首页 > 最新文献

Current opinion in plant biology最新文献

英文 中文
Recent advances in local and systemic nitrate signaling in Arabidopsis thaliana 拟南芥局部和系统硝酸盐信号的最新进展
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-20 DOI: 10.1016/j.pbi.2024.102605
Laura D. Delgado , Valentina Nunez-Pascual , Eleodoro Riveras , Sandrine Ruffel , Rodrigo A. Gutiérrez

Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in Arabidopsis thaliana. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.

硝酸盐是有氧土壤中最丰富的无机氮形式,既是一种营养物质,也是一种信号分子。高等植物硝酸盐信号传递的核心是局部和系统信号传递与反应途径之间错综复杂的平衡。局部和系统反应之间的相互作用使植物能够在硝酸盐供应量波动的情况下调节其全局基因表达、新陈代谢、生理、生长和发育。本综述概述了最近在拟南芥的局部和系统背景下,有关硝酸盐感应和信号传导新参与者的发现。此外,本综述还探讨了一些尚未解答的问题,这些问题值得进一步研究,以便更好地了解植物的硝酸盐信号转导和响应。
{"title":"Recent advances in local and systemic nitrate signaling in Arabidopsis thaliana","authors":"Laura D. Delgado ,&nbsp;Valentina Nunez-Pascual ,&nbsp;Eleodoro Riveras ,&nbsp;Sandrine Ruffel ,&nbsp;Rodrigo A. Gutiérrez","doi":"10.1016/j.pbi.2024.102605","DOIUrl":"10.1016/j.pbi.2024.102605","url":null,"abstract":"<div><p>Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in <em>Arabidopsis thaliana</em>. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102605"},"PeriodicalIF":8.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology 将茎生根作为研究跨器官发生的框架,揭示发育生物学的基本观点
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-20 DOI: 10.1016/j.pbi.2024.102604
Amanda Rasmussen , Maria Laura Vidoz , Erin E. Sparks

Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.

植物有一种非凡的能力,可以生成与母体器官不同的器官,这种能力被称为 "转器官发生"。茎生根(一种不定根)就是跨器官发生的一个例子,它是植物进化过程中产生的第一种根。尽管茎生根是植物的祖先,但人们往往通过侧根研究来了解茎生根的来龙去脉,这意味着侧根先于不定根。在这篇综述中,我们将对这一观点提出质疑,重点介绍植物界茎生根发展的已知情况、形式和功能的显著多样性,以及许多遗留的进化问题。探索茎生根的进化发展可以加深我们对发育决策和细胞获得其命运的过程的理解。
{"title":"Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology","authors":"Amanda Rasmussen ,&nbsp;Maria Laura Vidoz ,&nbsp;Erin E. Sparks","doi":"10.1016/j.pbi.2024.102604","DOIUrl":"10.1016/j.pbi.2024.102604","url":null,"abstract":"<div><p>Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102604"},"PeriodicalIF":8.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding plant responsiveness to microbiome feedbacks 了解植物对微生物群反馈的反应能力
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-17 DOI: 10.1016/j.pbi.2024.102603
Henry Janse van Rensburg , Katja Stengele , Klaus Schlaeppi

Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.

植物微生物组之间的相互作用是双向的,微生物组的组装过程和微生物组的作用过程都会对植物产生影响,即所谓的微生物组反馈。我们以地下为重点,将这两个方向系统地分解为植物和(根系和根圈)微生物组两个部分,以确定方法学上的挑战和研究重点。我们发现,植物微生物组相互作用的双向性给遗传研究带来了挑战。当植物突变体同时具有改变的表型和改变的微生物组时,确定因果关系尤其困难。突变是否直接影响微生物组(如通过根系渗出物),进而导致植物表型改变,以及/或微生物组的改变是否是突变改变植物表型(如根系结构)的结果?在此,我们提出,反馈实验可以将因果关系区分开来,而且有助于研究植物与天然土壤中复杂微生物群的相互作用。它们尤其有助于研究植物如何对土壤微生物群做出反应的植物遗传基础,我们强调,与微生物群的组成机制相比,这种微生物群反馈的研究还很不足。从应用角度考虑,这可能有助于开发出既能组建有益微生物群,又能积极利用微生物群反馈的作物。
{"title":"Understanding plant responsiveness to microbiome feedbacks","authors":"Henry Janse van Rensburg ,&nbsp;Katja Stengele ,&nbsp;Klaus Schlaeppi","doi":"10.1016/j.pbi.2024.102603","DOIUrl":"10.1016/j.pbi.2024.102603","url":null,"abstract":"<div><p>Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102603"},"PeriodicalIF":8.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000943/pdfft?md5=107a1d3f8c323184b75991d3f09b6ce5&pid=1-s2.0-S1369526624000943-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time's up: Epigenetic clocks in plants 时间到了植物的表观遗传时钟
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-17 DOI: 10.1016/j.pbi.2024.102602
Binh Thanh Vo , Paloma Mas , Frank Johannes

