109/SISPAD.2014.6931604","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931604","url":null,"abstract":"The physical models and algorithms of device simulation for ultra-high speed devices are proposed. The propagation of electromagnetic field induced by electrodes cannot be ignored for analyses of ultra-high speed devices. In order to obtain the consistent basic equations for the both of device and electromagnetic field propagation simulations, we newly introduce Nakanishi-Lautrup (NL) field of quantum electrodynamics (QED) to the electromagnetic field model. The models and algorithms are reported with some calculation results.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125602851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931584
K. Sonoda, E. Tsukuda, M. Tanizawa, K. Ishikawa, Y. Yamaguchi
The effect of hydrogen incorporation into nitrogen vacancies in silicon nitride on electron trap is analyzed using density functional theory method. A hydrogen atom is attached to a dangling bond which is well separated from other dangling bonds, whereas it is not attached to ones which strongly interact because of lattice distortion. An electron trap level caused by nitrogen vacancy becomes shallow by hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a siliconsilicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment in which reduced hydrogen content in silicon nitride shows superior retention characteristics of the programmed state.
{"title":"An analysis of the effect of hydrogen incorporation on electron traps in silicon nitride","authors":"K. Sonoda, E. Tsukuda, M. Tanizawa, K. Ishikawa, Y. Yamaguchi","doi":"10.1109/SISPAD.2014.6931584","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931584","url":null,"abstract":"The effect of hydrogen incorporation into nitrogen vacancies in silicon nitride on electron trap is analyzed using density functional theory method. A hydrogen atom is attached to a dangling bond which is well separated from other dangling bonds, whereas it is not attached to ones which strongly interact because of lattice distortion. An electron trap level caused by nitrogen vacancy becomes shallow by hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a siliconsilicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment in which reduced hydrogen content in silicon nitride shows superior retention characteristics of the programmed state.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133900903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931569
Yijiao Wang, Peng Huang, Xiaoyan Liu, G. Du, Jinfeng Kang
A comprehensive time dependent three dimensional simulation framework for high-k degradation is developed. In this framework, the models that account for trap generation in high-k, capture/emission dynamic, and statistical variability are incorporated in the simulation. The influence of the trap generation model on distribution of traps, threshold voltage, and the amount of trapped charge is investigated in detail, thereby lay a solid foundation for predicting more accurate design margins at circuit/system level in the future.
{"title":"Time dependent 3-D statistical KMC simulation of high-k degradation including trap generation and electron capture/emission dynamic","authors":"Yijiao Wang, Peng Huang, Xiaoyan Liu, G. Du, Jinfeng Kang","doi":"10.1109/SISPAD.2014.6931569","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931569","url":null,"abstract":"A comprehensive time dependent three dimensional simulation framework for high-k degradation is developed. In this framework, the models that account for trap generation in high-k, capture/emission dynamic, and statistical variability are incorporated in the simulation. The influence of the trap generation model on distribution of traps, threshold voltage, and the amount of trapped charge is investigated in detail, thereby lay a solid foundation for predicting more accurate design margins at circuit/system level in the future.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"24 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133241248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931566
A. Valsaraj, L. F. Register, S. Banerjee, Jiwon Chang
Monolayer transition metal dichalcogenides (TMDs) are novel gapped two-dimensional materials with unique electrical and optical properties. Here, we study the effect of dielectric oxide slabs on the electronic structure of monolayer MoS2 using density functional theory (DFT) calculations. We also have simulated the effects of O-vacancies in the first few layers of the oxide on the band structure of the MoS2-oxide system, showing here results for vacancies in topmost/MoS2-adjacent O layer.
{"title":"Density-functional-theory-based study of monolayer MoS2 on oxide","authors":"A. Valsaraj, L. F. Register, S. Banerjee, Jiwon Chang","doi":"10.1109/SISPAD.2014.6931566","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931566","url":null,"abstract":"Monolayer transition metal dichalcogenides (TMDs) are novel gapped two-dimensional materials with unique electrical and optical properties. Here, we study the effect of dielectric oxide slabs on the electronic structure of monolayer MoS2 using density functional theory (DFT) calculations. We also have simulated the effects of O-vacancies in the first few layers of the oxide on the band structure of the MoS2-oxide system, showing here results for vacancies in topmost/MoS2-adjacent O layer.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131340436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931570
S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, T. Grasser
We present and validate a novel physics-based model for hot-carrier degradation. The model incorporates such essential ingredients as a superposition of the multivibrational bond dissociation process and single-carrier mechanism, dispersion of the bond-breakage energy, interaction of the electric field and the dipole moment of the bond, and electron-electron scattering. The main requirement is that the model has to be able to cover HCD observed in a family of MOSFETs of identical architecture but with different gate lengths under diverse stress conditions using a unique set of parameters.
