首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Engineering proteins with catechol chemistry for biotechnological applications. 利用邻苯二酚化学成分改造蛋白质,促进生物技术应用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-28 DOI: 10.1080/07388551.2024.2387165
Suryalakshmi Pandurangan, Shanmugam Easwaramoorthi, Niraikulam Ayyadurai

Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.

通过扩展氨基酸字母表来开发具有更大化学空间的蛋白质已成为一种新兴技术,以应对其在各种应用中遇到的障碍。通过对酪氨酸进行翻译后修饰,3,4-二羟基苯丙氨酸(L-DOPA)儿茶酚类非天然氨基酸大量存在于贻贝足蛋白质中,使其对潮湿的岩石具有很强的附着力。L-DOPA 通过一对供体羟基形成:双叉配位、H 键、金属配体复合物、长程静电和范德华相互作用。通过扩展遗传密码将邻苯二酚融入蛋白质,为开发基于蛋白质的生物传感器、植入涂层、生物共轭、粘合生物材料、生物催化剂、金属相互作用和纳米生物技术应用铺平了道路。增加的化学空间为蛋白质提供了新的化学活性相互作用能力,从而提高了蛋白质的特性。在此,我们回顾了利用儿茶酚开发基因扩增生物体以提供新特性和功能的技术,并强调了L-DOPA结合蛋白在生物医学和工业领域的重要性。
{"title":"Engineering proteins with catechol chemistry for biotechnological applications.","authors":"Suryalakshmi Pandurangan, Shanmugam Easwaramoorthi, Niraikulam Ayyadurai","doi":"10.1080/07388551.2024.2387165","DOIUrl":"10.1080/07388551.2024.2387165","url":null,"abstract":"<p><p>Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions <i>via</i> a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"606-624"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. 多组学在荞麦营养保健品强化和性状改良方面的进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-19 DOI: 10.1080/07388551.2024.2373282
Yingjie Song, Chunlin Long, Ying Wang, Yuxing An, Yinglin Lu

Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.

荞麦(Fagopyrum spp.)是一种典型的假谷物,因其广泛的营养保健潜力和数百年的种植历史而备受重视。鞑靼荞麦和普通荞麦由于含有大量蛋白质、类黄酮和矿物质,已在全球广泛使用,并成为著名的营养食品。此外,对荞麦的需求日益增加,因此提高荞麦的营养价值、性状和产量至关重要。本综述根据荞麦的化学结构、特性和生理功能,对荞麦中积累的生物活性化合物进行了全面评估。通过对类黄酮生物合成的调控,有条不紊地总结了类黄酮、酚酸和苦荞素的生物合成途径。虽然前人的研究已经提出了经典的合成途径,但这些化合物在荞麦中合成的代谢流程仍未被揭示。通过多组学研究,确定了参与黄酮醇生物合成、胁迫响应和植物发育的功能基因。此外,该研究还深入探讨了多组学在改善荞麦农艺性状方面的应用,包括:产量、营养成分、抗逆性和生物活性化合物的生物合成。庞基因组学与其他全局组学相结合挖掘精英基因、特定农艺性状和生物活性成分生物合成的调控网络和机制,以及为基因工程开发更高效的遗传转化系统,这些都需要进一步研究,以实施旨在提高荞麦理想性状的育种设计。这篇重要综述将使人们全面了解多组学技术在荞麦营养保健和性状改良方面的应用。
{"title":"Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat.","authors":"Yingjie Song, Chunlin Long, Ying Wang, Yuxing An, Yinglin Lu","doi":"10.1080/07388551.2024.2373282","DOIUrl":"10.1080/07388551.2024.2373282","url":null,"abstract":"<p><p>Buckwheat (<i>Fagopyrum</i> spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"530-555"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential. 嗜尸菌和嗜尸菌:其抗菌防御能力和生物技术潜力综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-28 DOI: 10.1080/07388551.2024.2389175
T P Tim Cushnie, Vijitra Luang-In, Darren W Sexton

With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.

