首页 > 最新文献

Current drug metabolism最新文献

英文 中文
Regulation of Gut Microbiota by Herbal Medicines 草药对肠道微生物群的调节作用
IF 2.3 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-04 DOI: 10.2174/0113892002287336240328083220
Yogita Shinde, Gitanjali Deokar
: Preserving host health and homeostasis is largely dependent on the human gut microbiome, a varied and ever-changing population of bacteria living in the gastrointestinal tract. This article aims to explore the multifaceted functions of the gut microbiome and shed light on the evolving field of research investigating the impact of herbal medicines on both the composition and functionality of the gut microbiome. Through a comprehensive overview, we aim to provide insights into the intricate relationship between herbal remedies and the gut microbiome, fostering a better understanding of their potential implications for human health.The gut microbiota is composed of trillions of microorganisms, predominantly bacteria, but also viruses, fungi, and archaea. It functions as a complex ecosystem that interacts with the host in various ways. It aids in nutrient metabolism, modulates the immune system, provides protection against pathogens, and influences host physiology. Moreover, it has been linked to a range of health outcomes, including digestion, metabolic health, and even mental well-being. Recent research has shed light on the potential of herbal medicines to modulate the gut microbiome. Herbal medicines, derived from plants and often used in traditional medicine systems, contain a diverse array of phytochemicals, which can directly or indirectly impact gut microbial composition. These phytochemicals can either act as prebiotics, promoting the growth of beneficial bacteria, or possess antimicrobial properties, targeting harmful pathogens. Several studies have demonstrated the effects of specific herbal medicines on the gut microbiome. For example, extracts from herbs have been shown to enhance the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while reducing potentially harmful microbes. Moreover, herbal medicines have exhibited promising antimicrobial effects against certain pathogenic bacteria. The modulation of the gut microbiome by herbal medicines has potential therapeutic implications. Research suggests herbal interventions could be harnessed to alleviate gastrointestinal disorders, support immune function, and even impact metabolic health. However, it is important to note that individual responses to herbal treatments can vary due to genetics, diet, and baseline microbiome composition.
:维护宿主健康和平衡在很大程度上取决于人类肠道微生物组,即生活在胃肠道中的各种不断变化的细菌群。本文旨在探讨肠道微生物组的多方面功能,并阐明中草药对肠道微生物组的组成和功能的影响这一不断发展的研究领域。肠道微生物群由数万亿微生物组成,主要是细菌,也包括病毒、真菌和古细菌。肠道微生物群是一个复杂的生态系统,以各种方式与宿主相互作用。它有助于营养代谢,调节免疫系统,提供抵御病原体的保护,并影响宿主的生理机能。此外,它还与一系列健康结果有关,包括消化、新陈代谢健康甚至心理健康。最近的研究揭示了草药调节肠道微生物组的潜力。中草药源自植物,通常用于传统医学体系,含有多种植物化学物质,可直接或间接影响肠道微生物组成。这些植物化学物质既可以作为益生元,促进有益细菌的生长,也可以具有抗菌特性,针对有害病原体。一些研究已经证明了特定草药对肠道微生物组的影响。例如,从草药中提取的精华被证明能提高有益菌(如双歧杆菌和乳酸杆菌)的数量,同时减少潜在的有害微生物。此外,草药对某些致病菌也有很好的抗菌效果。草药对肠道微生物组的调节具有潜在的治疗意义。研究表明,可以利用草药干预来缓解胃肠道疾病,支持免疫功能,甚至影响代谢健康。不过,值得注意的是,由于遗传、饮食和微生物组基线组成的不同,个体对草药治疗的反应也会有所不同。
{"title":"Regulation of Gut Microbiota by Herbal Medicines","authors":"Yogita Shinde, Gitanjali Deokar","doi":"10.2174/0113892002287336240328083220","DOIUrl":"https://doi.org/10.2174/0113892002287336240328083220","url":null,"abstract":": Preserving host health and homeostasis is largely dependent on the human gut microbiome, a varied and ever-changing population of bacteria living in the gastrointestinal tract. This article aims to explore the multifaceted functions of the gut microbiome and shed light on the evolving field of research investigating the impact of herbal medicines on both the composition and functionality of the gut microbiome. Through a comprehensive overview, we aim to provide insights into the intricate relationship between herbal remedies and the gut microbiome, fostering a better understanding of their potential implications for human health.The gut microbiota is composed of trillions of microorganisms, predominantly bacteria, but also viruses, fungi, and archaea. It functions as a complex ecosystem that interacts with the host in various ways. It aids in nutrient metabolism, modulates the immune system, provides protection against pathogens, and influences host physiology. Moreover, it has been linked to a range of health outcomes, including digestion, metabolic health, and even mental well-being. Recent research has shed light on the potential of herbal medicines to modulate the gut microbiome. Herbal medicines, derived from plants and often used in traditional medicine systems, contain a diverse array of phytochemicals, which can directly or indirectly impact gut microbial composition. These phytochemicals can either act as prebiotics, promoting the growth of beneficial bacteria, or possess antimicrobial properties, targeting harmful pathogens. Several studies have demonstrated the effects of specific herbal medicines on the gut microbiome. For example, extracts from herbs have been shown to enhance the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while reducing potentially harmful microbes. Moreover, herbal medicines have exhibited promising antimicrobial effects against certain pathogenic bacteria. The modulation of the gut microbiome by herbal medicines has potential therapeutic implications. Research suggests herbal interventions could be harnessed to alleviate gastrointestinal disorders, support immune function, and even impact metabolic health. However, it is important to note that individual responses to herbal treatments can vary due to genetics, diet, and baseline microbiome composition.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"30 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory Effects of Tricyclic Antidepressants on Human Liver Microsomal Morphine Glucuronidation: Application of IVIVE to Predict Potential Drug-Drug Interactions in Humans 三环类抗抑郁药对人体肝脏微粒体吗啡葡萄糖醛酸化的抑制作用:应用 IVIVE 预测人类潜在的药物相互作用