For over a decade, the animal field has led the way in using DNA methylation measurements to construct epigenetic clocks of aging. These clocks can predict organismal age with a level of accuracy that surpasses any other molecular proxy known to date. Evidence is finally emerging that epigenetic clocks also exist in plants. However, these clocks appear to differ from those in animals in some key aspects, including in their ability to measure time beyond the life span of an individual. Clock-like epigenetic changes can be found in plant circadian rhythms (scale: 24 h), during plant aging (scale: weeks/centuries), and across plant lineage evolution (scale: decades/millennia). Here, we provide a first classification of these different types of epigenetic clocks, highlight their main features, and discuss their biological basis.

十多年来,动物领域在利用 DNA 甲基化测量构建表观遗传衰老时钟方面一直处于领先地位。这些时钟可以预测生物体的年龄,其准确性超过了迄今已知的任何其他分子代理。终于有证据表明,植物中也存在表观遗传时钟。然而,这些时钟似乎在某些关键方面与动物的时钟不同,包括它们测量个体寿命以外时间的能力。在植物昼夜节律(标度:24 小时)、植物衰老过程(标度:周/世纪)以及植物品系进化过程(标度:几十年/几千年)中都能发现类似时钟的表观遗传变化。在此,我们对这些不同类型的表观遗传时钟进行了初步分类,强调了它们的主要特征,并讨论了它们的生物学基础。
{"title":"Time's up: Epigenetic clocks in plants","authors":"Binh Thanh Vo ,&nbsp;Paloma Mas ,&nbsp;Frank Johannes","doi":"10.1016/j.pbi.2024.102602","DOIUrl":"10.1016/j.pbi.2024.102602","url":null,"abstract":"<div><p>For over a decade, the animal field has led the way in using DNA methylation measurements to construct epigenetic clocks of aging. These clocks can predict organismal age with a level of accuracy that surpasses any other molecular proxy known to date. Evidence is finally emerging that epigenetic clocks also exist in plants. However, these clocks appear to differ from those in animals in some key aspects, including in their ability to measure time beyond the life span of an individual. Clock-like epigenetic changes can be found in plant circadian rhythms (scale: 24 h), during plant aging (scale: weeks/centuries), and across plant lineage evolution (scale: decades/millennia). Here, we provide a first classification of these different types of epigenetic clocks, highlight their main features, and discuss their biological basis.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102602"},"PeriodicalIF":8.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000931/pdfft?md5=60110a86ecbedd1f1d26aab21fa93e48&pid=1-s2.0-S1369526624000931-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical, pharmacological properties and biosynthesis of opioid mitragynine in Mitragyna speciosa (kratom) Mitragyna speciosa(桔梗)中阿片类物质丝氨酸的化学、药理特性和生物合成。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-12 DOI: 10.1016/j.pbi.2024.102600
Jorge Jonathan Oswaldo Garza-Garcia, Yang Qu

Mitragynine, an alkaloid found in Mitragyna speciosa (kratom), shows promise as a potential alternative to opioids owing to its distinctive indole alkaloid structure and its capacity for pain relief, alleviation of opioid withdrawal symptoms, and anti-inflammatory effects. Recently the intricate process of mitragynine biosynthesis from the precursor strictosidine was elucidated, providing insights into the complex pathways responsible for synthesizing this opioid compound and its related diastereomers. As the search continues for the authentic hydroxylase and methyltransferase crucial for mitragynine formation, leveraging enzymes from other species and exploiting enzyme promiscuity has facilitated heterologous mitragynine biosynthesis in microbes. This highlights the extraordinary flexibility of enzymes in generating a spectrum of variations and analogs of kratom opioids within alternative biological systems.