随着抗生素耐药性的增加,人们迫切需要新的抗菌药物和产品来治疗或预防感染。目前使用的许多此类产品,例如人用和兽用抗生素以及抗菌食品防腐剂,都是从大自然中发现和开发的。自然选择作用于所有生物体,环境中细菌竞争者或病原体的存在有利于抗菌适应性的进化。在这篇综述中,我们将根据秃鹫、吹蝇和其他腐肉使用者所面临的细菌疾病选择压力,探讨它们是否可能成为抗菌发现的良好起点。我们对其中 600 多个物种的膳食细节进行了编目,描述了与膳食相关的细菌病原体,并概述了有助于保护疾病的抗菌防御系统。然后讨论了这些防御系统的生物技术应用,以及开发人员面临的挑战和可能的解决方案。这方面的例子包括:(a) 利用抗菌肽(AMP)基因肌毒素 IA 提高作物对细菌疾病的抵抗力;(b) 利用多肽抗生素(如 serrawettin W2)作为抗菌药物的先导;(c) 利用凝集素进行靶向给药;(d) 利用生物转化产生的甲壳素作为抗菌生物材料;(e) 利用细菌素作为抗菌食品防腐剂;(f) 利用互生微生物群细菌作为动物饲料中抗生素的替代品。我们的研究表明,腐肉使用者通过饮食和互动接触到多种细菌病原体,进化出了许多抗菌防御系统,是医疗、农业和食品工业产品开发的一个前景广阔的基因、分子和微生物来源。
{"title":"Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential.","authors":"T P Tim Cushnie, Vijitra Luang-In, Darren W Sexton","doi":"10.1080/07388551.2024.2389175","DOIUrl":"10.1080/07388551.2024.2389175","url":null,"abstract":"<p><p>With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene <i>sarcotoxin IA</i> to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"625-642"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotechnological application of Aureobasidium spp. as a promising chassis for biosynthesis of ornithine-urea cycle-derived bioproducts. Aureobasidium spp.作为鸟氨酸-尿素循环衍生生物产品生物合成底盘的生物技术应用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-19 DOI: 10.1080/07388551.2024.2382954
Khin Myo Myo Tint, Xin Wei, Peng Wang, Guang-Lei Liu, Mei Zhang, Zhen-Ming Chi, Zhe Chi

The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.

真菌细胞中的鸟氨酸脲循环(OUC)具有重要的生物技术意义和多种生理功能,与乙酰谷氨酸循环(AGC)密切相关。在 OUC 中,在精氨酸琥珀酸裂解酶的催化下,富马酸可从精氨酸琥珀酸中释放出来,而精氨酸琥珀酸裂解酶受 Ca2+ 信号通路的调控,在 CaCO3 的存在下,工程菌株 Aureobasidium pullulans var.此外,Aureobasidum melanogenum 的工程菌株也能通过 OUC 合成 2.1 ± 0.02 mg L-鸟氨酸(L-Orn)/mg 蛋白质。富马酸盐可转化为多种药物和氨基酸,L-Orn可通过不同的重组菌株转化为苷酸(1.7 g/L)、腐胺(33.4 g/L)和L-哌嗪酸(L-Piz)(3.0 g/L)。所有富马酸盐、L-Orn、苷元、腐胺和 L-Piz 都有很多用途。与其他真菌菌株相比,类酵母真菌和有前途的底盘 Aureobasidium spp 具有许多优势。进一步的遗传操作和生物工程将提高富马酸和 L-Orn 及其衍生物的生物合成能力。
{"title":"Biotechnological application of <i>Aureobasidium</i> spp. as a promising chassis for biosynthesis of ornithine-urea cycle-derived bioproducts.","authors":"Khin Myo Myo Tint, Xin Wei, Peng Wang, Guang-Lei Liu, Mei Zhang, Zhen-Ming Chi, Zhe Chi","doi":"10.1080/07388551.2024.2382954","DOIUrl":"10.1080/07388551.2024.2382954","url":null,"abstract":"<p><p>The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca<sup>2+</sup> signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of <i>Aureobasidium pullulans</i> var. <i>aubasidan</i>i in the presence of CaCO<sub>3</sub>. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized <i>via</i> OUC by the engineered strains of <i>Aureobasidum melanogenum</i>. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of <i>A. melanogenum</i>. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, <i>Aureobasidium</i> spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"591-605"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulin fibrillation under physicochemical parameters of bioprocessing and intervention by peptides and surface-active agents. 生物加工理化参数下的胰岛素纤维化以及肽和表面活性物质的干预。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-14 DOI: 10.1080/07388551.2024.2387167
Chinmaya Panda, Sachin Kumar, Sharad Gupta, Lalit M Pandey