IF 2.3 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-05 DOI: 10.2174/0113892002270594231212090958
Verawan Uchaipichat
Background: Tricyclic antidepressants (TCAs) are commonly co-administered with morphine as an adjuvant analgesic. Nevertheless, there remains a lack of information concerning metabolic drug-drug interactions (DDIs) resulting from TCA inhibition on morphine glucuronidation Objective: This study aimed to (i) examine the inhibitory effects of TCAs (viz., amitriptyline, clomipramine, imipramine, and nortriptyline) on human liver microsomal morphine 3- and 6-glucuronidation and (ii) evaluate the potential of DDI in humans by employing in vitro-in vivo extrapolation (IVIVE) approaches. Method: The inhibition parameters for TCA inhibition on morphine glucuronidation were derived from the in vitro system containing 2% BSA. The Ki values were employed to predict the DDI magnitude in vivo by using static and dynamic mechanistic PBPK approaches Results: TCAs moderately inhibited human liver microsomal morphine glucuronidation, with clomipramine exhibiting the most potent inhibition potency. Amitriptyline, clomipramine, imipramine, and nortriptyline competitively inhibited morphine 3- and 6-glucuronide formation with the respective Ki values of 91 ± 7.5 and 82 ± 11 μM, 23 ± 1.3 and 14 ± 0.7 μM, 103 ± 5 and 90 ± 7 μM, and 115 ± 5 and 110 ± 3 μM. Employing the static mechanistic IVIVE, a prediction showed an estimated 20% elevation in the morphine AUC when co-administered with either clomipramine or imipramine, whereas the predicted increase was
背景:三环类抗抑郁药(TCAs)通常与吗啡合用,作为辅助镇痛药。然而,关于 TCA 对吗啡葡萄糖醛酸化的抑制作用所导致的代谢性药物间相互作用(DDIs)的信息仍然缺乏:本研究旨在:(i) 研究 TCAs(即阿米替林、氯米帕明、丙咪嗪和去甲替林)对人体肝脏微粒体吗啡 3- 和 6-葡萄糖醛酸化的抑制作用;(ii) 采用体外-体内外推法(IVIVE)评估 DDI 在人体中的潜在作用。方法:从含有 2% BSA 的体外系统中得出 TCA 对吗啡葡萄糖醛酸化的抑制参数。采用静态和动态机理 PBPK 方法,利用 Ki 值预测体内 DDI 的大小:三氯乙酸类药物对人肝脏微粒体吗啡葡萄糖醛酸化作用有中度抑制作用,其中氯米帕明的抑制效力最强。阿米替林、氯米帕明、丙咪嗪和去甲替林竞争性抑制吗啡 3 和 6-葡萄糖醛酸的形成,其 Ki 值分别为 91 ± 7.5 和 82 ± 11 μM、23 ± 1.3 和 14 ± 0.7 μM、103 ± 5 和 90 ± 7 μM,以及 115 ± 5 和 110 ± 3 μM。采用静态机理 IVIVE 预测显示,与氯米帕明或丙咪嗪合用时,吗啡的 AUC 估计会升高 20%,而预测的升高幅度是
{"title":"Inhibitory Effects of Tricyclic Antidepressants on Human Liver Microsomal Morphine Glucuronidation: Application of IVIVE to Predict Potential Drug-Drug Interactions in Humans","authors":"Verawan Uchaipichat","doi":"10.2174/0113892002270594231212090958","DOIUrl":"https://doi.org/10.2174/0113892002270594231212090958","url":null,"abstract":" Background: Tricyclic antidepressants (TCAs) are commonly co-administered with morphine as an adjuvant analgesic. Nevertheless, there remains a lack of information concerning metabolic drug-drug interactions (DDIs) resulting from TCA inhibition on morphine glucuronidation Objective: This study aimed to (i) examine the inhibitory effects of TCAs (viz., amitriptyline, clomipramine, imipramine, and nortriptyline) on human liver microsomal morphine 3- and 6-glucuronidation and (ii) evaluate the potential of DDI in humans by employing in vitro-in vivo extrapolation (IVIVE) approaches. Method: The inhibition parameters for TCA inhibition on morphine glucuronidation were derived from the in vitro system containing 2% BSA. The Ki values were employed to predict the DDI magnitude in vivo by using static and dynamic mechanistic PBPK approaches Results: TCAs moderately inhibited human liver microsomal morphine glucuronidation, with clomipramine exhibiting the most potent inhibition potency. Amitriptyline, clomipramine, imipramine, and nortriptyline competitively inhibited morphine 3- and 6-glucuronide formation with the respective Ki values of 91 ± 7.5 and 82 ± 11 μM, 23 ± 1.3 and 14 ± 0.7 μM, 103 ± 5 and 90 ± 7 μM, and 115 ± 5 and 110 ± 3 μM. Employing the static mechanistic IVIVE, a prediction showed an estimated 20% elevation in the morphine AUC when co-administered with either clomipramine or imipramine, whereas the predicted increase was ","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"111 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139396630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug-Protein Interactions Prediction Models Using Feature Selection and Classification Techniques 使用特征选择和分类技术的药物-蛋白质相互作用预测模型
IF 2.3 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-05 DOI: 10.2174/0113892002268739231211063718
T. Idhaya, A. Suruliandi, S. P. Raja