桔梗碱是一种存在于桔梗(kratom)中的生物碱,由于其独特的吲哚生物碱结构及其镇痛、减轻阿片戒断症状和抗炎作用,有望成为阿片类药物的潜在替代品。最近,人们阐明了从前体严格苷生物合成丝裂炔碱的复杂过程,从而深入了解了合成这种阿片类化合物及其相关非对映异构体的复杂途径。在继续寻找对丝氨酸形成至关重要的真正羟化酶和甲基转移酶的过程中,利用来自其他物种的酶和利用酶的杂合性促进了微生物中异源丝氨酸的生物合成。这凸显了酶在替代生物系统中生成一系列克拉多阿片类变体和类似物方面的非凡灵活性。
{"title":"Chemical, pharmacological properties and biosynthesis of opioid mitragynine in Mitragyna speciosa (kratom)","authors":"Jorge Jonathan Oswaldo Garza-Garcia,&nbsp;Yang Qu","doi":"10.1016/j.pbi.2024.102600","DOIUrl":"10.1016/j.pbi.2024.102600","url":null,"abstract":"<div><p>Mitragynine, an alkaloid found in <em>Mitragyna speciosa</em> (kratom), shows promise as a potential alternative to opioids owing to its distinctive indole alkaloid structure and its capacity for pain relief, alleviation of opioid withdrawal symptoms, and anti-inflammatory effects. Recently the intricate process of mitragynine biosynthesis from the precursor strictosidine was elucidated, providing insights into the complex pathways responsible for synthesizing this opioid compound and its related diastereomers. As the search continues for the authentic hydroxylase and methyltransferase crucial for mitragynine formation, leveraging enzymes from other species and exploiting enzyme promiscuity has facilitated heterologous mitragynine biosynthesis in microbes. This highlights the extraordinary flexibility of enzymes in generating a spectrum of variations and analogs of kratom opioids within alternative biological systems.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102600"},"PeriodicalIF":8.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000918/pdfft?md5=ed10bb65de9dcb7bd75f5706aa0fba05&pid=1-s2.0-S1369526624000918-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases? 植物是如何通过 UbiA 前酰基转移酶进化出特殊酚类代谢物的前酰基化的?
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-11 DOI: 10.1016/j.pbi.2024.102601
Ryosuke Munakata, Kazufumi Yazaki

Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including C- and O-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.

植物界有超过 4000 种植物含有链烯基酚类化合物,其中大部分是化学多样性极高的特殊代谢物。从各种药用植物中发现了许多具有药理活性的化合物,其中的链烯基残基在这些活性中起着关键作用。在过去的二十年中,对负责其生物合成的异戊烯基转移酶(PTs)进行了深入研究。这些酶是膜结合蛋白,属于 UbiA 超家族,从细菌到人类都有,特别是那些参与植物特化代谢的酶对底物和产物都有严格的特异性。本文综述了植物 UbiA PTs 的酶学特征,包括 C-和 O-异戊烯化、分子进化以及 UbiA PTs 在合成生物学中的应用。
{"title":"How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases?","authors":"Ryosuke Munakata,&nbsp;Kazufumi Yazaki","doi":"10.1016/j.pbi.2024.102601","DOIUrl":"10.1016/j.pbi.2024.102601","url":null,"abstract":"<div><p>Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including <em>C-</em> and <em>O</em>-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102601"},"PeriodicalIF":8.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952662400092X/pdfft?md5=fe9ce3f68d85d6ad0556f74b47caaa07&pid=1-s2.0-S136952662400092X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The MVPs (masterful versatile players): Chromatin factors as pivotal mediators between 3D genome organization and the response to environment MVPs(多面手):染色质因子是三维基因组组织与环境响应之间的关键媒介
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-10 DOI: 10.1016/j.pbi.2024.102599
Chloé Dias Lopes , Xiaoning He , Federico Ariel , Leonardo I. Pereyra-Bistraín , Moussa Benhamed

In recent years, the study of genome dynamics has become a prominent research field due to its influence on understanding the control of gene expression. The study of 3D genome organization has unveiled multiple mechanisms in orchestrating chromosome folding. Growing evidence reveals that these mechanisms are not only important for genome organization, but play a pivotal role in enabling plants to adapt to environmental stimuli. In this review, we provide an overview of the current knowledge concerning epigenetic factors and regulatory elements driving 3D genome dynamics and their responses to external stimuli. We discuss the most recent findings, previous evidence, and explore their implications for future research.

