Pub Date : 2024-11-04DOI: 10.1038/s43247-024-01696-x
Juan Carlos Villaseñor-Derbez, Nur Arafeh-Dalmau, Fiorenza Micheli
Marine heatwaves are globally occurring events that can negatively impact fisheries, but their impacts on small-scale operations remain understudied. We investigate the historical and future impacts of marine heatwaves on small-scale fisheries operating along a biogeographic transition zone in the Baja California Peninsula, Mexico. We estimate the impacts of the most intense marine heatwave regime on record on fisheries production of 43 economic units operating in a system of 55 Territorial Use-Rights for Fisheries. During this regime, aggregate landings in the lobster, sea urchin, and sea cucumber fisheries decreased between 15 and 58%. Most operations (56%) presented large reductions in landings, whose losses more than outweigh the small increase detected for the other 44%. Notably, impacts were larger for fisheries operating near an equatorward biogeographic break, and for operations in areas of high historical environmental variation and low historical variation in fisheries production. Climate models predict an increase in the frequency and intensity of exposure to marine heatwaves for all fisheries, but the change in frequency and intensity will be greater for those in the north. In the face of extreme environmental shocks such as marine heatwaves, small-scale fisheries operating near biogeographic transition zones are among the most vulnerable. Intense marine heatwaves led to a reduction in aggregate small-scale fisheries landings of lobsters, sea urchins and sea cucumbers of up to 58% during the last two decades in the Baja California Peninsula, according to an analysis of fisheries data and sea surface temperatures.
{"title":"Past and future impacts of marine heatwaves on small-scale fisheries in Baja California, Mexico","authors":"Juan Carlos Villaseñor-Derbez, Nur Arafeh-Dalmau, Fiorenza Micheli","doi":"10.1038/s43247-024-01696-x","DOIUrl":"10.1038/s43247-024-01696-x","url":null,"abstract":"Marine heatwaves are globally occurring events that can negatively impact fisheries, but their impacts on small-scale operations remain understudied. We investigate the historical and future impacts of marine heatwaves on small-scale fisheries operating along a biogeographic transition zone in the Baja California Peninsula, Mexico. We estimate the impacts of the most intense marine heatwave regime on record on fisheries production of 43 economic units operating in a system of 55 Territorial Use-Rights for Fisheries. During this regime, aggregate landings in the lobster, sea urchin, and sea cucumber fisheries decreased between 15 and 58%. Most operations (56%) presented large reductions in landings, whose losses more than outweigh the small increase detected for the other 44%. Notably, impacts were larger for fisheries operating near an equatorward biogeographic break, and for operations in areas of high historical environmental variation and low historical variation in fisheries production. Climate models predict an increase in the frequency and intensity of exposure to marine heatwaves for all fisheries, but the change in frequency and intensity will be greater for those in the north. In the face of extreme environmental shocks such as marine heatwaves, small-scale fisheries operating near biogeographic transition zones are among the most vulnerable. Intense marine heatwaves led to a reduction in aggregate small-scale fisheries landings of lobsters, sea urchins and sea cucumbers of up to 58% during the last two decades in the Baja California Peninsula, according to an analysis of fisheries data and sea surface temperatures.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01696-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1038/s43247-024-01824-7
Francesco Comola, Bernhard Märtl, Hilary Paul, Christian Bruns, Klaus Sapelza
North Atlantic hurricanes are a major driver of property losses in the United States and a critical peril for the reinsurance industry globally. We leverage insurance loss data and stochastic modeling to investigate the impacts of projected changes in hurricane climatology on the insurance industry, for +2 °C and +4 °C warming scenarios. We find that, relative to the historical baseline 1950-2022, expected changes in wind speed and rainfall may increase hurricane losses by 5% −15% (+2 °C) and 10% − 30% (+4 °C), with greater impacts at lower return periods than in the tail. The historical 100-year loss event may therefore be exceeded on average every 80 years (+2 °C) and 70 years (+4 °C). The expected changes in average annual loss are projected to be 10% (+2 °C) and 15% (+4 °C), with the largest relative increase attributable to precipitation-induced losses. Under the extreme SSP5-8.5 scenario, the expected loss inflation due to climate change is thus on the order of 0.5% per annum. Expected changes in wind speed and rainfall associated with North Atlantic hurricanes could increase property insurance losses by 10% for a scenario of 2 degrees of warming, with greater impacts on the more frequent events, suggests an analysis of historical data with stochastic modelling.