Background: Drug-Protein Interaction (DPI) identification is crucial in drug discovery. The high dimensionality of drug and protein features poses challenges for accurate interaction prediction, necessitating the use of computational techniques. Docking-based methods rely on 3D structures, while ligand-based methods have limitations such as reliance on known ligands and neglecting protein structure. Therefore, the preferred approach is the chemogenomics-based approach using machine learning, which considers both drug and protein characteristics for DPI prediction. Methods: In machine learning, feature selection plays a vital role in improving model performance, reducing overfitting, enhancing interpretability, and making the learning process more efficient. It helps extract meaningful patterns from drug and protein data while eliminating irrelevant or redundant information, resulting in more effective machine-learning models. On the other hand, classification is of great importance as it enables pattern recognition, decision-making, predictive modeling, anomaly detection, data exploration, and automation. It empowers machines to make accurate predictions and facilitates efficient decision-making in DPI prediction. For this research work, protein data was sourced from the KEGG database, while drug data was obtained from the DrugBank data machine-learning base. Results: To address the issue of imbalanced Drug Protein Pairs (DPP), different balancing techniques like Random Over Sampling (ROS), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive SMOTE were employed. Given the large number of features associated with drugs and proteins, feature selection becomes necessary. Various feature selection methods were evaluated: Correlation, Information Gain (IG), Chi-Square (CS), and Relief. Multiple classification methods, including Support Vector Machines (SVM), Random Forest (RF), Adaboost, and Logistic Regression (LR), were used to predict DPI. Finally, this research identifies the best balancing, feature selection, and classification methods for accurate DPI prediction. Conclusion: This comprehensive approach aims to overcome the limitations of existing methods and provide more reliable and efficient predictions in drug-protein interaction studies.
背景:药物-蛋白质相互作用(DPI)的鉴定在药物发现中至关重要。药物和蛋白质特征的高维度给准确预测相互作用带来了挑战,因此有必要使用计算技术。基于 Docking 的方法依赖于三维结构,而基于配体的方法有其局限性,如依赖于已知配体和忽略蛋白质结构。因此,首选的方法是基于化学基因组学的机器学习方法,这种方法在预测 DPI 时同时考虑了药物和蛋白质的特征。方法:在机器学习中,特征选择在提高模型性能、减少过拟合、增强可解释性以及提高学习过程效率方面起着至关重要的作用。它有助于从药物和蛋白质数据中提取有意义的模式,同时消除无关或冗余信息,从而建立更有效的机器学习模型。另一方面,分类也非常重要,因为它可以实现模式识别、决策、预测建模、异常检测、数据探索和自动化。它使机器能够做出准确的预测,并促进 DPI 预测中的高效决策。在这项研究工作中,蛋白质数据来自 KEGG 数据库,而药物数据则来自 DrugBank 数据机器学习库。研究结果为了解决药物蛋白质对(DPP)不平衡的问题,我们采用了不同的平衡技术,如随机过度采样(ROS)、合成少数过度采样技术(SMOTE)和自适应 SMOTE。鉴于与药物和蛋白质相关的特征数量庞大,特征选择变得十分必要。对各种特征选择方法进行了评估:相关性、信息增益 (IG)、Chi-Square (CS) 和救济。多种分类方法,包括支持向量机 (SVM)、随机森林 (RF)、Adaboost 和逻辑回归 (LR) 被用于预测 DPI。最后,本研究确定了准确预测 DPI 的最佳平衡、特征选择和分类方法。结论这种综合方法旨在克服现有方法的局限性,为药物蛋白相互作用研究提供更可靠、更高效的预测。
{"title":"Drug-Protein Interactions Prediction Models Using Feature Selection and Classification Techniques","authors":"T. Idhaya, A. Suruliandi, S. P. Raja","doi":"10.2174/0113892002268739231211063718","DOIUrl":"https://doi.org/10.2174/0113892002268739231211063718","url":null,"abstract":"Background: Drug-Protein Interaction (DPI) identification is crucial in drug discovery. The high dimensionality of drug and protein features poses challenges for accurate interaction prediction, necessitating the use of computational techniques. Docking-based methods rely on 3D structures, while ligand-based methods have limitations such as reliance on known ligands and neglecting protein structure. Therefore, the preferred approach is the chemogenomics-based approach using machine learning, which considers both drug and protein characteristics for DPI prediction. Methods: In machine learning, feature selection plays a vital role in improving model performance, reducing overfitting, enhancing interpretability, and making the learning process more efficient. It helps extract meaningful patterns from drug and protein data while eliminating irrelevant or redundant information, resulting in more effective machine-learning models. On the other hand, classification is of great importance as it enables pattern recognition, decision-making, predictive modeling, anomaly detection, data exploration, and automation. It empowers machines to make accurate predictions and facilitates efficient decision-making in DPI prediction. For this research work, protein data was sourced from the KEGG database, while drug data was obtained from the DrugBank data machine-learning base. Results: To address the issue of imbalanced Drug Protein Pairs (DPP), different balancing techniques like Random Over Sampling (ROS), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive SMOTE were employed. Given the large number of features associated with drugs and proteins, feature selection becomes necessary. Various feature selection methods were evaluated: Correlation, Information Gain (IG), Chi-Square (CS), and Relief. Multiple classification methods, including Support Vector Machines (SVM), Random Forest (RF), Adaboost, and Logistic Regression (LR), were used to predict DPI. Finally, this research identifies the best balancing, feature selection, and classification methods for accurate DPI prediction. Conclusion: This comprehensive approach aims to overcome the limitations of existing methods and provide more reliable and efficient predictions in drug-protein interaction studies.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"79 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altitude effect on Propofol Pharmacokinetics in Rats. 海拔高度对大鼠丙泊酚药代动力学的影响
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002285571240220131547
Lijun Li, Xuejun Wang, Sheng Wang, Li Wen, Haopeng Zhang

