首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. 增强虾青素生物合成的分子方法;未来展望:血球藻转录因子工程。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-06-28 DOI: 10.1080/07388551.2023.2208284
Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo

Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.

微藻是生产虾青素的首选物种,因为与化学合成相比,微藻的毒性风险较低。虾青素对健康有多种益处,目前正被用于药物、营养保健品、化妆品和功能性食品。血球藻是虾青素生物合成的模式微藻,但其天然虾青素含量较低。因此,有必要开发改进虾青素生物合成的方法,以满足工业需求,使其商业化具有成本效益。为了提高虾青素的生物合成,人们采用了几种与培养条件有关的策略。然而,转录因子对虾青素的调控机制尚不清楚。本研究首次对有关转录因子的识别、H. pluvialis 基因转化的进展以及使用植物激素提高虾青素生物合成相关基因表达的研究进行了批判性回顾。此外,我们还提出了未来的方法,包括:(i)克隆转录因子并确定其特征;(ii)通过过度表达正调控因子或下调/抑制负调控因子来进行转录工程;(iii)通过基因编辑来丰富或删除转录因子的结合位点;(iv)通过激素调节转录因子。这篇综述提供了有关虾青素生物合成的分子调控和现有研究空白的大量知识。此外,它还为转录因子介导的 H. pluvialis 虾青素生物合成代谢工程提供了基础。
{"title":"Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in <i>Haematococcus pluvialis</i>.","authors":"Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo","doi":"10.1080/07388551.2023.2208284","DOIUrl":"10.1080/07388551.2023.2208284","url":null,"abstract":"<p><p>Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. <i>Haematococcus pluvialis</i> is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in <i>H. pluvialis.</i> However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in <i>H. pluvialis</i> genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in <i>H. pluvialis</i>.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"514-529"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. 酶杂化纳米花和酶@金属有机框架复合材料:迷人的杂化纳米生物催化剂。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-04-09 DOI: 10.1080/07388551.2023.2189548
Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui

Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.

最近,杂化纳米材料成为纳米生物催化的新接口,可作为酶固定化的宿主平台。酶在无机晶体纳米流和金属有机框架(MOFs)中的固定化因其优越的性能而引起了科学界的广泛关注。最近,在制备各种酶@MOF 和酶杂化纳米花复合材料方面取得了许多突破性进展。然而,遗憾的是,有关酶@MOF和酶杂交纳米花复合材料及其改进合成策略和在生物技术中的应用的文献综述很少。本综述讨论了酶@MOF 复合材料和酶杂交纳米花复合材料的创新合成策略。从生物技术应用和潜在研究方向的角度对酶@MOF 复合材料和酶杂交纳米花复合材料进行了综述。我们相信,通过这项工作,读者将对酶@MOF复合材料和酶杂交纳米花复合材料的基础研究和应用有所了解。对酶@MOF复合材料和酶杂交纳米花复合材料不同合成策略的总结及其合成策略的改进也将使读者受益匪浅,并为今后的研究过程提供思路和想法。
{"title":"Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.","authors":"Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui","doi":"10.1080/07388551.2023.2189548","DOIUrl":"10.1080/07388551.2023.2189548","url":null,"abstract":"<p><p>Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"674-697"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9619376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility. 已开发和新兴的 1,4-丁二醇商业生产战略:预测现状和未来可能性。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-06-07 DOI: 10.1080/07388551.2023.2176740
Pradeep Kumar, HyunA Park, Yong Yuk, Hayan Kim, Jihwan Jang, Raviteja Pagolu, SeoA Park, Chanseo Yeo, Kwon-Young Choi

1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.