{"title":"Increase in insurance losses caused by North Atlantic hurricanes in a warmer climate","authors":"Francesco Comola, Bernhard Märtl, Hilary Paul, Christian Bruns, Klaus Sapelza","doi":"10.1038/s43247-024-01824-7","DOIUrl":"10.1038/s43247-024-01824-7","url":null,"abstract":"North Atlantic hurricanes are a major driver of property losses in the United States and a critical peril for the reinsurance industry globally. We leverage insurance loss data and stochastic modeling to investigate the impacts of projected changes in hurricane climatology on the insurance industry, for +2 °C and +4 °C warming scenarios. We find that, relative to the historical baseline 1950-2022, expected changes in wind speed and rainfall may increase hurricane losses by 5% −15% (+2 °C) and 10% − 30% (+4 °C), with greater impacts at lower return periods than in the tail. The historical 100-year loss event may therefore be exceeded on average every 80 years (+2 °C) and 70 years (+4 °C). The expected changes in average annual loss are projected to be 10% (+2 °C) and 15% (+4 °C), with the largest relative increase attributable to precipitation-induced losses. Under the extreme SSP5-8.5 scenario, the expected loss inflation due to climate change is thus on the order of 0.5% per annum. Expected changes in wind speed and rainfall associated with North Atlantic hurricanes could increase property insurance losses by 10% for a scenario of 2 degrees of warming, with greater impacts on the more frequent events, suggests an analysis of historical data with stochastic modelling.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01824-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1038/s43247-024-01792-y
Thejas Kallihosur, Vijayakumar S. Nair, P. R. Sinha
Frequent occurrences of widespread winter haze over Northern India largely appear to originate from exceedingly high concentrations of fine particulate matter from anthropogenic emissions. However, the underlying mechanisms driving winter haze in Northern India are not well understood. This study employed a synergy of satellite and reanalysis data from 2006 to 2021 to assess the role of hygroscopic growth of aerosol optical depth in winter haze over the eastern Indo-Gangetic Plain. A method has been developed to extract dry aerosol optical depth from ambient aerosol optical depth to elucidate the origin of winter haze. About 31% of severe haze episodes (aerosol optical depth > 0.85) occurring under ambient humidity conditions decrease to below 5% for dry conditions, indicating the critical role of particle hygroscopic growth. The change in radiative forcing at the top of the atmosphere due to hygroscopic growth is relatively small compared to that at the surface and in the atmosphere, indicating enhanced atmospheric warming. The ubiquitous winter haze over the eastern Indo-Gangetic Plain is exacerbated by hygroscopic growth under high anthropogenic aerosol emissions, further aggravated through aerosol-radiation feedback. These results will be valuable in devising haze forecasts, implementing effective mitigation policies, and representing aerosol hygroscopicity in climate models. Anthropogenic aerosol emissions aggravate winter haze over the eastern Indo-Gangetic Plain by aerosol-radiation feedback and particle hygroscopic growth, according to an analysis of satellite and reanalysis data between 2006 and 2021.
{"title":"Winter haze amplification by aerosol hygroscopic growth over eastern Indo- Gangetic Plain","authors":"Thejas Kallihosur, Vijayakumar S. Nair, P. R. Sinha","doi":"10.1038/s43247-024-01792-y","DOIUrl":"10.1038/s43247-024-01792-y","url":null,"abstract":"Frequent occurrences of widespread winter haze over Northern India largely appear to originate from exceedingly high concentrations of fine particulate matter from anthropogenic emissions. However, the underlying mechanisms driving winter haze in Northern India are not well understood. This study employed a synergy of satellite and reanalysis data from 2006 to 2021 to assess the role of hygroscopic growth of aerosol optical depth in winter haze over the eastern Indo-Gangetic Plain. A method has been developed to extract dry aerosol optical depth from ambient aerosol optical depth to elucidate the origin of winter haze. About 31% of severe haze episodes (aerosol optical depth > 0.85) occurring under ambient humidity conditions decrease to below 5% for dry conditions, indicating the critical role of particle hygroscopic growth. The change in radiative forcing at the top of the atmosphere due to hygroscopic growth is relatively small compared to that at the surface and in the atmosphere, indicating enhanced atmospheric warming. The ubiquitous winter haze over the eastern Indo-Gangetic Plain is exacerbated by hygroscopic growth under high anthropogenic aerosol emissions, further aggravated through aerosol-radiation feedback. These results will be valuable in devising haze forecasts, implementing effective mitigation policies, and representing aerosol hygroscopicity in climate models. Anthropogenic aerosol emissions aggravate winter haze over the eastern Indo-Gangetic Plain by aerosol-radiation feedback and particle hygroscopic growth, according to an analysis of satellite and reanalysis data between 2006 and 2021.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01792-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1038/s43247-024-01829-2