Background: Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.

Methods: Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.

Results: We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, andthe recovery time was prolonged with increased altitude. Compared with the plain group, the clearance ofPropofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration,and average residence time extension increased.

Conclusion: The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.

背景介绍丙泊酚是一种用于临床麻醉的静脉注射剂。由于低压缺氧环境(青藏地区,海拔:2800-4300 m,PaO2:15.1-12.4 kPa)对丙泊酚代谢的影响较为复杂,有关丙泊酚在高海拔地区代谢特征的研究结果尚不明确。本研究旨在通过动物实验研究丙泊酚在高海拔缺氧环境下的药代动力学特征:方法:将大鼠随机分为三组:高海拔组、中海拔组和普通组。大鼠右反射消失和恢复的时间分别记录为麻醉诱导时间和苏醒时间。采用气相色谱-质谱法测定血浆中丙泊酚的浓度。使用药代动力学分析软件分析血药浓度,得出药代动力学参数:结果:丙泊酚麻醉大鼠时,随着海拔的升高,麻醉诱导时间缩短,恢复时间延长。与普通组相比,丙泊酚的清除率降低,而半衰期、浓度-时间曲线下面积、血浆峰浓度和平均停留时间延长:结论:在高海拔缺氧环境中,丙泊酚的药代动力学特征会发生显著变化。
{"title":"Altitude effect on Propofol Pharmacokinetics in Rats.","authors":"Lijun Li, Xuejun Wang, Sheng Wang, Li Wen, Haopeng Zhang","doi":"10.2174/0113892002285571240220131547","DOIUrl":"10.2174/0113892002285571240220131547","url":null,"abstract":"<p><strong>Background: </strong>Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.</p><p><strong>Methods: </strong>Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.</p><p><strong>Results: </strong>We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and\u0000the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of\u0000Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration,\u0000and average residence time extension increased.</p><p><strong>Conclusion: </strong>The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"81-90"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: In-Vitro Studies and Literature Review. 基于羧酸酯酶 1 的雷马唑仑药物相互作用潜力:体外研究和文献综述。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002308233240801104910
Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr

Background: The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).

Objective: Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.

Methods: Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible in-vivo inhibition using pharmacokinetic and Ki or IC50 values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.

Results: In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC50 values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam via CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible in-vivo inhibitors of remimazolam metabolism.

Conclusion: Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.

背景:被批准用于手术镇静和全身麻醉的超短效苯二氮卓类药物雷马唑仑会被羧酸酯酶1(CES1)灭活:目的:研究雷马唑仑在 CES1 介导的药物间相互作用(DDI)中的参与情况:方法:在与 11 种不同药物的共同暴露实验中研究了雷马唑仑可能产生的相互作用。此外,还利用药代动力学和 Ki 或 IC50 值评估了文献中确定的 CES1 底物和抑制剂在体内可能产生的抑制作用。对于只有一种已发表的抑制浓度的化合物和缺乏抑制数据的 CES1 底物,则采用保守的 Ki 值:在人肝匀浆和/或血细胞中,雷马唑仑对艾司洛尔和兰地洛尔的代谢无明显抑制作用,而艾司洛尔和兰地洛尔在人肝匀浆中的水解抑制浓度分别高达 98 μM 和 169 μM。在人体肝脏 S9 馏分中,IC50 值从 0.69 μM(辛伐他汀)和 57 μM(地尔硫卓)到大于 100 μM(阿托伐他汀)不等,其余测试项目(布丙酚、卡维地洛、奈非那韦、硝苯地平和替米沙坦)的 IC50 值从 126 μM 到 658 μM不等。Remifentanil 在 1250 μM 时也无效。符合指导原则的评估显示,通过 CES1 与雷米马唑仑没有相关的药物相互作用。基于算法的预测结果与人体研究数据一致。在文献中发现的CES1抑制剂和底物中,只有达哌酮和鲁非那胺可能是瑞马唑仑体内代谢的抑制剂:数据和分析表明,由 CES1 介导的雷马唑仑药代动力学 DDIs 可能性很低。理论方法和汇编的数据并非仅针对雷马唑仑,因此也适用于对其他 CES1 底物的评估。
{"title":"Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: <i>In-Vitro</i> Studies and Literature Review.","authors":"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr","doi":"10.2174/0113892002308233240801104910","DOIUrl":"10.2174/0113892002308233240801104910","url":null,"abstract":"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.</p><p><strong>Methods: </strong>Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible <i>in-vivo</i> inhibition using pharmacokinetic and Ki or IC<sub>50</sub> values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.</p><p><strong>Results: </strong>In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC<sub>50</sub> values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam <i>via</i> CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible <i>in-vivo</i> inhibitors of remimazolam metabolism.</p><p><strong>Conclusion: </strong>Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"431-445"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hallmarks of Quercetin Benefits as a Functional Supplementary in the Management of Diabetes Mellitus-Related Maladies: From Basic to Clinical Applications. 槲皮素在糖尿病相关疾病治疗中的功能补充:从基础到临床应用
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002339410250108031621
Faegheh Farhadi, Fariba Sharififar, Mandana Jafari, Vafa Baradaran Rahimi, Nafiseh Askari, Vahid Reza Askari