近年来,基因组动力学研究因其对理解基因表达控制的影响而成为一个突出的研究领域。对三维基因组组织的研究揭示了协调染色体折叠的多种机制。越来越多的证据表明,这些机制不仅对基因组的组织非常重要,而且在植物适应环境刺激方面发挥着关键作用。在这篇综述中,我们概述了目前有关驱动三维基因组动态的表观遗传因子和调控元件及其对外部刺激的反应的知识。我们将讨论最新的研究结果和以往的证据,并探讨它们对未来研究的影响。
{"title":"The MVPs (masterful versatile players): Chromatin factors as pivotal mediators between 3D genome organization and the response to environment","authors":"Chloé Dias Lopes ,&nbsp;Xiaoning He ,&nbsp;Federico Ariel ,&nbsp;Leonardo I. Pereyra-Bistraín ,&nbsp;Moussa Benhamed","doi":"10.1016/j.pbi.2024.102599","DOIUrl":"https://doi.org/10.1016/j.pbi.2024.102599","url":null,"abstract":"<div><p>In recent years, the study of genome dynamics has become a prominent research field due to its influence on understanding the control of gene expression. The study of 3D genome organization has unveiled multiple mechanisms in orchestrating chromosome folding. Growing evidence reveals that these mechanisms are not only important for genome organization, but play a pivotal role in enabling plants to adapt to environmental stimuli. In this review, we provide an overview of the current knowledge concerning epigenetic factors and regulatory elements driving 3D genome dynamics and their responses to external stimuli. We discuss the most recent findings, previous evidence, and explore their implications for future research.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102599"},"PeriodicalIF":8.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000906/pdfft?md5=27e977d58b30bc77879c2368f254303d&pid=1-s2.0-S1369526624000906-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding histone 3 lysine methylation: Insights into seed germination and flowering 组蛋白 3 赖氨酸甲基化解码:种子萌发和开花的启示
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-09 DOI: 10.1016/j.pbi.2024.102598
Saqlain Haider, Sara Farrona

Histone lysine methylation is a highly conserved epigenetic modification across eukaryotes that contributes to creating different dynamic chromatin states, which may result in transcriptional changes. Over the years, an accumulated set of evidence has shown that histone methylation allows plants to align their development with their surroundings, enabling them to respond and memorize past events due to changes in the environment. In this review, we discuss the molecular mechanisms of histone methylation in plants. Writers, readers, and erasers of Arabidopsis histone methylation marks are described with an emphasis on their role in two of the most important developmental transition phases in plants, seed germination and flowering. Further, the crosstalk between different methylation marks is also discussed. An overview of the mechanisms of histone methylation modifications and their biological outcomes will shed light on existing research gaps and may provide novel perspectives to increase crop yield and resistance in the era of global climate change.

组蛋白赖氨酸甲基化是真核生物中一种高度保守的表观遗传修饰,有助于形成不同的动态染色质状态,从而可能导致转录变化。多年来积累的一系列证据表明,组蛋白甲基化能使植物的生长发育与周围环境保持一致,使它们能够对环境变化做出反应并记住过去发生的事件。在这篇综述中,我们将讨论植物组蛋白甲基化的分子机制。文章描述了拟南芥组蛋白甲基化标记的书写者、阅读者和擦除者,重点介绍了它们在植物两个最重要的发育过渡阶段--种子萌发和开花--中的作用。此外,还讨论了不同甲基化标记之间的相互影响。对组蛋白甲基化修饰的机制及其生物学结果的概述将阐明现有的研究空白,并可能为在全球气候变化时代提高作物产量和抗性提供新的视角。
{"title":"Decoding histone 3 lysine methylation: Insights into seed germination and flowering","authors":"Saqlain Haider,&nbsp;Sara Farrona","doi":"10.1016/j.pbi.2024.102598","DOIUrl":"10.1016/j.pbi.2024.102598","url":null,"abstract":"<div><p>Histone lysine methylation is a highly conserved epigenetic modification across eukaryotes that contributes to creating different dynamic chromatin states, which may result in transcriptional changes. Over the years, an accumulated set of evidence has shown that histone methylation allows plants to align their development with their surroundings, enabling them to respond and memorize past events due to changes in the environment. In this review, we discuss the molecular mechanisms of histone methylation in plants. Writers, readers, and erasers of Arabidopsis histone methylation marks are described with an emphasis on their role in two of the most important developmental transition phases in plants, seed germination and flowering. Further, the crosstalk between different methylation marks is also discussed. An overview of the mechanisms of histone methylation modifications and their biological outcomes will shed light on existing research gaps and may provide novel perspectives to increase crop yield and resistance in the era of global climate change.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102598"},"PeriodicalIF":8.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136952662400089X/pdfft?md5=cda1a6216228b7d690385d3ca17946a5&pid=1-s2.0-S136952662400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microtubule simulations in plant biology: A field coming to maturity 植物生物学中的微管模拟:一个即将成熟的领域
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-08 DOI: 10.1016/j.pbi.2024.102596
Marco Saltini, Eva E. Deinum