Loreta Cornacchia, Roeland C. van de Vijsel, Daphne van der Wal, Tom Ysebaert, Jianwei Sun, Bram van Prooijen, Paul Lodewijk Maria de Vet, Quan-Xing Liu, Johan van de Koppel
The adaptive capacity of ecosystems, or their ability to function despite altered environmental conditions, is crucial for resilience to climate change. However, the role of landscape complexity or species traits on adaptive capacity remains unclear. Here, we combine field experiments and morphodynamic modelling to investigate how ecosystem complexity shapes the adaptive capacity of intertidal salt marshes. We focus on the importance of tidal channel network complexity for sediment accumulation, allowing vertical accretion to keep pace with sea-level rise. The model showed that landscape-scale ecosystem complexity, more than species traits, explained higher sediment accumulation rates, despite complexity arising from these traits. Landscape complexity, reflected in creek network morphology, also improved resilience to rising water levels. Comparing model outcomes with real-world tidal networks confirmed that flow concentration, sediment transport and deposition increase with drainage complexity. These findings emphasize that natural pattern development and persistence are crucial to preserve resilience to climate change. Landscape-scale complexity and vegetation traits control the adaptive capacity of salt marsh ecosystems in multiple sea-level rise scenarios, as shown by numerical models of salt marsh development and field experiments in natural creek systems.
{"title":"Vegetation traits and biogeomorphic complexity shape the resilience of salt marshes to sea-level rise","authors":"Loreta Cornacchia, Roeland C. van de Vijsel, Daphne van der Wal, Tom Ysebaert, Jianwei Sun, Bram van Prooijen, Paul Lodewijk Maria de Vet, Quan-Xing Liu, Johan van de Koppel","doi":"10.1038/s43247-024-01829-2","DOIUrl":"10.1038/s43247-024-01829-2","url":null,"abstract":"The adaptive capacity of ecosystems, or their ability to function despite altered environmental conditions, is crucial for resilience to climate change. However, the role of landscape complexity or species traits on adaptive capacity remains unclear. Here, we combine field experiments and morphodynamic modelling to investigate how ecosystem complexity shapes the adaptive capacity of intertidal salt marshes. We focus on the importance of tidal channel network complexity for sediment accumulation, allowing vertical accretion to keep pace with sea-level rise. The model showed that landscape-scale ecosystem complexity, more than species traits, explained higher sediment accumulation rates, despite complexity arising from these traits. Landscape complexity, reflected in creek network morphology, also improved resilience to rising water levels. Comparing model outcomes with real-world tidal networks confirmed that flow concentration, sediment transport and deposition increase with drainage complexity. These findings emphasize that natural pattern development and persistence are crucial to preserve resilience to climate change. Landscape-scale complexity and vegetation traits control the adaptive capacity of salt marsh ecosystems in multiple sea-level rise scenarios, as shown by numerical models of salt marsh development and field experiments in natural creek systems.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01829-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1038/s43247-024-01843-4
Juan Camilo Meza-Cala, Alexander Minakov, Jan Inge Faleide, Mansour M. Abdelmalak, Grace E. Shephard, Rune Mattingsdal, Wolfram H. Geissler, Carmen Gaina
Intraplate volcanism has occurred for the last 35 million years within Northeast Atlantic and Arctic margins, including the western Barents Sea, Svalbard, and northern Greenland. Earlier studies have suggested that some of this volcanism might be sourced from nearby mid-ocean ridges. However, legacy data does not reveal correlations between the sporadic volcanism, despite comparable setting, ages, and compositions of basalts across the area. Here, we utilize a compilation of geophysical data to document late Cenozoic intraplate volcanism affecting the northeastern Yermak Plateau and southwestern Eurasia Basin located north of Svalbard. The identified seabed and subsurface features include volcanic (Mound-A) and hydrothermal vent systems (Tayrona Vent) formed approximately 10 and 2.6 million years ago, respectively. These intraplate volcanic products are coincident in age and origin with observed hydrothermal systems on Svalbard and Northeast Atlantic. We propose that these magmatic features are the result of intraplate volcanism associated with seismic and thermal anomalies in the mantle beneath northern Svalbard. Interpretation of seismic reflection profiles in the southwestern Eurasia Basin and north of Svalbard support a regional mantle thermal anomaly as the source of intraplate Cenozoic magmatism and associated hydrothermal features in the Arctic