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance. Moreover, QE stimulates insulin secretion and attenuates insulin resistance through various pathways, namely transient KATP channel, motivating peroxisome proliferator-activated receptor expression, increasing glucose transporter-4, and decreasing inducible nitric oxide synthase in skeletal muscle. QE has protective effects on the complications caused by diabetes, such as polycystic ovary syndrome, high-fat diet-induced obesity, diabetic-induced hepatic damage, vascular inflammation, nephropathy, and neuropathy.

槲皮素(QE)是一种特殊的类黄酮,因其抗氧化、降糖和抗炎作用而闻名。本文综述了QE对stz诱导的糖尿病、四氧嘧啶诱导的糖尿病及其并发症的影响,重点介绍了体外、体内和临床试验。因此,QE介导了多种机制,包括改善肿瘤坏死因子(TNF)-α、活化B细胞的核因子κB轻链增强子(NF-κB)、白细胞介素(IL)-1β、IL-8和IL-10的表达,增加胰岛素葡萄糖摄取以抑制胰岛素抵抗。此外,QE通过多种途径刺激胰岛素分泌,减轻胰岛素抵抗,即瞬时KATP通道,促进过氧化物酶体增殖激活受体表达,增加葡萄糖转运体-4,降低骨骼肌诱导型一氧化氮合酶。QE对糖尿病引起的并发症,如多囊卵巢综合征、高脂饮食引起的肥胖、糖尿病引起的肝损害、血管炎症、肾病、神经病变等均有保护作用。
{"title":"Hallmarks of Quercetin Benefits as a Functional Supplementary in the Management of Diabetes Mellitus-Related Maladies: From Basic to Clinical Applications.","authors":"Faegheh Farhadi, Fariba Sharififar, Mandana Jafari, Vafa Baradaran Rahimi, Nafiseh Askari, Vahid Reza Askari","doi":"10.2174/0113892002339410250108031621","DOIUrl":"10.2174/0113892002339410250108031621","url":null,"abstract":"<p><p>Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance. Moreover, QE stimulates insulin secretion and attenuates insulin resistance through various pathways, namely transient KATP channel, motivating peroxisome proliferator-activated receptor expression, increasing glucose transporter-4, and decreasing inducible nitric oxide synthase in skeletal muscle. QE has protective effects on the complications caused by diabetes, such as polycystic ovary syndrome, high-fat diet-induced obesity, diabetic-induced hepatic damage, vascular inflammation, nephropathy, and neuropathy.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"653-669"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cross-sectional Comparative Analysis of Eleven Population Pharmacokinetic Models for Docetaxel in Chinese Breast Cancer Patients. 多西他赛在中国乳腺癌患者中的十一种人群药代动力学模型横断面比较分析
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002322494240816032948
Genzhu Wang, Qiang Sun, Xiaojing Li, Shenghui Mei, Shihui Li, Zhongdong Li

Objective: Various population pharmacokinetic (PPK) models have been established to help determine the appropriate dosage of docetaxel, however, no clear consensus on optimal dosing has been achieved. The purpose of this study is to perform an external evaluation of published models in order to test their predictive performance, and to find an appropriate PPK model for Chinese breast cancer patients.

Methods: A systematic literature search of docetaxel PPK models was performed using PubMed, Web of Science, China National Knowledge Infrastructure, and WanFang databases. The predictive performance of eleven identified models was evaluated using prediction-based and simulation-based diagnostics on an independent dataset (112 docetaxel concentrations from 56 breast cancer patients). The -2×log (likelihood) and Akaike information criterion were also calculated to evaluate model fit.

Results: The median prediction error of eight of the eleven models was less than 10%. The model fitting results showed that the three-compartment model of Bruno et al. had the best prediction performance and that the three compartment model of Wang et al. had the best simulation effect. Furthermore, although the covariates that significantly affect PK parameters were different between them, seven models demonstrated that docetaxel PK parameters were influenced by liver function.

Conclusions: Three compartment PPK models may be predictive of optimal docetaxel dosage for Chinese breast cancer patients. However, for patients with impaired liver function, the choice of which model to use to predict the blood concentration of docetaxel still requires great care.

