首页 > 最新文献

Advanced Electronic Materials最新文献

英文 中文
XHEMTs on Ultrawide Bandgap Single-Crystal AlN Substrates 超宽带隙单晶AlN衬底上的xhemt
IF 6.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-29 DOI: 10.1002/aelm.202500393
Eungkyun Kim, Yu-Hsin Chen, Naomi Pieczulewski, Jimy Encomendero, David Anthony Muller, Debdeep Jena, Huili Grace Xing
AlN has the largest bandgap in the wurtzite III-nitride semiconductor family, making it an ideal barrier for a thin GaN channel to achieve strong carrier confinement in field-effect transistors, analogous to silicon-on-insulator technology. Unlike <span data-altimg="/cms/asset/3eece5b8-69e8-436b-9af1-7c187ade4ac0/aelm70182-math-0001.png"></span><mjx-container ctxtmenu_counter="330" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/aelm70182-math-0001.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper S i upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:2199160X:media:aelm70182:aelm70182-math-0001" display="inline" location="graphic/aelm70182-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub data-semantic-="" data-semantic-children="0,1" data-semantic-role="unknown" data-semantic-speech="upper S i upper O 2" data-semantic-type="subscript"><mi data-semantic-="" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier">SiO</mi><mn data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number">2</mn></msub>${rm SiO}_2$</annotation></semantics></math></mjx-assistive-mml></mjx-container>/Si/<span data-altimg="/cms/asset/b18c0b78-9ec7-4884-85aa-a87032457577/aelm70182-math-0002.png"></span><mjx-container ctxtmenu_counter="331" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/aelm70182-math-0002.png"><mjx-semantics><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-role="unknown" data-semantic-speech="upper S i upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"
AlN在纤锌矿iii -氮化半导体家族中具有最大的带隙,使其成为薄GaN通道的理想屏障,以实现场效应晶体管中的强载流子限制,类似于绝缘体上的硅技术。与SiO2${rm SiO}_2$/Si/SiO2${rm SiO}_2$不同,AlN/GaN/AlN可以完全外延生长,从而实现适合高频应用的高载流子迁移率。然而,这些异质结构和相关器件的发展受到应变管理、极化效应、缺陷控制和电荷捕获等方面的挑战。本文介绍了AlN单晶高电子迁移率晶体管(XHEMT),这是一种新的氮化晶体管技术,旨在解决这些问题。XHEMT结构的特点是在单晶AlN衬底上生长的假晶GaN通道夹在AlN层之间。xhemt的射频性能与最先进的GaN hemt相当,在17 V漏极偏置下,在10 GHz下实现5.92 W/mm输出功率和65%的峰值功率附加效率。这些器件克服了传统GaN hemt中存在的几个限制,传统GaN hemt生长在晶格不匹配的外源衬底上,会引入不良的位错和加剧热阻。随着最近100毫米AlN衬底的可用性和AlN的高导热性(340 W/m·K${rm m}cdot{rm K}$), xhemt显示出下一代射频电子产品的强大潜力。
{"title":"XHEMTs on Ultrawide Bandgap Single-Crystal AlN Substrates","authors":"Eungkyun Kim, Yu-Hsin Chen, Naomi Pieczulewski, Jimy Encomendero, David Anthony Muller, Debdeep Jena, Huili Grace Xing","doi":"10.1002/aelm.202500393","DOIUrl":"https://doi.org/10.1002/aelm.202500393","url":null,"abstract":"AlN has the largest bandgap in the wurtzite III-nitride semiconductor family, making it an ideal barrier for a thin GaN channel to achieve strong carrier confinement in field-effect transistors, analogous to silicon-on-insulator technology. Unlike &lt;span data-altimg=\"/cms/asset/3eece5b8-69e8-436b-9af1-7c187ade4ac0/aelm70182-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"330\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/aelm70182-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:2199160X:media:aelm70182:aelm70182-math-0001\" display=\"inline\" location=\"graphic/aelm70182-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;SiO&lt;/mi&gt;&lt;mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;2&lt;/mn&gt;&lt;/msub&gt;${rm SiO}_2$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt;/Si/&lt;span data-altimg=\"/cms/asset/b18c0b78-9ec7-4884-85aa-a87032457577/aelm70182-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"331\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/aelm70182-math-0002.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"upper S i upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"105 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optically Switchable Organic Field Effect Transistor via Intensity Modulated Single Near-IR Source 光开关有机场效应晶体管通过强度调制单近红外光源
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-28 DOI: 10.1002/aelm.202500567
Sungil Sunwoo, Namhyeon Heo, Chihyung Lee, Ilsong Kim, Hyeonmin Choi, Keehoon Kang, Doo-Hyun Ko