{"title":"Late Cenozoic intraplate volcanism as a trigger for hydrothermal venting in the Arctic southwestern Eurasia Basin","authors":"Juan Camilo Meza-Cala, Alexander Minakov, Jan Inge Faleide, Mansour M. Abdelmalak, Grace E. Shephard, Rune Mattingsdal, Wolfram H. Geissler, Carmen Gaina","doi":"10.1038/s43247-024-01843-4","DOIUrl":"10.1038/s43247-024-01843-4","url":null,"abstract":"Intraplate volcanism has occurred for the last 35 million years within Northeast Atlantic and Arctic margins, including the western Barents Sea, Svalbard, and northern Greenland. Earlier studies have suggested that some of this volcanism might be sourced from nearby mid-ocean ridges. However, legacy data does not reveal correlations between the sporadic volcanism, despite comparable setting, ages, and compositions of basalts across the area. Here, we utilize a compilation of geophysical data to document late Cenozoic intraplate volcanism affecting the northeastern Yermak Plateau and southwestern Eurasia Basin located north of Svalbard. The identified seabed and subsurface features include volcanic (Mound-A) and hydrothermal vent systems (Tayrona Vent) formed approximately 10 and 2.6 million years ago, respectively. These intraplate volcanic products are coincident in age and origin with observed hydrothermal systems on Svalbard and Northeast Atlantic. We propose that these magmatic features are the result of intraplate volcanism associated with seismic and thermal anomalies in the mantle beneath northern Svalbard. Interpretation of seismic reflection profiles in the southwestern Eurasia Basin and north of Svalbard support a regional mantle thermal anomaly as the source of intraplate Cenozoic magmatism and associated hydrothermal features in the Arctic","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01843-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sea level rise due to anthropogenic warming threatens coastal environments and human societies, but its regional reversibility under successful climate mitigation efforts remains unclear. Here, we investigate sea level fluctuations in the Subpolar North Atlantic using idealized atmospheric carbon dioxide ramp-up and -down experiments. During the ramp-up period, the Subpolar North Atlantic experiences a faster sea level rise than the global mean, followed by a more rapid sea level decline over several dacades with decreasing carbon dioxide. These rapid sea level fluctuations are mainly driven by the response of the Atlantic Meridional Overturning Circulation to carbon dioxide forcing. The enhanced meridional salinity transport triggered by the rapid recovery of the Atlantic Meridional Overturning Circulation plays a crucial role in the regional sea level decline. Our study highlights the potential for pronounced sea level changes in the Subpolar North Atlantic and surrounding coastal areas under climate mitigation scenarios. The Atlantic Meridional Overturning Circulation’s response to carbon dioxide forcing is crucial for rapid sea level fluctuations in the Subpolar North Atlantic, indicating potential for fast changes under climate mitigation scenarios, according to results from carbon dioxide ramp-up and -down experiments to investigate sea level variation.
{"title":"Fast recovery of North Atlantic sea level in response to atmospheric carbon dioxide removal","authors":"Sunhee Wang, Yechul Shin, Ji-Hoon Oh, Jong-Seong Kug","doi":"10.1038/s43247-024-01835-4","DOIUrl":"10.1038/s43247-024-01835-4","url":null,"abstract":"Sea level rise due to anthropogenic warming threatens coastal environments and human societies, but its regional reversibility under successful climate mitigation efforts remains unclear. Here, we investigate sea level fluctuations in the Subpolar North Atlantic using idealized atmospheric carbon dioxide ramp-up and -down experiments. During the ramp-up period, the Subpolar North Atlantic experiences a faster sea level rise than the global mean, followed by a more rapid sea level decline over several dacades with decreasing carbon dioxide. These rapid sea level fluctuations are mainly driven by the response of the Atlantic Meridional Overturning Circulation to carbon dioxide forcing. The enhanced meridional salinity transport triggered by the rapid recovery of the Atlantic Meridional Overturning Circulation plays a crucial role in the regional sea level decline. Our study highlights the potential for pronounced sea level changes in the Subpolar North Atlantic and surrounding coastal areas under climate mitigation scenarios. The Atlantic Meridional Overturning Circulation’s response to carbon dioxide forcing is crucial for rapid sea level fluctuations in the Subpolar North Atlantic, indicating potential for fast changes under climate mitigation scenarios, according to results from carbon dioxide ramp-up and -down experiments to investigate sea level variation.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01835-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1038/s43247-024-01819-4
Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport
Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.