1,4-丁二醇(1,4-BDO)是一种重要的工业化学品,主要通过几种以化石原料为基础的能源密集型石化工艺生产,导致了不可再生、环境污染和生产成本高等问题。1,4-BDO 在许多化学反应中被用于开发各种有用、有价值的产品,如:聚氨酯、氨纶中间体和聚乙烯吡咯烷酮(PVP),PVP 是一种水溶性聚合物,在个人护理和制药方面有多种用途。近年来,为了满足人们对 1,4-BDO日益增长的需求,人们已将重点转向通过微生物进行可持续生物生产,具体方法包括:重组菌株、代谢工程、合成生物学、酶工程、生物信息学和人工智能指导算法。本文讨论了以下方面的发展现状:1,4-BDO 的各种化学和生物生产技术、1,4-BDO 生物合成途径的进展、未来生产战略的前景以及与环境友好型和生物型商业生产战略相关的困难。
{"title":"Developed and emerging 1,4-butanediol commercial production strategies: forecasting the current status and future possibility.","authors":"Pradeep Kumar, HyunA Park, Yong Yuk, Hayan Kim, Jihwan Jang, Raviteja Pagolu, SeoA Park, Chanseo Yeo, Kwon-Young Choi","doi":"10.1080/07388551.2023.2176740","DOIUrl":"10.1080/07388551.2023.2176740","url":null,"abstract":"<p><p>1,4-Butanediol (1,4-BDO) is a valuable industrial chemical that is primarily produced via several energy-intensive petrochemical processes based on fossil-based raw materials, leading to issues related to: non-renewability, environmental contamination, and high production costs. 1,4-BDO is used in many chemical reactions to develop a variety of useful, valuable products, such as: polyurethane, Spandex intermediates, and polyvinyl pyrrolidone (PVP), a water-soluble polymer with numerous personal care and pharmaceutical uses. In recent years, to satisfy the growing need for 1,4-BDO, there has been a major shift in focus to sustainable bioproduction via microorganisms using: recombinant strains, metabolic engineering, synthetic biology, enzyme engineering, bioinformatics, and artificial intelligence-guided algorithms. This article discusses the current status of the development of: various chemical and biological production techniques for 1,4-BDO, advances in biological pathways for 1,4-BDO biosynthesis, prospects for future production strategies, and the difficulties associated with environmentally friendly and bio-based commercial production strategies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"530-546"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9591936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanobiosensors and their role in detection of adulterants and contaminants in food products. 纳米生物传感器及其在检测食品中掺假物质和污染物方面的作用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-02-26 DOI: 10.1080/07388551.2023.2175196
Gurlovleen Kaur, Ranjeeta Bhari, Kuldeep Kumar

Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.

纳米技术是一个多层面的技术和科学领域,正在迅速发展。纳米粒子、量子点、纳米管、纳米棒、纳米线、纳米芯片等越来越多地被用于制造纳米传感器和纳米生物传感器,以提高反应的灵敏度和选择性。食品安全是食品工业极为关注的问题,因为它直接关系到食品对人类健康的影响。在这篇综述中,我们不仅介绍了有关纳米材料构建纳米传感器的方法和使用的最新信息,还介绍了它们的检测范围、检测限(LOD)以及在食品安全方面的应用。简要讨论了具有更高灵敏度和更低检测限的精确纳米传感器。综述主要侧重于用于检测肉制品、牛奶、果汁和水样等食品中掺假物质和污染物的纳米传感器。
{"title":"Nanobiosensors and their role in detection of adulterants and contaminants in food products.","authors":"Gurlovleen Kaur, Ranjeeta Bhari, Kuldeep Kumar","doi":"10.1080/07388551.2023.2175196","DOIUrl":"10.1080/07388551.2023.2175196","url":null,"abstract":"<p><p>Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"547-561"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10785089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation. 具有抗菌功能的电纺伤口敷料:对植物提取物和精油掺入的深入研究。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-05-08 DOI: 10.1080/07388551.2023.2193859
Cláudia Mouro, Isabel C Gouveia

Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.