Optically switchable organic field effect transistors (OFETs) offer an additional modality for conventional electronic devices, allowing their electrical output to be switched via a specific optical input. Previously, optically switchable OFETs employing photochromic molecules such as diarylethenes (DAEs) incorporated into the active layer have demonstrated the ability to remotely modulate charge transport via light stimuli. However, these require intense, high-energy UV irradiation and a complex dual-wavelength setup for reversible photoisomerization. An upconverting photonic field effect transistor (UPFET) is introduced that addresses these challenges by integrating multicolor upconversion nanoparticles (UCNPs) with a poly(3-hexylthiophene) (P3HT)/DAE blended active layer. These UCNPs convert a single 980 nm NIR source into UV or visible emission, enabling bidirectional photoisomerization of DAE without harmful high-energy UV exposure. Based on spectroscopic and morphological analyses of the P3HT/DAE blend film, 20 wt.% DAE is identified as the composition that preserves molecular mixing and maximizes interaction between P3HT and DAE, yielding up to approximately 40% drain-current modulation. Consequently, the optimized UPFET exhibits stable and reversible drain current modulation with high on/off ratios, solely controlled by NIR light intensity. By combining a power-tunable single NIR source, the UPFET offers a pathway toward low-power optical memory, sensor, and logic circuits with simplified operation.

光可切换有机场效应晶体管(ofet)为传统电子设备提供了一种额外的模式,允许它们的电输出通过特定的光输入进行切换。在此之前,采用二芳烯(DAEs)等光致变色分子的光开关ofet已经证明了通过光刺激远程调制电荷传输的能力。然而,这些都需要强烈的高能紫外线照射和复杂的双波长设置来进行可逆的光异构化。一种上转换光子场效应晶体管(UPFET)通过将多色上转换纳米颗粒(UCNPs)与聚(3-己基噻吩)(P3HT)/DAE混合有源层集成来解决这些挑战。这些UCNPs将单个980 nm近红外源转化为紫外线或可见光发射,使DAE的双向光异构化没有有害的高能紫外线照射。基于P3HT/DAE共混膜的光谱和形态分析,20 wt.% DAE被确定为保持分子混合并最大化P3HT和DAE之间相互作用的成分,产生高达约40%的漏极电流调制。因此,优化的UPFET具有稳定和可逆的漏极电流调制,具有高开/关比,完全由近红外光强度控制。通过结合功率可调的单一近红外源,UPFET提供了一条通向低功耗光存储器、传感器和逻辑电路的途径,并简化了操作。
{"title":"Optically Switchable Organic Field Effect Transistor via Intensity Modulated Single Near-IR Source","authors":"Sungil Sunwoo,&nbsp;Namhyeon Heo,&nbsp;Chihyung Lee,&nbsp;Ilsong Kim,&nbsp;Hyeonmin Choi,&nbsp;Keehoon Kang,&nbsp;Doo-Hyun Ko","doi":"10.1002/aelm.202500567","DOIUrl":"10.1002/aelm.202500567","url":null,"abstract":"<p>Optically switchable organic field effect transistors (OFETs) offer an additional modality for conventional electronic devices, allowing their electrical output to be switched via a specific optical input. Previously, optically switchable OFETs employing photochromic molecules such as diarylethenes (DAEs) incorporated into the active layer have demonstrated the ability to remotely modulate charge transport via light stimuli. However, these require intense, high-energy UV irradiation and a complex dual-wavelength setup for reversible photoisomerization. An upconverting photonic field effect transistor (UPFET) is introduced that addresses these challenges by integrating multicolor upconversion nanoparticles (UCNPs) with a poly(3-hexylthiophene) (P3HT)/DAE blended active layer. These UCNPs convert a single 980 nm NIR source into UV or visible emission, enabling bidirectional photoisomerization of DAE without harmful high-energy UV exposure. Based on spectroscopic and morphological analyses of the P3HT/DAE blend film, 20 wt.% DAE is identified as the composition that preserves molecular mixing and maximizes interaction between P3HT and DAE, yielding up to approximately 40% drain-current modulation. Consequently, the optimized UPFET exhibits stable and reversible drain current modulation with high on/off ratios, solely controlled by NIR light intensity. By combining a power-tunable single NIR source, the UPFET offers a pathway toward low-power optical memory, sensor, and logic circuits with simplified operation.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 21","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Gradient-Enhanced SLSQP Optimization Design of Ultra-Thin Broadband Honeycomb-FSS Structure 超薄宽带蜂窝FSS结构的高效梯度增强SLSQP优化设计
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-28 DOI: 10.1002/aelm.202500576
Huimin Xiang, Yongqiang Shi, Qingzhen Yang, Xufei Wang, Xinyuan Liu