The plant cortical microtubule array is an important determinant of cell wall structure and, therefore, plant morphology and physiology. The array consists of dynamic microtubules interacting through frequent collisions. Since the discovery by Dixit and Cyr (2004) that the outcome of such collisions depends on the collision angle, computer simulations have been indispensable in studying array behaviour. Over the last decade, the available simulation tools have drastically improved: multiple high-quality simulation platforms exist with specific strengths and applications. Here, we review how these platforms differ on the critical aspects of microtubule nucleation, flexibility, and local orienting cues; and how such differences affect array behaviour. Building upon concepts and control parameters from theoretical models of collective microtubule behaviour, we conclude that all these factors matter in the debate about what is most important for orienting the array: local cues like mechanical stresses or global cues deriving from the cell geometry.

植物皮层微管阵列是细胞壁结构的重要决定因素,因此也是植物形态和生理的重要决定因素。该阵列由通过频繁碰撞而相互作用的动态微管组成。自从 Dixit 和 Cyr(2004 年)发现这种碰撞的结果取决于碰撞角度后,计算机模拟就成为研究阵列行为不可或缺的工具。在过去的十年中,可用的模拟工具有了极大的改进:多种高质量的模拟平台具有特定的优势和应用。在此,我们回顾了这些平台在微管成核、柔性和局部定向线索等关键方面的差异,以及这些差异如何影响阵列行为。在集体微管行为理论模型的概念和控制参数的基础上,我们得出结论,所有这些因素在关于什么对阵列定向最重要的争论中都很重要:是机械应力等局部线索,还是源自细胞几何的全局线索。
{"title":"Microtubule simulations in plant biology: A field coming to maturity","authors":"Marco Saltini,&nbsp;Eva E. Deinum","doi":"10.1016/j.pbi.2024.102596","DOIUrl":"10.1016/j.pbi.2024.102596","url":null,"abstract":"<div><p>The plant cortical microtubule array is an important determinant of cell wall structure and, therefore, plant morphology and physiology. The array consists of dynamic microtubules interacting through frequent collisions. Since the discovery by Dixit and Cyr (2004) that the outcome of such collisions depends on the collision angle, computer simulations have been indispensable in studying array behaviour. Over the last decade, the available simulation tools have drastically improved: multiple high-quality simulation platforms exist with specific strengths and applications. Here, we review how these platforms differ on the critical aspects of microtubule nucleation, flexibility, and local orienting cues; and how such differences affect array behaviour. Building upon concepts and control parameters from theoretical models of collective microtubule behaviour, we conclude that all these factors matter in the debate about what is most important for orienting the array: local cues like mechanical stresses or global cues deriving from the cell geometry.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102596"},"PeriodicalIF":8.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000876/pdfft?md5=470eec62e61f9cc4bf4080afa30311af&pid=1-s2.0-S1369526624000876-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of heat stress-induced transcriptional memory 热应力诱导转录记忆的机制
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-04 DOI: 10.1016/j.pbi.2024.102590
Loris Pratx , Tim Crawford , Isabel Bäurle

Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.

转录记忆可使生物体存储有关转录重编程的信息,以应对刺激。在植物中,这通常涉及对非生物胁迫的反应,在自然界中,这种胁迫可能是周期性的或反复出现的。这种转录记忆可在应对反复出现的刺激时赋予持续的诱导或增强的再激活,从而增加生存和健康的机会。热胁迫(HS)已成为研究植物转录记忆的绝佳模型系统,在阐明这一现象的分子机制方面也取得了很大进展。在此,我们回顾了组蛋白周转和转录共调控复合物如何促进转录反应的重编程。
{"title":"Mechanisms of heat stress-induced transcriptional memory","authors":"Loris Pratx ,&nbsp;Tim Crawford ,&nbsp;Isabel Bäurle","doi":"10.1016/j.pbi.2024.102590","DOIUrl":"10.1016/j.pbi.2024.102590","url":null,"abstract":"<div><p>Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102590"},"PeriodicalIF":8.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current opinion in plant biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1