{"title":"Fast-get-faster explains wavier upper-level jet stream under climate change","authors":"Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport","doi":"10.1038/s43247-024-01819-4","DOIUrl":"10.1038/s43247-024-01819-4","url":null,"abstract":"Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01819-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1038/s43247-024-01803-y
Michael D. Garber, Tarik Benmarhnia, Weiqi Zhou, Pierpaolo Mudu, David Rojas-Rueda
Urban green space and urban compactness are each important principles for designing healthy, climate-resilient cities. The principles can co-exist, but greening may come at density’s expense if not considered deliberately. Existing studies estimating health impacts of greening scenarios have not considered what level of greenness is attainable for different population densities. Here, using the square kilometer as the unit of analysis, we estimate non-accidental mortality that could be prevented among adults older than 30 by greening that small area to a level of greenness assumed to be attainable based on its broader urban area (N = 15,917 globally), population density, and ecological zone. Results suggest a large potential for urban greening even in the most population-dense parts of cities such that on average 54 deaths per 100,000 could be prevented per year in those areas. That estimate may be about 25% higher or lower due to uncertainty in the underlying model. Greening urban areas to attainable levels for their population density and ecological zone could decrease nonaccidental mortality by about 50 deaths per year per 100,000 adults older than 30, according to epidemiologic analyses from 15,917 urban areas.
{"title":"Greening urban areas in line with population density and ecological zone can reduce premature mortality","authors":"Michael D. Garber, Tarik Benmarhnia, Weiqi Zhou, Pierpaolo Mudu, David Rojas-Rueda","doi":"10.1038/s43247-024-01803-y","DOIUrl":"10.1038/s43247-024-01803-y","url":null,"abstract":"Urban green space and urban compactness are each important principles for designing healthy, climate-resilient cities. The principles can co-exist, but greening may come at density’s expense if not considered deliberately. Existing studies estimating health impacts of greening scenarios have not considered what level of greenness is attainable for different population densities. Here, using the square kilometer as the unit of analysis, we estimate non-accidental mortality that could be prevented among adults older than 30 by greening that small area to a level of greenness assumed to be attainable based on its broader urban area (N = 15,917 globally), population density, and ecological zone. Results suggest a large potential for urban greening even in the most population-dense parts of cities such that on average 54 deaths per 100,000 could be prevented per year in those areas. That estimate may be about 25% higher or lower due to uncertainty in the underlying model. Greening urban areas to attainable levels for their population density and ecological zone could decrease nonaccidental mortality by about 50 deaths per year per 100,000 adults older than 30, according to epidemiologic analyses from 15,917 urban areas.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-15"},"PeriodicalIF":8.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01803-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1038/s43247-024-01849-y
Shouwei Li, Liping Zhang, Thomas L. Delworth, William F. Cooke, Se-Yong Song, Qinxue Gu
While the changes in ocean heat uptake in a warming climate have been well explored, the changes in response to climate mitigation efforts remain unclear. Using coupled climate model simulations, here we find that in response to a hypothesized reduction of greenhouse gases in the late 21st century, ocean heat uptake would significantly decline in all ocean basins except the North Atlantic, where a persistently weakened Atlantic meridional overturning circulation results in sustained heat uptake. These prolonged circulation anomalies further lead to interbasin heat exchanges, characterized by a sustained heat export from the Atlantic to the Southern Ocean and a portion of heat transfer from the Southern Ocean to the Indo-Pacific. Due to ocean heat uptake decline and interbasin heat export, the Southern Ocean experiences the strongest decline in ocean heat storage therefore emerging as the primary heat exchanger, while heat changes in the Indo-Pacific basin are relatively limited. Climate mitigation efforts will decrease ocean heat uptake in all ocean basins, except the North Atlantic, where weakened Atlantic Meridional Overturning Circulation leads to sustained heat uptake, according to results from climate simulations to analyze changes in global ocean heat due to a projected greenhouse gas reduction.