Honeycomb structures show promising applications across various fields due to their excellent electromagnetic absorption and mechanical capabilities, though challenges remain in broadband performance and design efficiency. This paper introduces frequency selective surfaces (FSS) to effectively modulate the impedance of honeycomb structures and proposes a gradient-driven optimization framework for multilayer honeycomb-FSS composite absorber (MHFCA). We derive the differentiable gradient function for absorption performance and integrate it with the sequential least squares quadratic programming (SLSQP) algorithm to explore multi-dimensional design spaces better. Compared to common metaheuristic algorithms, the proposed framework reaches convergence in only 52.8% of the iteration time required by particle swarm optimization for multilayer coupled structures, while maintaining comparable solution quality. We optimize different FSS patterns for MHFCA structures based on this optimization framework. Results show that the optimized single-layer structure achieves a −10dB absorption bandwidth from 8.2 GHz to 18 GHz, while the optimized three-layer structure extends the effective absorption bandwidth to 3.3–18 GHz (fractional bandwidth is 138.3%) with a total thickness of only 0.11λL.

蜂窝结构由于其优异的电磁吸收和机械性能,在各个领域都有很好的应用前景,尽管在宽带性能和设计效率方面仍然存在挑战。本文引入频率选择表面(FSS)来有效调制蜂窝结构的阻抗,并提出了一种梯度驱动的多层蜂窝- FSS复合材料吸收器(MHFCA)优化框架。我们推导了吸收性能的可微梯度函数,并将其与序列最小二乘二次规划(SLSQP)算法相结合,以更好地探索多维设计空间。与常用的元启发式算法相比,该框架的收敛时间仅为粒子群优化多层耦合结构所需迭代时间的52.8%,同时保持了相当的解质量。基于此优化框架,对MHFCA结构的不同FSS模式进行了优化。结果表明,优化后的单层结构在8.2 GHz ~ 18 GHz范围内获得了−10dB的吸收带宽,而优化后的三层结构将有效吸收带宽扩展到3.3 ~ 18 GHz(分数带宽为138.3%),总厚度仅为0.11λ L。
{"title":"Efficient Gradient-Enhanced SLSQP Optimization Design of Ultra-Thin Broadband Honeycomb-FSS Structure","authors":"Huimin Xiang,&nbsp;Yongqiang Shi,&nbsp;Qingzhen Yang,&nbsp;Xufei Wang,&nbsp;Xinyuan Liu","doi":"10.1002/aelm.202500576","DOIUrl":"10.1002/aelm.202500576","url":null,"abstract":"<p>Honeycomb structures show promising applications across various fields due to their excellent electromagnetic absorption and mechanical capabilities, though challenges remain in broadband performance and design efficiency. This paper introduces frequency selective surfaces (FSS) to effectively modulate the impedance of honeycomb structures and proposes a gradient-driven optimization framework for multilayer honeycomb-FSS composite absorber (MHFCA). We derive the differentiable gradient function for absorption performance and integrate it with the sequential least squares quadratic programming (SLSQP) algorithm to explore multi-dimensional design spaces better. Compared to common metaheuristic algorithms, the proposed framework reaches convergence in only 52.8% of the iteration time required by particle swarm optimization for multilayer coupled structures, while maintaining comparable solution quality. We optimize different FSS patterns for MHFCA structures based on this optimization framework. Results show that the optimized single-layer structure achieves a −10dB absorption bandwidth from 8.2 GHz to 18 GHz, while the optimized three-layer structure extends the effective absorption bandwidth to 3.3–18 GHz (fractional bandwidth is 138.3%) with a total thickness of only 0.11λ<sub><i>L</i></sub>.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 21","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic High-Order Encoder for Trichromatic Recognition Based on Flexible MoS2 Ring Oscillators 基于柔性MoS 2环振荡器的三色识别仿生高阶编码器
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-26 DOI: 10.1002/aelm.202500486
Yuchen Wang, Songge Zhang, Yixiao Li, Hua Yu, Yuchao Zhou, Yangkun Zhang, Xiuzhen Li, Xingchao Zhang, Chenyang Cui, Su Liu, Shuopei Wang, Luojun Du, Wei Yang, Dongxia Shi, Rong Yang, Xiaoming Tao, Na Li, Guangyu Zhang