在众多不同类型的伤口敷料中,通过电纺丝技术生产的纳米纤维材料被认为是最理想的材料,因为它们具有优越的内在特性,而且可以采用多种策略将生物活性化合物添加到其结构中。具有抗菌特性的生物活性化合物已被添加到不同的伤口敷料中,以促进伤口愈合,预防和治疗细菌感染。其中,药用植物提取物和精油(EOs)等天然产品因其无毒性、副作用小、理想的生物活性特性以及对愈合过程的有利影响,已被证明特别具有吸引力。为此,本综述对已纳入纳米纤维伤口敷料的具有抗菌特性的最著名药用植物提取物和 EO 进行了详尽的最新修订。将生物活性化合物加入电纺纳米纤维的最常用方法包括:电纺前(混合、封装、同轴和乳液电纺)、电纺后(物理吸附、化学固定和逐层组装)和纳米粒子负载。此外,还概述了环氧乙烷和药用植物提取物的益处,介绍了它们的内在特性以及将其融入伤口敷料的生物技术。最后,还讨论了当前需要充分澄清和解决的挑战和安全问题。
{"title":"Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation.","authors":"Cláudia Mouro, Isabel C Gouveia","doi":"10.1080/07388551.2023.2193859","DOIUrl":"10.1080/07388551.2023.2193859","url":null,"abstract":"<p><p>Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"641-659"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties. 剖析膳食中的烷基间苯二酚:其分布、生物合成、提取和功能特性汇编。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-05-08 DOI: 10.1080/07388551.2023.2193860
Rehan M El-Shabasy, Mohamed A Farag

Alkylresorcinols (ARs) are natural bioactive ingredients produced by: bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structure with a myriad of biological properties. Focusing on the importance of ARs, several analogs can be extracted from different natural resources. Interestingly, the composition of ARs is usually reflective of their source, with structural differences to exist among ARs isolated from different natural sources. The identified compounds from marine are distinguished by sulfur atom and disulfide bond, while the alkyl chain of bacterial homologs are recognized for their saturated fatty acid chains. ARs occurrence in fungi is still poorly documented however most of the isolated fungal molecules are characterized by a sugar unit attached to their alkylated side chains. The biosynthetic pathway of ARs is postulated via a type III polyketide synthase in which the fatty-acyl chain is elongated and cyclized to generate ARs. The structure-activity relationship (SAR) has gained an increasing interest to mediate for ARs biological activities as discussed herein for the first time from their different resources. ARs extraction procedures showed much progress compared to classical methods compiling organic solvents with supercritical extraction appearing as a potential technique for producing highly purified food-grade of AR homologs. The current review also presents on the rapid qualitative and quantitative determination of ARs to increase accessibility for screening cereals as potential sources of these bioactives.

烷基间苯二酚(ARs)是由细菌、真菌、海绵和高等植物产生的天然生物活性成分,具有亲脂性多酚结构,具有多种生物特性。ARs 具有重要意义,可以从不同的自然资源中提取多种类似物。有趣的是,ARs 的组成通常反映了其来源,从不同天然资源中分离出来的 ARs 在结构上存在差异。从海洋中鉴定出的化合物是通过硫原子和二硫键来区分的,而细菌同源物的烷基链则是通过饱和脂肪酸链来识别的。真菌中出现 ARs 的记录还不多,但大多数分离出的真菌分子的特征是其烷基化侧链上附有一个糖单位。据推测,ARs 的生物合成途径是通过 III 型多酮合成酶,其中脂肪酰基链被拉长并环化生成 ARs。结构-活性关系(SAR)在促进 ARs 生物活性方面获得了越来越多的关注,本文首次从不同的资源中讨论了这一问题。与传统的有机溶剂萃取方法相比,ARs 的萃取程序有了很大的进步,超临界萃取技术已成为生产高纯度食品级 AR 同源物的潜在技术。本综述还介绍了 ARs 的快速定性和定量测定方法,以提高筛选谷物作为这些生物活性物质潜在来源的便利性。
{"title":"Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties.","authors":"Rehan M El-Shabasy, Mohamed A Farag","doi":"10.1080/07388551.2023.2193860","DOIUrl":"10.1080/07388551.2023.2193860","url":null,"abstract":"<p><p>Alkylresorcinols (ARs) are natural bioactive ingredients produced by: bacteria, fungi, sponges, and higher plants, possessing a lipophilic polyphenol structure with a myriad of biological properties. Focusing on the importance of ARs, several analogs can be extracted from different natural resources. Interestingly, the composition of ARs is usually reflective of their source, with structural differences to exist among ARs isolated from different natural sources. The identified compounds from marine are distinguished by sulfur atom and disulfide bond, while the alkyl chain of bacterial homologs are recognized for their saturated fatty acid chains. ARs occurrence in fungi is still poorly documented however most of the isolated fungal molecules are characterized by a sugar unit attached to their alkylated side chains. The biosynthetic pathway of ARs is postulated <i>via</i> a type III polyketide synthase in which the fatty-acyl chain is elongated and cyclized to generate ARs. The structure-activity relationship (SAR) has gained an increasing interest to mediate for ARs biological activities as discussed herein for the first time from their different resources. ARs extraction procedures showed much progress compared to classical methods compiling organic solvents with supercritical extraction appearing as a potential technique for producing highly purified food-grade of AR homologs. The current review also presents on the rapid qualitative and quantitative determination of ARs to increase accessibility for screening cereals as potential sources of these bioactives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"581-617"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. 第二代生物炼油厂中木质纤维素材料的增值:生产真菌生物颜料的机会。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-30 DOI: 10.1080/07388551.2024.2349581
Gabriel L Arruda, Maria Teresa F R Raymundo, Mónica M Cruz-Santos, Vinícius P Shibukawa, Fanny M Jofre, Carina A Prado, Silvio S da Silva, Solange I Mussatto, Júlio C Santos

Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.

第二代生物精炼厂利用森林和农用工业残留物及副产品作为原料,在生产可再生能源和燃料方面发挥着重要作用。将木糖醇、β-胡萝卜素、木寡糖和生物配位体等新型生物产品纳入生物精炼厂的产品组合,可在木质纤维素材料,特别是纤维素和半纤维素馏分的价值化方面带来经济效益。真菌生物颜料以其额外的抗氧化和抗菌特性而闻名,对消费者很有吸引力,可应用于食品和制药等多个工业领域。使用木质纤维素材料作为生长介质的碳源和营养源有助于降低生产成本,提高真菌生物颜料的市场竞争力。此外,在生物炼制厂中进行生物配料生产,可以利用未充分利用的部分(如半纤维素)生产增值生物产品。本研究探讨了在第二代生物炼制厂中生产真菌生物配料的潜力,以便在生产能源的同时使生产的生物大分子多样化。本研究对有关这一主题的最新文献进行了全面和严格的审查,涵盖了可能的主要原材料、第二代生物炼油厂的一般方面、真菌生物配料及其融入生物炼油厂的潜力。
{"title":"Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments.","authors":"Gabriel L Arruda, Maria Teresa F R Raymundo, Mónica M Cruz-Santos, Vinícius P Shibukawa, Fanny M Jofre, Carina A Prado, Silvio S da Silva, Solange I Mussatto, Júlio C Santos","doi":"10.1080/07388551.2024.2349581","DOIUrl":"https://doi.org/10.1080/07388551.2024.2349581","url":null,"abstract":"<p><p>Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":9.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. MKK5在生物和非生物胁迫中的调控网络和信号通路特写。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-26 DOI: 10.1080/07388551.2024.2344584
Ali Movahedi, Delight Hwarari, Raphael Dzinyela, Siyi Ni, Liming Yang

Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.

丝裂原活化蛋白激酶 5(MKK5)是丝裂原活化蛋白激酶(MAPK)级联复杂的磷酸化链式反应的中心枢纽,调节植物对生物和非生物胁迫的反应。本综述旨在全面分析 MKK5 参与胁迫适应的调控机制。本综述将深入探讨 MKK5 错综复杂的转录后和翻译后修饰,讨论它们如何影响 MKK5 的表达、活性和亚细胞定位,以应对胁迫信号。我们还讨论了 MKK5 与复杂信号通路的整合、协调植物对病原体的免疫以及通过植物激素信号通路在调节干旱、寒冷、高温和盐度等非生物胁迫中的调节作用。此外,我们还强调了 MKK5 在工程化抗逆作物方面的潜在应用,并提供了可能为未来研究铺平道路的前景。本综述手稿旨在为 MKK5 的调控机制提供有价值的见解,弥合之前众多研究结果的差距,并为 MKK5 及其调控作用以及参与环境胁迫调控提供坚实的知识基础。
{"title":"A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses.","authors":"Ali Movahedi, Delight Hwarari, Raphael Dzinyela, Siyi Ni, Liming Yang","doi":"10.1080/07388551.2024.2344584","DOIUrl":"https://doi.org/10.1080/07388551.2024.2344584","url":null,"abstract":"<p><p>Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":9.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic biology for the food industry: advances and challenges. 食品工业的合成生物学:进步与挑战。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-26 DOI: 10.1080/07388551.2024.2340530
Ruipeng Chen, Shuyue Ren, Shuang Li, Huanying Zhou, Xuexia Jia, Dianpeng Han, Zhixian Gao

As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.