{"title":"Mitigation-driven global heat imbalance in the late 21st century","authors":"Shouwei Li, Liping Zhang, Thomas L. Delworth, William F. Cooke, Se-Yong Song, Qinxue Gu","doi":"10.1038/s43247-024-01849-y","DOIUrl":"10.1038/s43247-024-01849-y","url":null,"abstract":"While the changes in ocean heat uptake in a warming climate have been well explored, the changes in response to climate mitigation efforts remain unclear. Using coupled climate model simulations, here we find that in response to a hypothesized reduction of greenhouse gases in the late 21st century, ocean heat uptake would significantly decline in all ocean basins except the North Atlantic, where a persistently weakened Atlantic meridional overturning circulation results in sustained heat uptake. These prolonged circulation anomalies further lead to interbasin heat exchanges, characterized by a sustained heat export from the Atlantic to the Southern Ocean and a portion of heat transfer from the Southern Ocean to the Indo-Pacific. Due to ocean heat uptake decline and interbasin heat export, the Southern Ocean experiences the strongest decline in ocean heat storage therefore emerging as the primary heat exchanger, while heat changes in the Indo-Pacific basin are relatively limited. Climate mitigation efforts will decrease ocean heat uptake in all ocean basins, except the North Atlantic, where weakened Atlantic Meridional Overturning Circulation leads to sustained heat uptake, according to results from climate simulations to analyze changes in global ocean heat due to a projected greenhouse gas reduction.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01849-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1038/s43247-024-01828-3
E. Bollinger, P. Schwilden, F. Y. Lai, R. Schulz, M. Bundschuh, S. Filker
Methane (CH4) emissions from natural systems are rising in a concerning manner with an incomplete understanding of its drivers. Recently, chemical stressors such as antibiotics have been suggested as a thus far overlooked factor increasing methanogenesis in freshwaters. Since usage and toxicological impact of antibiotics could increase in a warming climate, we assessed the temperature-dependence of antibiotic effects on methanogenesis. In this light, we conducted anaerobic incubations with freshwater sediment at 10, 15, and 20 °C in presence of a mixture of five antibiotics at field-relevant concentrations. Weekly measurements of CH4 showed a strong temperature dependence of antibiotic effects by changing effect sizes, directions and dynamics. While antibiotics reduced CH4 production at 10 °C, methanogenesis was elevated at 15 °C with the most pronounced increase occurring at 20 °C. Furthermore, antibiotics changed the prokaryotic assemblage at all temperatures and effect patterns of CH4 producing Methanomicrobia strongly followed the patterns observed for methanogenesis. While analyses of compound-specific stable isotopes and the metatranscriptome suggest the acetoclastic pathway as most relevant, linking prokaryotic structure to function remains one of the most significant research challenges. Nevertheless, the evidence provided by this study suggests a positive relationship between temperature and the stimulating effects of antibiotics on CH4 production. Temperature increases the potential harmful effects of antibiotics on the concentration of greenhouse gases through increased methanogenesis, according to anaerobic incubation experiments with freshwater sediments.
{"title":"Higher temperatures exacerbate effects of antibiotics on methanogenesis in freshwater sediment","authors":"E. Bollinger, P. Schwilden, F. Y. Lai, R. Schulz, M. Bundschuh, S. Filker","doi":"10.1038/s43247-024-01828-3","DOIUrl":"10.1038/s43247-024-01828-3","url":null,"abstract":"Methane (CH4) emissions from natural systems are rising in a concerning manner with an incomplete understanding of its drivers. Recently, chemical stressors such as antibiotics have been suggested as a thus far overlooked factor increasing methanogenesis in freshwaters. Since usage and toxicological impact of antibiotics could increase in a warming climate, we assessed the temperature-dependence of antibiotic effects on methanogenesis. In this light, we conducted anaerobic incubations with freshwater sediment at 10, 15, and 20 °C in presence of a mixture of five antibiotics at field-relevant concentrations. Weekly measurements of CH4 showed a strong temperature dependence of antibiotic effects by changing effect sizes, directions and dynamics. While antibiotics reduced CH4 production at 10 °C, methanogenesis was elevated at 15 °C with the most pronounced increase occurring at 20 °C. Furthermore, antibiotics changed the prokaryotic assemblage at all temperatures and effect patterns of CH4 producing Methanomicrobia strongly followed the patterns observed for methanogenesis. While analyses of compound-specific stable isotopes and the metatranscriptome suggest the acetoclastic pathway as most relevant, linking prokaryotic structure to function remains one of the most significant research challenges. Nevertheless, the evidence provided by this study suggests a positive relationship between temperature and the stimulating effects of antibiotics on CH4 production. Temperature increases the potential harmful effects of antibiotics on the concentration of greenhouse gases through increased methanogenesis, according to anaerobic incubation experiments with freshwater sediments.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01828-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}