Biomimetic visual perception and processing have gained increasing prominence in advancing vision restoration technologies and developing next-generation human-machine interfaces. As dual fundamental parameters for environmental information capture, light intensity and color perception constitute essential dimensions in visual signal acquisition. While digital encoding remains a conventional approach, the biomimetic frequency coding approach is considered to be an efficient input method for simulating the retina neural architecture in artificial vision systems. Here, we fabricated molybdenum disulfide (MoS2) based ring oscillators for color and intensity resolved image recognition, which exploit wavelength-dependent photoresponsivity (400–700 nm) to implement biomimetic spectral coding. Through MoS2 oscillators, light signals are transduced into frequency-modulated electrical spikes from 265 Hz to 3.8 kHz, establishing hardware foundations for chromatic opponency processing in neuromorphic visual systems. This orthogonal signal modulation strategy enables cross-talk-free transmission of visual information, effectively decoupling wavelength-dependent chromatic data from intensity-modulated luminance signals. By integrating the obtained oscillatory signals into a convolutional neural network system, we successfully demonstrated the device's applicability in amplifying subtle differences in color and texture features in image recognition and thus realizing high dynamic range encoding and robust feature extraction.

仿生视觉感知和处理在推进视觉恢复技术和开发下一代人机界面方面日益突出。光强和色觉作为环境信息捕获的两个基本参数,构成了视觉信号获取的重要维度。虽然数字编码仍然是传统的方法,但仿生频率编码方法被认为是模拟人工视觉系统中视网膜神经结构的有效输入方法。在这里,我们制作了基于二硫化钼(MoS 2)的环形振荡器,用于颜色和强度分辨图像识别,利用波长依赖的光响应性(400-700 nm)来实现仿生光谱编码。通过MoS 2振荡器,光信号被转换成265 Hz至3.8 kHz的调频电尖峰,为神经形态视觉系统中的色度对立处理奠定了硬件基础。这种正交信号调制策略可以实现视觉信息的无串扰传输,有效地将波长相关的色度数据与强度调制的亮度信号解耦。通过将获得的振荡信号整合到卷积神经网络系统中,我们成功地证明了该设备在图像识别中放大颜色和纹理特征的细微差异方面的适用性,从而实现了高动态范围编码和鲁棒特征提取。
{"title":"Biomimetic High-Order Encoder for Trichromatic Recognition Based on Flexible MoS2 Ring Oscillators","authors":"Yuchen Wang,&nbsp;Songge Zhang,&nbsp;Yixiao Li,&nbsp;Hua Yu,&nbsp;Yuchao Zhou,&nbsp;Yangkun Zhang,&nbsp;Xiuzhen Li,&nbsp;Xingchao Zhang,&nbsp;Chenyang Cui,&nbsp;Su Liu,&nbsp;Shuopei Wang,&nbsp;Luojun Du,&nbsp;Wei Yang,&nbsp;Dongxia Shi,&nbsp;Rong Yang,&nbsp;Xiaoming Tao,&nbsp;Na Li,&nbsp;Guangyu Zhang","doi":"10.1002/aelm.202500486","DOIUrl":"10.1002/aelm.202500486","url":null,"abstract":"<p>Biomimetic visual perception and processing have gained increasing prominence in advancing vision restoration technologies and developing next-generation human-machine interfaces. As dual fundamental parameters for environmental information capture, light intensity and color perception constitute essential dimensions in visual signal acquisition. While digital encoding remains a conventional approach, the biomimetic frequency coding approach is considered to be an efficient input method for simulating the retina neural architecture in artificial vision systems. Here, we fabricated molybdenum disulfide (MoS<sub>2</sub>) based ring oscillators for color and intensity resolved image recognition, which exploit wavelength-dependent photoresponsivity (400–700 nm) to implement biomimetic spectral coding. Through MoS<sub>2</sub> oscillators, light signals are transduced into frequency-modulated electrical spikes from 265 Hz to 3.8 kHz, establishing hardware foundations for chromatic opponency processing in neuromorphic visual systems. This orthogonal signal modulation strategy enables cross-talk-free transmission of visual information, effectively decoupling wavelength-dependent chromatic data from intensity-modulated luminance signals. By integrating the obtained oscillatory signals into a convolutional neural network system, we successfully demonstrated the device's applicability in amplifying subtle differences in color and texture features in image recognition and thus realizing high dynamic range encoding and robust feature extraction.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 21","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145608913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-Scale Phonon Dynamics in GaN: Fundamentals and Strategies for Thermal Transport Modulation 氮化镓中的纳米声子动力学:热传输调制的基础和策略
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-26 DOI: 10.1002/aelm.202500627
Tiantian Luan, Liwen Sang, Ziling Cai, Yutao Fang, Yabing Li, Rui Yin, Jianlu Wang, Bo Shen