Even after the centenary celebration of insulin discovery, there prevail challenges concerning insulin aggregation, not only after repeated administration but also during industrial production, storage, transport, and delivery, significantly impacting protein quality, efficacy, and effectiveness. The aggregation reduces insulin bioavailability, increasing the risk of heightened immunogenicity, posing a threat to patient health, and creating a dent in the golden success story of insulin therapy. Insulin experiences various physicochemical and mechanical stresses due to modulations in pH, temperature, ionic strength, agitation, shear, and surface chemistry, during the upstream and downstream bioprocessing, resulting in insulin unfolding and subsequent fibrillation. This has fueled research in the pharmaceutical industry and academia to unveil the mechanistic insights of insulin aggregation in an attempt to devise rational strategies to regulate this unwanted phenomenon. The present review briefly describes the impacts of environmental factors of bioprocessing on the stability of insulin and correlates with various intermolecular interactions, particularly hydrophobic and electrostatic forces. The aggregation-prone regions of insulin are identified and interrelated with biophysical changes during stress conditions. The quest for novel additives, surface-active agents, and bioderived peptides in decelerating insulin aggregation, which results in overall structural stability, is described. We hope this review will help tackle the real-world challenges of insulin aggregation encountered during bioprocessing, ensuring safer, stable, and globally accessible insulin for efficient management of diabetes.

即使在胰岛素发现一百周年庆典之后,胰岛素的聚集问题仍然普遍存在,不仅在反复给药后,而且在工业生产、储存、运输和交付过程中都会出现聚集,严重影响蛋白质的质量、功效和有效性。聚集降低了胰岛素的生物利用度,增加了免疫原性增高的风险,对患者的健康构成威胁,并使胰岛素治疗的黄金成功故事黯然失色。在上游和下游生物加工过程中,由于 pH 值、温度、离子强度、搅拌、剪切力和表面化学性质的变化,胰岛素会受到各种物理化学和机械应力的影响,从而导致胰岛素展开和随后的纤维化。这推动了制药业和学术界的研究,以揭示胰岛素聚集的机理,试图设计出合理的策略来调节这一不良现象。本综述简要介绍了生物加工环境因素对胰岛素稳定性的影响,以及与各种分子间相互作用,特别是疏水作用力和静电作用力的相关性。研究发现了胰岛素的易聚集区域,并将其与压力条件下的生物物理变化联系起来。文中介绍了如何寻找新型添加剂、表面活性剂和生物肽来减缓胰岛素的聚集,从而提高整体结构的稳定性。我们希望这篇综述将有助于解决生物加工过程中遇到的胰岛素聚集的现实挑战,确保胰岛素更安全、稳定,并在全球范围内有效治疗糖尿病。
{"title":"Insulin fibrillation under physicochemical parameters of bioprocessing and intervention by peptides and surface-active agents.","authors":"Chinmaya Panda, Sachin Kumar, Sharad Gupta, Lalit M Pandey","doi":"10.1080/07388551.2024.2387167","DOIUrl":"10.1080/07388551.2024.2387167","url":null,"abstract":"<p><p>Even after the centenary celebration of insulin discovery, there prevail challenges concerning insulin aggregation, not only after repeated administration but also during industrial production, storage, transport, and delivery, significantly impacting protein quality, efficacy, and effectiveness. The aggregation reduces insulin bioavailability, increasing the risk of heightened immunogenicity, posing a threat to patient health, and creating a dent in the golden success story of insulin therapy. Insulin experiences various physicochemical and mechanical stresses due to modulations in pH, temperature, ionic strength, agitation, shear, and surface chemistry, during the upstream and downstream bioprocessing, resulting in insulin unfolding and subsequent fibrillation. This has fueled research in the pharmaceutical industry and academia to unveil the mechanistic insights of insulin aggregation in an attempt to devise rational strategies to regulate this unwanted phenomenon. The present review briefly describes the impacts of environmental factors of bioprocessing on the stability of insulin and correlates with various intermolecular interactions, particularly hydrophobic and electrostatic forces. The aggregation-prone regions of insulin are identified and interrelated with biophysical changes during stress conditions. The quest for novel additives, surface-active agents, and bioderived peptides in decelerating insulin aggregation, which results in overall structural stability, is described. We hope this review will help tackle the real-world challenges of insulin aggregation encountered during bioprocessing, ensuring safer, stable, and globally accessible insulin for efficient management of diabetes.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"643-664"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise metabolic modeling in post-omics era: accomplishments and perspectives. 后组学时代的精确代谢建模:成就与展望。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-28 DOI: 10.1080/07388551.2024.2390089
Yawen Kong, Haiqin Chen, Xinlei Huang, Lulu Chang, Bo Yang, Wei Chen

Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.