目的:目前已经建立了多种群体药代动力学(PPK)模型,以帮助确定多西他赛的合适剂量,但尚未就最佳剂量达成明确共识。本研究旨在对已发表的模型进行外部评估,以检验其预测性能,并找到适合中国乳腺癌患者的 PPK 模型:方法:利用PubMed、Web of Science、中国国家知识基础设施和万方数据库对多西他赛PPK模型进行了系统的文献检索。在一个独立数据集(56 名乳腺癌患者的 112 个多西他赛浓度)上,使用基于预测和基于模拟诊断的方法评估了 11 个已确定模型的预测性能。同时还计算了-2×log(似然比)和阿凯克信息准则,以评估模型的拟合度:结果:11 个模型中有 8 个模型的中位预测误差小于 10%。模型拟合结果显示,Bruno 等人的三室模型预测效果最好,Wang 等人的三室模型模拟效果最好。此外,尽管对PK参数有显著影响的协变量不同,但七个模型都表明多西他赛的PK参数受肝功能的影响:结论:三区室PPK模型可预测中国乳腺癌患者多西他赛的最佳用药剂量。结论:三腔PPK模型可以预测中国乳腺癌患者多西他赛的最佳用药剂量,但对于肝功能受损的患者来说,选择哪种模型来预测多西他赛的血药浓度仍需慎重。
{"title":"A Cross-sectional Comparative Analysis of Eleven Population Pharmacokinetic Models for Docetaxel in Chinese Breast Cancer Patients.","authors":"Genzhu Wang, Qiang Sun, Xiaojing Li, Shenghui Mei, Shihui Li, Zhongdong Li","doi":"10.2174/0113892002322494240816032948","DOIUrl":"10.2174/0113892002322494240816032948","url":null,"abstract":"<p><strong>Objective: </strong>Various population pharmacokinetic (PPK) models have been established to help determine the appropriate dosage of docetaxel, however, no clear consensus on optimal dosing has been achieved. The purpose of this study is to perform an external evaluation of published models in order to test their predictive performance, and to find an appropriate PPK model for Chinese breast cancer patients.</p><p><strong>Methods: </strong>A systematic literature search of docetaxel PPK models was performed using PubMed, Web of Science, China National Knowledge Infrastructure, and WanFang databases. The predictive performance of eleven identified models was evaluated using prediction-based and simulation-based diagnostics on an independent dataset (112 docetaxel concentrations from 56 breast cancer patients). The -2×log (likelihood) and Akaike information criterion were also calculated to evaluate model fit.</p><p><strong>Results: </strong>The median prediction error of eight of the eleven models was less than 10%. The model fitting results showed that the three-compartment model of Bruno et al. had the best prediction performance and that the three compartment model of Wang et al. had the best simulation effect. Furthermore, although the covariates that significantly affect PK parameters were different between them, seven models demonstrated that docetaxel PK parameters were influenced by liver function.</p><p><strong>Conclusions: </strong>Three compartment PPK models may be predictive of optimal docetaxel dosage for Chinese breast cancer patients. However, for patients with impaired liver function, the choice of which model to use to predict the blood concentration of docetaxel still requires great care.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"479-488"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safety Issues of Herb-Warfarin Interactions. 草药与华法林相互作用的安全问题。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002290846240228061506
Subhajit Hazra, Preet Amol Singh, Neha Bajwa

Warfarin is a popular anticoagulant with high global demand. However, studies have underlined serious safety issues when warfarin is consumed concomitantly with herbs or its formulations. This review aimed to highlight the mechanisms behind herb-warfarin interactions while laying special emphasis on its PKPD interactions and evidence on Herb-Warfarin Interaction (HWI) with regards to three different scenarios, such as when warfarin is consumed with herbs, taken as foods or prescribed as medicine, or when used in special situations. A targeted literature methodology involving different scientific databases was adopted for acquiring information on the subject of HWIs. Results of the present study revealed some of the fatal consequences of HWI, including post-operative bleeding, thrombosis, subarachnoid hemorrhage, and subdural hematomas occurring as a result of interactions between warfarin and herbs or commonly associated food products from Hypericum perforatum, Zingiber officinale, Vaccinium oxycoccos, Citrus paradisi, and Punica granatum. In terms of PK-PD parameters, herbs, such as Coptis chinensis Franch. and Phellodendron amurense Rupr., were found to compete with warfarin for binding with plasma proteins, leading to an increase in free warfarin levels in the bloodstream, resulting in its augmented antithrombic effect. Besides, HWIs were also found to decrease International Normalised Ratio (INR) levels following the consumption of Persea americana or avocado. Therefore, there is an urgent need for an up-to-date interaction database to educate patients and healthcare providers on these interactions, besides promoting the adoption of novel technologies, such as natural language processing, by healthcare professionals to guide them in making informed decisions to avoid HWIs.