With the rapid advancement of electronic technologies, the effective thermal management in gallium nitride (GaN) -based devices has emerged as a critical challenge, particularly as device dimensions shrink to scales comparable to phonon mean free paths. In this regime, phonon-mediated heat transport is governed by size-dependent phenomena, such as boundary scattering, lattice confinement, and interface mode mismatch, which fundamentally deviate from bulk behaviors. Progress remains hindered by an insufficient understanding of phonon dynamics, resolution limits of characterization, and the inadequate incorporation of these insights into thermal management strategies. This review addresses these gaps by dissecting phonon-dominated thermal transport in dimensionally confined GaN structures and at its heterointerfaces from both theoretical investigations and experimental characterizations. It further highlights the recent progress in in situ vibrational electron energy-loss spectroscopy for the atomic-scale visualization of phonon modes. Furthermore, the interface engineering between GaN and its adjunction materials is reviewed with strategies to minimize the thermal boundary resistance. Finally, future directions emphasize the integration of multiscale simulations, in situ characterization of multiple interfaces, and machine learning to deepen the fundamental understanding and optimize nano-scale phonon transport for next-generation GaN electronic applications.

随着电子技术的快速发展,氮化镓(GaN)基器件的有效热管理已经成为一个关键的挑战,特别是当器件尺寸缩小到与声子平均自由程相当的规模时。在这种情况下,声子介导的热输运受到尺寸依赖现象的控制,如边界散射、晶格约束和界面模式不匹配,这些现象从根本上偏离了体行为。由于对声子动力学的理解不足,表征的分辨率限制,以及将这些见解纳入热管理策略的不足,进展仍然受到阻碍。本综述通过从理论研究和实验表征两方面剖析受尺寸限制的氮化镓结构及其异质界面中声子主导的热输运来解决这些空白。它进一步强调了用于声子模式原子尺度可视化的原位振动电子能量损失谱的最新进展。此外,对氮化镓及其连接材料之间的界面工程进行了综述,并提出了最小化热边界阻力的策略。最后,未来的方向强调多尺度模拟,多界面的原位表征和机器学习的集成,以加深对下一代GaN电子应用的纳米尺度声子输运的基本理解和优化。
{"title":"Nano-Scale Phonon Dynamics in GaN: Fundamentals and Strategies for Thermal Transport Modulation","authors":"Tiantian Luan,&nbsp;Liwen Sang,&nbsp;Ziling Cai,&nbsp;Yutao Fang,&nbsp;Yabing Li,&nbsp;Rui Yin,&nbsp;Jianlu Wang,&nbsp;Bo Shen","doi":"10.1002/aelm.202500627","DOIUrl":"10.1002/aelm.202500627","url":null,"abstract":"<p>With the rapid advancement of electronic technologies, the effective thermal management in gallium nitride (GaN) -based devices has emerged as a critical challenge, particularly as device dimensions shrink to scales comparable to phonon mean free paths. In this regime, phonon-mediated heat transport is governed by size-dependent phenomena, such as boundary scattering, lattice confinement, and interface mode mismatch, which fundamentally deviate from bulk behaviors. Progress remains hindered by an insufficient understanding of phonon dynamics, resolution limits of characterization, and the inadequate incorporation of these insights into thermal management strategies. This review addresses these gaps by dissecting phonon-dominated thermal transport in dimensionally confined GaN structures and at its heterointerfaces from both theoretical investigations and experimental characterizations. It further highlights the recent progress in in situ vibrational electron energy-loss spectroscopy for the atomic-scale visualization of phonon modes. Furthermore, the interface engineering between GaN and its adjunction materials is reviewed with strategies to minimize the thermal boundary resistance. Finally, future directions emphasize the integration of multiscale simulations, in situ characterization of multiple interfaces, and machine learning to deepen the fundamental understanding and optimize nano-scale phonon transport for next-generation GaN electronic applications.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 21","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145608703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Voltage Controlled Coercivity in Nanocrystalline Fe-Ni Films by Magneto-Ionic Effects 利用磁离子效应研究纳米晶Fe - Ni薄膜的低电压控制矫顽力
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-26 DOI: 10.1002/aelm.202500654
Anna Ullrich, Florin Leo Hambeck, Raphael Kohlstedt, Francesca Sgarbi Stabellini, Sandra Schiemenz, Daniel Wolf, Karin Leistner