微生物在合成所需生物产品方面具有可持续和可扩展的特性,因此被广泛应用。然而,对细胞内新陈代谢的认识不足阻碍了微生物的进一步应用。基因组尺度代谢模型(GEM)在促进全面了解细胞代谢机制方面发挥着关键作用。这些模型通过探索微生物的代谢途径和预测潜在靶标,实现了合理的改造,从而在不增加实验成本的情况下对细胞进行精确调控。然而,简化的 GEM 只考虑了基因组信息和网络化学计量,而忽略了其他重要的生物信息,如酶功能、热力学特性和动力学参数。因此,特别是在预测复杂多变系统中的微生物行为时,不确定性依然存在。全息时代的到来,对各种条件下的基因、蛋白质和代谢物进行了大量量化,导致多约束模型和更新算法的蓬勃发展,它们提高了预测能力,拓宽了维度。同时,机器学习(ML)在应用于生物大数据的训练集时,已显示出卓越的分析和预测能力。将 ML 的判别优势与 GEM 相结合,有助于提高机理建模效率和预测准确性。本文概述了 GEM 的研究创新,包括多约束建模、分析方法和 ML 的最新应用,这些创新可为广泛的生物大分子的遗传改良、菌株开发和产量提高提供全面的知识。
{"title":"Precise metabolic modeling in post-omics era: accomplishments and perspectives.","authors":"Yawen Kong, Haiqin Chen, Xinlei Huang, Lulu Chang, Bo Yang, Wei Chen","doi":"10.1080/07388551.2024.2390089","DOIUrl":"10.1080/07388551.2024.2390089","url":null,"abstract":"<p><p>Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"683-701"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic approaches for designing yeast strains as protein secretion and display platforms. 设计酵母菌株作为蛋白质分泌和展示平台的战略方法。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-08-13 DOI: 10.1080/07388551.2024.2385996
Luping Xu, Xingjian Bai, Eun Joong Oh

Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.

酵母具有良好的生物学特性和广泛的基因修饰工具,已被确立为表达功能分子的多功能平台。与原核系统相比,酵母拥有先进的细胞机制,可确保蛋白质的精确折叠和翻译后修饰。这些能力对于表达源自人类的功能性蛋白质尤为有利。然而,将酵母菌株设计为蛋白质表达平台需要整合分子和细胞功能。本综述深入探讨了基于酵母的表达系统的复杂性,旨在让研究人员掌握相关知识,充分利用酵母作为功能平台来生产各种蛋白质。这篇综述探讨了宿主菌株、基因盒结构以及最大限度提高表达系统效率的注意事项。通过深入分析,本综述预计将激励酵母生物技术和蛋白质工程领域的进一步创新。
{"title":"Strategic approaches for designing yeast strains as protein secretion and display platforms.","authors":"Luping Xu, Xingjian Bai, Eun Joong Oh","doi":"10.1080/07388551.2024.2385996","DOIUrl":"10.1080/07388551.2024.2385996","url":null,"abstract":"<p><p>Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"491-508"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. 废水中的病毒和细菌、学术界和实地部署之间的监控和生物传感器。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-07-07 DOI: 10.1080/07388551.2024.2354709
Rajendra Singh, Jaewon Ryu, Woo Hyoung Lee, Joo-Hyon Kang, Sanghwa Park, Keugtae Kim

Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.