华法林是一种广受欢迎的抗凝血剂,全球需求量很大。然而,研究强调了华法林与中草药或其制剂同时服用时的严重安全性问题。本综述旨在强调中草药与华法林相互作用背后的机制,同时特别强调其在 PKPD 方面的相互作用,以及在三种不同情况下中草药与华法林相互作用(HWI)的证据,例如当华法林与作为食物或处方药的中草药同时服用时,或在特殊情况下使用时。本研究采用了一种有针对性的文献研究方法,通过不同的科学数据库来获取有关 HWI 的信息。本研究的结果揭示了 HWI 的一些致命后果,包括术后出血、血栓形成、蛛网膜下腔出血和硬膜下血肿,这些都是由于华法林与贯叶连翘、细辛、越桔、枸橘和石榴等中草药或常见相关食品之间的相互作用而引起的。在 PK-PD 参数方面,研究发现黄连和黄柏等中草药会与华法林竞争与血浆蛋白的结合,导致血液中游离华法林的水平增加,从而增强其抗血栓作用。此外,研究还发现,食用 Persea americana 或牛油果后,HWIs 还能降低国际正常比(INR)水平。因此,除了促进医疗保健专业人员采用新技术(如自然语言处理)来指导他们做出明智的决定以避免 HWIs 外,还迫切需要一个最新的相互作用数据库来教育患者和医疗保健提供者有关这些相互作用的知识。
{"title":"Safety Issues of Herb-Warfarin Interactions.","authors":"Subhajit Hazra, Preet Amol Singh, Neha Bajwa","doi":"10.2174/0113892002290846240228061506","DOIUrl":"10.2174/0113892002290846240228061506","url":null,"abstract":"<p><p>Warfarin is a popular anticoagulant with high global demand. However, studies have underlined serious safety issues when warfarin is consumed concomitantly with herbs or its formulations. This review aimed to highlight the mechanisms behind herb-warfarin interactions while laying special emphasis on its PKPD interactions and evidence on Herb-Warfarin Interaction (HWI) with regards to three different scenarios, such as when warfarin is consumed with herbs, taken as foods or prescribed as medicine, or when used in special situations. A targeted literature methodology involving different scientific databases was adopted for acquiring information on the subject of HWIs. Results of the present study revealed some of the fatal consequences of HWI, including post-operative bleeding, thrombosis, subarachnoid hemorrhage, and subdural hematomas occurring as a result of interactions between warfarin and herbs or commonly associated food products from <i>Hypericum perforatum, Zingiber officinale, Vaccinium oxycoccos, Citrus paradisi</i>, and <i>Punica granatum</i>. In terms of PK-PD parameters, herbs, such as <i>Coptis chinensis</i> Franch. and <i>Phellodendron amurense</i> Rupr., were found to compete with warfarin for binding with plasma proteins, leading to an increase in free warfarin levels in the bloodstream, resulting in its augmented antithrombic effect. Besides, HWIs were also found to decrease International Normalised Ratio (INR) levels following the consumption of Persea americana or avocado. Therefore, there is an urgent need for an up-to-date interaction database to educate patients and healthcare providers on these interactions, besides promoting the adoption of novel technologies, such as natural language processing, by healthcare professionals to guide them in making informed decisions to avoid HWIs.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"13-27"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine. P 糖蛋白在调节 Yunaconitine 的药效、毒性和药代动力学中的作用
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002302427240801072910
Xiaocui Li, Qi Liang, Caiyan Wang, Huawei Qiu, Tingting Lin, Wentao Li, Rong Zhang, Zhongqiu Liu, Lijun Zhu

Background: Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing Aconitum species; however, its underlying mechanism remains unclear.

Objective: The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC.

Methods: The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined via male Mdr1a gene knocked-out mice and wild-type FVB mice.

Results: The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a-/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD50) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a-/- mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a-/- mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a-/- and wild-type FVB mice.

Conclusion: YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.

背景:云乌头碱(YAC)是一种隐性毒素,极大地威胁着服用含乌头类中药的患者的生命安全,但其潜在机制仍不清楚:本研究旨在阐明P-糖蛋白(P-gp)在调节YAC药效、毒性和药代动力学方面的功能:方法:使用 Caco-2 单层膜结合 P-gp 抑制剂维拉帕米,探讨 P-gp 对雅克的外流功能。通过雄性 Mdr1a 基因敲除小鼠和野生型 FVB 小鼠确定 P-gp 对调节 YAC 的镇痛和抗炎作用、急性毒性、组织分布和药代动力学的影响:结果:维拉帕米的存在明显降低了 YAC 在 Caco- 2 单层细胞中的外流率,从 20.41 降至 1.07(P < 0.05)。此外,与野生型 FVB 小鼠相比,口服 0.07 和 0.14 mg/kg YAC 可使 Mdr1a-/- 小鼠的蠕动时间分别减少 23.53% 和 49.27%(P < 0.05)。此外,P-gp的缺乏还显著降低了YAC的半致死剂量(LD50),从2.13毫克/千克降至0.24毫克/千克(P < 0.05)。此外,Mdr1a-/-小鼠组织中的YAC浓度在统计学上高于野生型FVB小鼠(P < 0.05)。特别是,与野生型FVB小鼠相比,口服YAC 30分钟和120分钟后,Mdr1a-/-小鼠脑内YAC的蓄积量分别显著增加了12倍和19倍(P < 0.05)。Mdr1a-/-和野生型FVB小鼠的YAC药代动力学特征无明显差异:结论:YAC是P-gp的敏感底物。结论:YAC 是一种敏感的 P-gp 底物,P-gp 的缺失会通过上调 YAC 在大脑中的蓄积而增强其镇痛效果和毒性。与 P-gp 抑制剂合用可能会导致严重的 YAC 中毒。
{"title":"Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine.","authors":"Xiaocui Li, Qi Liang, Caiyan Wang, Huawei Qiu, Tingting Lin, Wentao Li, Rong Zhang, Zhongqiu Liu, Lijun Zhu","doi":"10.2174/0113892002302427240801072910","DOIUrl":"10.2174/0113892002302427240801072910","url":null,"abstract":"<p><strong>Background: </strong>Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing <i>Aconitum</i> species; however, its underlying mechanism remains unclear.</p><p><strong>Objective: </strong>The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC.</p><p><strong>Methods: </strong>The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined <i>via</i> male Mdr1a gene knocked-out mice and wild-type FVB mice.</p><p><strong>Results: </strong>The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a<sup>-/-</sup> mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD<sub>50</sub>) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a<sup>-/-</sup> mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a<sup>-/-</sup> mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a<sup>-/-</sup> and wild-type FVB mice.</p><p><strong>Conclusion: </strong>YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"317-329"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Salbutamol on the Disposition Kinetics of Levofloxacin in the Plasma and Lung of Rats. 沙丁胺醇对左氧氟沙星在大鼠血浆和肺中的处置动力学的影响
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002314136240816094609
Murat Ali Cicekler, Halis Oguz, Orhan Corum

Background: Antibiotics and bronchodilator drugs can be used together in respiratory distress caused by bacterial infections. Levofloxacin (LVX) and Salbutamol (SLB) can be used simultaneously in respiratory distress. However, there have been no investigations on how the concurrent use of SLB can affect the pharmacokinetics of LVX in rats.