Magneto-ionic control of metal oxide/metal films provides a pathway to voltage-tunable magnetoelectronic devices with high energy efficiency. So far, magneto-ionic research mainly focuses on Co-based films, while Fe-Ni alloy films, despite their high industrial relevance, have not been studied systematically. In this work, a combined in situ Kerr microscopy and electrochemical analysis demonstrates magneto-ionic control of coercivity in nanocrystalline Fe-Ni alloy films across the whole compositional range. The required voltage is low (∼1 V) and decreases with increasing Ni content, presumably relating to the nobler nature of Ni versus Fe. For Fe-rich alloys, a large voltage-induced change of coercivity and remanence is connected to an oxide-to-metal transformation, reducing domain wall pinning. For intermediate compositions, the magneto-ionic effects are largest. Here, the potential induces a moderate increase, followed by a drastic reversible decrease in coercivity by ∼ −90%. This behavior is attributed to the enhanced electrochemical reactivity of ultrafine grains and the heterogeneous oxide present on mixed bcc/fcc Fe-Ni films. For Ni-rich films, the magneto-ionic effects are small, but voltage-induced magnetic softening is still achieved. The study introduces Fe-Ni films as a promising magneto-ionic material platform and highlights the potential of tailored, defect-rich microstructures for boosting magneto-ionic performance.

金属氧化物/金属薄膜的磁离子控制为实现具有高能效的电压可调磁电子器件提供了一条途径。到目前为止,磁离子研究主要集中在Co基薄膜上,而Fe - Ni合金薄膜尽管具有很高的工业相关性,但尚未得到系统的研究。在这项工作中,结合原位Kerr显微镜和电化学分析,证明了在整个成分范围内,纳米晶Fe - Ni合金薄膜的矫顽力受磁离子控制。所需电压很低(~ 1 V),并且随着Ni含量的增加而降低,这可能与Ni相对于Fe更高贵的性质有关。对于富铁合金,电压引起的矫顽力和剩余物的大变化与氧化物到金属的转变有关,减少了畴壁钉钉。对于中间成分,磁离子效应是最大的。在这里,电势诱导矫顽力适度增加,随后矫顽力急剧可逆下降~−90%。这种行为归因于超细颗粒的电化学反应性增强以及混合bcc/fcc Fe - Ni膜上存在的非均质氧化物。对于富镍薄膜,磁离子效应很小,但仍然可以实现电压诱导的磁软化。该研究介绍了Fe - Ni薄膜作为一种有前途的磁离子材料平台,并强调了定制的、富含缺陷的微结构在提高磁离子性能方面的潜力。
{"title":"Low-Voltage Controlled Coercivity in Nanocrystalline Fe-Ni Films by Magneto-Ionic Effects","authors":"Anna Ullrich,&nbsp;Florin Leo Hambeck,&nbsp;Raphael Kohlstedt,&nbsp;Francesca Sgarbi Stabellini,&nbsp;Sandra Schiemenz,&nbsp;Daniel Wolf,&nbsp;Karin Leistner","doi":"10.1002/aelm.202500654","DOIUrl":"10.1002/aelm.202500654","url":null,"abstract":"<p>Magneto-ionic control of metal oxide/metal films provides a pathway to voltage-tunable magnetoelectronic devices with high energy efficiency. So far, magneto-ionic research mainly focuses on Co-based films, while Fe-Ni alloy films, despite their high industrial relevance, have not been studied systematically. In this work, a combined in situ Kerr microscopy and electrochemical analysis demonstrates magneto-ionic control of coercivity in nanocrystalline Fe-Ni alloy films across the whole compositional range. The required voltage is low (∼1 V) and decreases with increasing Ni content, presumably relating to the nobler nature of Ni versus Fe. For Fe-rich alloys, a large voltage-induced change of coercivity and remanence is connected to an oxide-to-metal transformation, reducing domain wall pinning. For intermediate compositions, the magneto-ionic effects are largest. Here, the potential induces a moderate increase, followed by a drastic reversible decrease in coercivity by ∼ −90%. This behavior is attributed to the enhanced electrochemical reactivity of ultrafine grains and the heterogeneous oxide present on mixed bcc/fcc Fe-Ni films. For Ni-rich films, the magneto-ionic effects are small, but voltage-induced magnetic softening is still achieved. The study introduces Fe-Ni films as a promising magneto-ionic material platform and highlights the potential of tailored, defect-rich microstructures for boosting magneto-ionic performance.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 21","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145598702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glass-Ceramic Substrates for Electronics Packaging 用于电子封装的玻璃陶瓷基板
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-26 DOI: 10.1002/aelm.202500331
Adam Shearer, Mohamed E. Eltantawy, Maziar Montazerian, Michael T. Lanagan, John C. Mauro