随着全球环境污染的加剧、气候变化的恶化和人口的持续增长,确保安全、营养和可持续的食品供应已成为巨大的挑战。这就对未来的食品供应方法和功能提出了新的要求。利用合成生物学技术创建适合食品工业生产的细胞工厂,并将可再生原料转化为:重要的食品成分、功能性食品添加剂和营养化学品,是解决食品工业所面临问题的重要方法。在此,我们回顾了合成生物学在食品工业中的最新进展和应用,包括传统食品(人工色素、肉类、淀粉和牛奶)、功能食品(甜味剂、糖替代品、营养素、调味剂)和绿色食品(绿色纤维、可降解包装材料、绿色包装材料和食品可追溯性)的替代品。此外,我们还讨论了基于合成生物学的食品工业应用的未来前景。因此,本综述可为食品安全、食品营养、公共卫生和健康相关领域的合成生物学研究提供参考。
{"title":"Synthetic biology for the food industry: advances and challenges.","authors":"Ruipeng Chen, Shuyue Ren, Shuang Li, Huanying Zhou, Xuexia Jia, Dianpeng Han, Zhixian Gao","doi":"10.1080/07388551.2024.2340530","DOIUrl":"https://doi.org/10.1080/07388551.2024.2340530","url":null,"abstract":"<p><p>As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-25"},"PeriodicalIF":9.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma. 深入研究 Phaffia rhodozyma 虾青素生物合成代谢机制的新策略。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-26 DOI: 10.1080/07388551.2024.2344578
Zhipeng Li, Li You, Xiping Du, Haoyi Yang, Liang Yang, Yanbing Zhu, Lijun Li, Zedong Jiang, Qingbiao Li, Ning He, Rui Lin, Zhen Chen, Hui Ni

Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.

虾青素是一种酮类类胡萝卜素,以其极高的抗氧化活性而闻名,在营养保健品、水产养殖和化妆品等领域有着巨大的应用潜力。随着市场需求的不断增长,有必要利用红藻来提高虾青素的产量。尽管大量的研究工作集中在优化发酵条件、采用诱变处理和利用基因工程技术来提高红掌虾青素的产量,但这一领域的进展仍然有限。本综述全面总结了目前对虾青素的粗略代谢途径、调控机制和提高虾青素产量的初步策略的了解。然而,要全面了解虾青素合成背后复杂而重要的代谢调节机制,还需要进一步的研究。具体而言,需要详细探讨关键基因(如 crtYB、crtS 和 crtI)的具体功能。此外,透彻了解双功能酶和替代剪接产物的作用机制也势在必行。最后,必须深入研究代谢通量的调节,以揭示虾青素合成的完整途径。为了深入研究虾青素的合成机制,提高虾青素的产量,本综述提出了一些前沿方法,包括:全息图学、基因组编辑、蛋白质结构-活性分析和合成生物学。此外,本综述还进一步阐明了利用这些先进方法以各种有效组合方式解决上述问题的新策略的可行性。这篇综述为研究红藻虾青素的代谢途径和虾青素的工业改良提供了理论和方法,并为灵活结合使用多种现代先进生物技术提供了新的见解。
{"title":"New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in <i>Phaffia rhodozyma</i>.","authors":"Zhipeng Li, Li You, Xiping Du, Haoyi Yang, Liang Yang, Yanbing Zhu, Lijun Li, Zedong Jiang, Qingbiao Li, Ning He, Rui Lin, Zhen Chen, Hui Ni","doi":"10.1080/07388551.2024.2344578","DOIUrl":"https://doi.org/10.1080/07388551.2024.2344578","url":null,"abstract":"<p><p>Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using <i>Phaffia rhodozyma</i>. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in <i>P. rhodozyma</i>, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as <i>crtYB</i>, <i>crtS</i>, and <i>crtI</i>, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in <i>P. rhodozyma</i> and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":9.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1