废水是一个复杂但理想的疾病监测和监控矩阵,因为它代表了当地集水区的全部肠道病原体负荷。它既能捕捉到临床疾病负担,也能捕捉到社区疾病负担。全球对废水监测的兴趣一直在迅速增长,以用于传染病监测和提供潜在疾病爆发的早期预警。虽然分子检测方法在监测废水中的病原体方面显示出较高的灵敏度和特异性,但它们受到各种挑战的严重限制,包括昂贵的实验室环境和漫长的样品处理和分析时间。另外,生物传感器在实时监测生物和化学标记物方面具有广泛的实用性。然而,由于废水基质复杂,样品处理和病原体浓缩步骤耗时较长,这对生物传感器的实地应用构成了主要挑战。本综述总结了废水监测的作用,并概述了具有传染性的病毒和细菌病原体及其尖端检测技术。它强调了生物传感器在病原体监测中的实际效用、废水病原体监测的主要瓶颈,以及现场部署生物传感器实时检测病原体的克服方法。此外,还讨论了新型机器学习算法在解决废水数据不确定性方面的巨大潜力。
{"title":"Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment.","authors":"Rajendra Singh, Jaewon Ryu, Woo Hyoung Lee, Joo-Hyon Kang, Sanghwa Park, Keugtae Kim","doi":"10.1080/07388551.2024.2354709","DOIUrl":"10.1080/07388551.2024.2354709","url":null,"abstract":"<p><p>Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"413-433"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chassis engineering for high light tolerance in microalgae and cyanobacteria. 微藻类和蓝藻耐强光的底盘工程。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-07-10 DOI: 10.1080/07388551.2024.2357368
Biyun Dou, Yang Li, Fangzhong Wang, Lei Chen, Weiwen Zhang

Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.

微藻类和蓝藻的含氧光合作用被认为是加速能源转型和减缓全球变暖的重要底盘。目前,用于大规模应用的光合微生物培养系统遇到了过度光照的压力。强光胁迫会:影响光合效率、降低生产力、限制细胞生长,甚至导致细胞死亡。破译光保护机制和构建耐强光底盘是近年来的研究重点。在本综述中,我们首先简要介绍常见微藻和蓝藻应对强光胁迫的自我保护机制。这些机制主要包括:避免过量光吸收、耗散过量激发能、淬灭过量高能电子、ROS解毒和PSII修复。我们将重点介绍这些机制的物种特异性差异以及最新进展。然后,我们回顾了创建高耐光性底盘的工程策略,例如:缩小光收集天线的尺寸、优化非光化学淬灭、优化光合电子传递以及增强 PSII 修复。最后,我们建议对以下机制进行全面探索:已确定的高耐光性底盘的基础机制、利用创新方法鉴定与高耐光性相关的新基因、利用 CRISPR 系统和人工智能进行底盘工程改造,以及引入植物光保护机制作为未来的研究方向。
{"title":"Chassis engineering for high light tolerance in microalgae and cyanobacteria.","authors":"Biyun Dou, Yang Li, Fangzhong Wang, Lei Chen, Weiwen Zhang","doi":"10.1080/07388551.2024.2357368","DOIUrl":"10.1080/07388551.2024.2357368","url":null,"abstract":"<p><p>Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"257-275"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation. 微生物燃料电池中的电活性生物膜群落,用于协同处理废水和生物发电。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-07-15 DOI: 10.1080/07388551.2024.2372070
Kumari Uma Mahto, Surajit Das

Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa, and Ochrobacterum pseudiintermedium. Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.

日益增长的工业化和城市化导致废水排放量大幅增加,并对现有的自然能源资源造成巨大压力。微生物燃料电池(MFC)是一种利用废水发电的可持续技术。MFC 由生物电化学系统组成,采用了多种好氧和厌氧细菌的电活性生物膜,如硫化 Geobacter、Shewanella oneidensis、铜绿假单胞菌和 Ochrobacterum pseudiintermedium。由于电活性生物膜是 MFC 的重要组成部分,因此了解生物膜介导的污染物代谢和电子传递机制至关重要。对电活性生物膜群落进行工程改造,以改善生物膜的形成和胞外聚合物质(EPS)的分泌,可以对生物电化学系统产生积极影响,并提高燃料电池的性能。这篇综述文章总结了电活性细菌群落在 MFC 废水处理和生物发电中的作用。研究的重点是了解 MFC 中电活性生物膜的组成、结构和功能。研究还讨论了各种电子传递机制,包括直接电子传递(DET)、间接电子传递(IET)和远距离电子传递(LDET)。还详细总结了优化工艺参数和基因工程策略,以提高 MFC 的性能。最后,综述了 MFC 在废水处理、生物发电和生物传感器开发方面的应用。
{"title":"Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation.","authors":"Kumari Uma Mahto, Surajit Das","doi":"10.1080/07388551.2024.2372070","DOIUrl":"10.1080/07388551.2024.2372070","url":null,"abstract":"<p><p>Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as <i>Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa,</i> and <i>Ochrobacterum pseudiintermedium.</i> Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"434-453"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1