The rapid advancement of wireless communication technologies, from 5G to 6G, has necessitated significant improvements in materials used for electronic packaging. Glass-ceramics have long been promising candidates due to their unique combination of low dielectric loss, high thermal stability, and excellent mechanical properties. This review explores the potential compositional systems of glass-ceramics in electronic packaging substrates, emphasizing their performance in high-frequency applications. An analysis of their fabrication techniques and material properties is discussed. Comparisons with traditional polymer and ceramic substrates highlight the advantages of glass-ceramics, including enhanced signal integrity and thermal management. Challenges in processing and material optimization, as well as emerging trends such as glass-polymer composites and advanced manufacturing techniques, are discussed. This review provides a forward-looking perspective on the role of glass-ceramics in enabling the next generation of electronic devices.

从5G到6G的无线通信技术的快速发展,使得用于电子封装的材料有必要进行重大改进。由于其独特的低介电损耗、高热稳定性和优异的机械性能,玻璃陶瓷长期以来一直是有希望的候选者。本文探讨了玻璃陶瓷在电子封装衬底中的潜在组成体系,强调了它们在高频应用中的性能。对其制备工艺和材料性能进行了分析。与传统聚合物和陶瓷基板的比较突出了玻璃陶瓷的优势,包括增强的信号完整性和热管理。讨论了加工和材料优化方面的挑战,以及玻璃聚合物复合材料和先进制造技术等新兴趋势。本文综述了玻璃陶瓷在下一代电子器件中的前瞻性作用。
{"title":"Glass-Ceramic Substrates for Electronics Packaging","authors":"Adam Shearer,&nbsp;Mohamed E. Eltantawy,&nbsp;Maziar Montazerian,&nbsp;Michael T. Lanagan,&nbsp;John C. Mauro","doi":"10.1002/aelm.202500331","DOIUrl":"10.1002/aelm.202500331","url":null,"abstract":"<p>The rapid advancement of wireless communication technologies, from 5G to 6G, has necessitated significant improvements in materials used for electronic packaging. Glass-ceramics have long been promising candidates due to their unique combination of low dielectric loss, high thermal stability, and excellent mechanical properties. This review explores the potential compositional systems of glass-ceramics in electronic packaging substrates, emphasizing their performance in high-frequency applications. An analysis of their fabrication techniques and material properties is discussed. Comparisons with traditional polymer and ceramic substrates highlight the advantages of glass-ceramics, including enhanced signal integrity and thermal management. Challenges in processing and material optimization, as well as emerging trends such as glass-polymer composites and advanced manufacturing techniques, are discussed. This review provides a forward-looking perspective on the role of glass-ceramics in enabling the next generation of electronic devices.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 20","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145608762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonreciprocal Spin Waves in Out-of-Plane Magnetized Coupled Waveguides Reconfigured by Domain Wall Displacements 面外磁化耦合波导中的非互易自旋波由畴壁位移重新配置
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-26 DOI: 10.1002/aelm.202500575
Hanadi Mortada, Roman Verba, Qi Wang, Philipp Pirro, Alexandre Abbass Hamadeh

Wave-based platforms for unconventional computing require a controlled yet adjustable flow of wave information, integrated with non-volatile data storage. Spin waves are ideal for such platforms due to their inherent nonreciprocal properties and direct interaction with magnetic storage. This study demonstrates how spin-wave nonreciprocity, induced by dipolar interactions in nanowaveguides with antiparallel out-of-plane magnetization, enables the realization of a spin-wave circulator for unidirectional signal transport and advanced routing. The device's functionality can be continuously reconfigured using a magnetic domain wall with adjustable position, offering non-volatile control over output and nonreciprocity. These features are illustrated using a spin-wave directional coupler, validated through micromagnetic simulations and analytical models, which also support the functions of a waveguide crossing, tunable power splitter, and frequency multiplexer. The proposed domain-wall-based reconfiguration, combined with nonlinear spin-wave behavior, holds promise for developing a nanoscale, nonlinear wave computing platform with self-learning capabilities.