Objective: The purpose of this study was to investigate the influence of SLB on the plasma and lung pharmacokinetics of LVX in rats.

Methods: A total of 132 rats were randomly assigned to two groups: LVX (n=66) and LVX+SLB (n=66). LVX (intraperitoneal) and SLB (oral) were administered to rats at doses of 50 and 3 mg/kg, respectively. The concentrations of LVX in the plasma and lungs were determined through the utilization of high-performance liquid chromatography along with UV. Pharmacokinetic parameters were assessed by non-compartmental analysis.

Results: The area under the curve from 0 to 16 h (AUC0-16), terminal elimination half-life, volume of distribution, total body clearance, and peak concentration of LVX in the plasma were 42.57 h*μg/mL, 2.32 h, 3.91 L/kg, 1.17 L/h/kg, and 23.96 μg/mL, respectively. There were no alterations observed in the plasma and lung pharmacokinetic parameters of LVX when co-administered with SLB. The AUC0-16 lung/AUC0-16 plasma ratios of LVX were 1.60 and 1.39 after administration alone and co-administration with SLB, respectively.

Conclusion: The concentration of LVX in lung tissue was higher than that in plasma. SLB administration to rats did not affect the plasma and lung pharmacokinetics and lung penetration ratio of LVX. There is a need to reveal the change in the pharmacokinetics of LVX after multiple administration of both drugs and after administration of SLB by different routes.

背景:抗生素和支气管扩张药物可同时用于细菌感染引起的呼吸困难。左氧氟沙星(LVX)和沙丁胺醇(SLB)可同时用于呼吸困难。然而,目前还没有研究表明同时使用沙丁胺醇会如何影响大鼠体内左氧氟沙星的药代动力学:本研究旨在探讨 SLB 对大鼠血浆和肺部 LVX 药代动力学的影响:方法:将 132 只大鼠随机分为两组:方法:将 132 只大鼠随机分为两组:LVX 组(n=66)和 LVX+SLB 组(n=66)。腹腔注射 LVX 和口服 SLB 的剂量分别为 50 毫克/千克和 3 毫克/千克。利用高效液相色谱法和紫外线测定血浆和肺中的 LVX 浓度。药代动力学参数通过非室分析法进行评估:血浆中 LVX 的 0 至 16 h 曲线下面积(AUC0-16)、终末消除半衰期、分布容积、总清除率和峰值浓度分别为 42.57 h*μg/mL、2.32 h、3.91 L/kg、1.17 L/h/kg 和 23.96 μg/mL。与 SLB 同时给药时,LVX 的血浆和肺部药代动力学参数没有发生变化。单独给药和与 SLB 联合给药后,LVX 的 AUC0-16 肺/AUC0-16 血浆比分别为 1.60 和 1.39:结论:肺组织中的 LVX 浓度高于血浆中的浓度。结论:肺组织中的 LVX 浓度高于血浆中的浓度。给大鼠服用 SLB 不会影响 LVX 的血浆和肺药代动力学以及肺渗透比。有必要揭示 LVX 在多次给药和通过不同途径给药 SLB 后的药代动力学变化。
{"title":"Effect of Salbutamol on the Disposition Kinetics of Levofloxacin in the Plasma and Lung of Rats.","authors":"Murat Ali Cicekler, Halis Oguz, Orhan Corum","doi":"10.2174/0113892002314136240816094609","DOIUrl":"10.2174/0113892002314136240816094609","url":null,"abstract":"<p><strong>Background: </strong>Antibiotics and bronchodilator drugs can be used together in respiratory distress caused by bacterial infections. Levofloxacin (LVX) and Salbutamol (SLB) can be used simultaneously in respiratory distress. However, there have been no investigations on how the concurrent use of SLB can affect the pharmacokinetics of LVX in rats.</p><p><strong>Objective: </strong>The purpose of this study was to investigate the influence of SLB on the plasma and lung pharmacokinetics of LVX in rats.</p><p><strong>Methods: </strong>A total of 132 rats were randomly assigned to two groups: LVX (n=66) and LVX+SLB (n=66). LVX (intraperitoneal) and SLB (oral) were administered to rats at doses of 50 and 3 mg/kg, respectively. The concentrations of LVX in the plasma and lungs were determined through the utilization of high-performance liquid chromatography along with UV. Pharmacokinetic parameters were assessed by non-compartmental analysis.</p><p><strong>Results: </strong>The area under the curve from 0 to 16 h (AUC<sub>0-16</sub>), terminal elimination half-life, volume of distribution, total body clearance, and peak concentration of LVX in the plasma were 42.57 h*μg/mL, 2.32 h, 3.91 L/kg, 1.17 L/h/kg, and 23.96 μg/mL, respectively. There were no alterations observed in the plasma and lung pharmacokinetic parameters of LVX when co-administered with SLB. The AUC<sub>0-16</sub> lung/AUC<sub>0-16 plasma</sub> ratios of LVX were 1.60 and 1.39 after administration alone and co-administration with SLB, respectively.</p><p><strong>Conclusion: </strong>The concentration of LVX in lung tissue was higher than that in plasma. SLB administration to rats did not affect the plasma and lung pharmacokinetics and lung penetration ratio of LVX. There is a need to reveal the change in the pharmacokinetics of LVX after multiple administration of both drugs and after administration of SLB by different routes.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"425-430"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1