{"title":"A predictive physical model for hot-carrier degradation in ultra-scaled MOSFETs","authors":"S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, T. Grasser","doi":"10.1109/SISPAD.2014.6931570","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931570","url":null,"abstract":"We present and validate a novel physics-based model for hot-carrier degradation. The model incorporates such essential ingredients as a superposition of the multivibrational bond dissociation process and single-carrier mechanism, dispersion of the bond-breakage energy, interaction of the electric field and the dipole moment of the bond, and electron-electron scattering. The main requirement is that the model has to be able to cover HCD observed in a family of MOSFETs of identical architecture but with different gate lengths under diverse stress conditions using a unique set of parameters.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123842174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931577
O. Baumgartner, Z. Stanojević, L. Filipovic, A. Grill, T. Grasser, H. Kosina, M. Karner
In this paper, a comprehensive investigation of quantum transport in nanoscaled gallium nitride (GaN) high electron mobility transistors (HEMTs) is presented. A simulation model for quantum transport in nanodevices on unstructured grids in arbitrary dimension and for arbitrary crystal directions has been developed. The model has been implemented as part of the Vienna-Schrödinger-Poisson simulation and modeling framework. The transport formalism is based on the quantum transmitting boundary method. A new approach to reduce its computational effort has been realized. The model has been used to achieve a consistent treatment of quantization and transport effects in deeply scaled asymmetric GaN HEMTs. The self-consistent electron concentration, conduction band edges and ballistic current have been calculated. The effects of strain relaxation at the heterostructure interfaces on the potential and carrier concentration have been shown.
{"title":"Investigation of quantum transport in nanoscaled GaN high electron mobility transistors","authors":"O. Baumgartner, Z. Stanojević, L. Filipovic, A. Grill, T. Grasser, H. Kosina, M. Karner","doi":"10.1109/SISPAD.2014.6931577","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931577","url":null,"abstract":"In this paper, a comprehensive investigation of quantum transport in nanoscaled gallium nitride (GaN) high electron mobility transistors (HEMTs) is presented. A simulation model for quantum transport in nanodevices on unstructured grids in arbitrary dimension and for arbitrary crystal directions has been developed. The model has been implemented as part of the Vienna-Schrödinger-Poisson simulation and modeling framework. The transport formalism is based on the quantum transmitting boundary method. A new approach to reduce its computational effort has been realized. The model has been used to achieve a consistent treatment of quantization and transport effects in deeply scaled asymmetric GaN HEMTs. The self-consistent electron concentration, conduction band edges and ballistic current have been calculated. The effects of strain relaxation at the heterostructure interfaces on the potential and carrier concentration have been shown.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129238742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931606
A. Tallarico, P. Magnone, E. Sangiorgi, C. Fiegna
In this paper, we present a study of the self-heating effects in GaN-based power devices during static and dynamic operation mode by means of Sentaurus TCAD. A physical model interface (PMI), accounting for the temperature dependence of the thermal boundary resistance (TBR), has been implemented in the simulator in order to realistically model self-heating effects. In particular, we take into account for the TBR associated to the nucleation layer between GaN and SiC substrate. Moreover, the thermal contribution of the mutual heating among adjacent devices has been considered. Finally, we have investigated the influence of the temperature on the surface charges trapping and de-trapping phenomena showing two different traps occupancy transients. While one of the two occurs also in the isothermal condition, the second one is temperature activated.
{"title":"Modeling self-heating effects in AlGaN/GaN electronic devices during static and dynamic operation mode","authors":"A. Tallarico, P. Magnone, E. Sangiorgi, C. Fiegna","doi":"10.1109/SISPAD.2014.6931606","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931606","url":null,"abstract":"In this paper, we present a study of the self-heating effects in GaN-based power devices during static and dynamic operation mode by means of Sentaurus TCAD. A physical model interface (PMI), accounting for the temperature dependence of the thermal boundary resistance (TBR), has been implemented in the simulator in order to realistically model self-heating effects. In particular, we take into account for the TBR associated to the nucleation layer between GaN and SiC substrate. Moreover, the thermal contribution of the mutual heating among adjacent devices has been considered. Finally, we have investigated the influence of the temperature on the surface charges trapping and de-trapping phenomena showing two different traps occupancy transients. While one of the two occurs also in the isothermal condition, the second one is temperature activated.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117282024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-23DOI: 10.1109/SISPAD.2014.6931618
Wen-Tsung Huang, Yiming Li
In this work, the DC characteristic variability of 14-nm-gate HKMG trapezoidal bulk FinFET induced by different line edge roughness (LER) is for the first time studied by using experimentally validated 3D device simulation. By considering a time-domain Gaussian noise function, we compare four types of LER: Fin-LER inclusive of resist-LER and spacer-LER, sidewall-LER, and gate-LER for the trapezoidal bulk FinFET with respect to different fin angles. The resist-LER and sidewall-LER have large impact on characteristics fluctuation. For each type of LER, the Vth fluctuation is comparable among fin angles.
{"title":"The impact of fin/sidewall/gate line edge roughness on trapezoidal bulk FinFET devices","authors":"Wen-Tsung Huang, Yiming Li","doi":"10.1109/SISPAD.2014.6931618","DOIUrl":"https://doi.org/10.1109/SISPAD.2014.6931618","url":null,"abstract":"In this work, the DC characteristic variability of 14-nm-gate HKMG trapezoidal bulk FinFET induced by different line edge roughness (LER) is for the first time studied by using experimentally validated 3D device simulation. By considering a time-domain Gaussian noise function, we compare four types of LER: Fin-LER inclusive of resist-LER and spacer-LER, sidewall-LER, and gate-LER for the trapezoidal bulk FinFET with respect to different fin angles. The resist-LER and sidewall-LER have large impact on characteristics fluctuation. For each type of LER, the Vth fluctuation is comparable among fin angles.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127654056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}