基于波浪的非常规计算平台需要一个可控但可调节的波浪信息流,并与非易失性数据存储相结合。自旋波由于其固有的非互反性质和与磁存储的直接相互作用而成为这种平台的理想选择。本研究展示了自旋波非互易性是如何由反平行平面外磁化的纳米波导中的偶极相互作用引起的,从而实现了用于单向信号传输和高级路由的自旋波环行器。该器件的功能可以使用位置可调的磁畴壁连续重新配置,提供对输出和非互易性的非易失性控制。通过微磁仿真和分析模型验证了自旋波定向耦合器的特性,该特性还支持波导交叉、可调谐功率分配器和频率复用器的功能。所提出的基于畴壁的重构,结合非线性自旋波行为,有望开发出具有自学习能力的纳米级非线性波计算平台。
{"title":"Nonreciprocal Spin Waves in Out-of-Plane Magnetized Coupled Waveguides Reconfigured by Domain Wall Displacements","authors":"Hanadi Mortada,&nbsp;Roman Verba,&nbsp;Qi Wang,&nbsp;Philipp Pirro,&nbsp;Alexandre Abbass Hamadeh","doi":"10.1002/aelm.202500575","DOIUrl":"10.1002/aelm.202500575","url":null,"abstract":"<p>Wave-based platforms for unconventional computing require a controlled yet adjustable flow of wave information, integrated with non-volatile data storage. Spin waves are ideal for such platforms due to their inherent nonreciprocal properties and direct interaction with magnetic storage. This study demonstrates how spin-wave nonreciprocity, induced by dipolar interactions in nanowaveguides with antiparallel out-of-plane magnetization, enables the realization of a spin-wave circulator for unidirectional signal transport and advanced routing. The device's functionality can be continuously reconfigured using a magnetic domain wall with adjustable position, offering non-volatile control over output and nonreciprocity. These features are illustrated using a spin-wave directional coupler, validated through micromagnetic simulations and analytical models, which also support the functions of a waveguide crossing, tunable power splitter, and frequency multiplexer. The proposed domain-wall-based reconfiguration, combined with nonlinear spin-wave behavior, holds promise for developing a nanoscale, nonlinear wave computing platform with self-learning capabilities.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 20","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Study of Digital Memristor‐Based Processing‐In‐Memory from a Device and Reliability Perspective 从器件和可靠性角度对基于数字忆阻器的处理-内存的比较研究
IF 6.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-25 DOI: 10.1002/aelm.202500348
Thomas Neuner, Henriette Padberg, Lior Kornblum, Eilam Yalon, Pedram Khalili Amiri, Shahar Kvatinsky
As data‐intensive applications increasingly strain conventional computing systems, processing‐in‐memory (PIM) has emerged as a promising paradigm to alleviate the memory wall by minimizing data transfer between memory and processing units. This review presents the recent advances in both stateful and non‐stateful logic techniques for PIM, focusing on emerging nonvolatile memory technologies such as resistive random‐access memory (RRAM), phase‐change memory (PCM), and magnetoresistive random‐access memory (MRAM). Both experimentally demonstrated and simulated logic designs are critically examined, highlighting key challenges in reliability and the role of device‐level optimization in enabling scalable and commercial viable PIM systems. The review begins with an overview of relevant logic families, memristive device types, and associated reliability metrics. Each logic family is then explored in terms of how it capitalizes on distinct device properties to implement logic techniques. A comparative table of representative device stacks and performance parameters illustrates trade‐offs and quality indicators. Through this comprehensive analysis, the development of optimized, robust memristive devices for next‐generation PIM applications is supported.
随着数据密集型应用对传统计算系统的压力越来越大,内存中处理(PIM)已经成为一种很有前途的范例,通过最小化内存和处理单元之间的数据传输来缓解内存墙。本文综述了PIM的状态和非状态逻辑技术的最新进展,重点介绍了新兴的非易失性存储技术,如电阻性随机存取存储器(RRAM)、相变存储器(PCM)和磁阻性随机存取存储器(MRAM)。实验证明和模拟逻辑设计都经过严格检查,突出了可靠性方面的关键挑战,以及设备级优化在实现可扩展和商业可行的PIM系统中的作用。回顾开始与相关的逻辑家族,忆阻器件类型和相关的可靠性指标的概述。然后探讨每个逻辑家族如何利用不同的器件属性来实现逻辑技术。代表性设备堆栈和性能参数的比较表说明了权衡和质量指标。通过这一全面的分析,为下一代PIM应用提供了优化的、健壮的记忆器件的开发支持。
{"title":"A Comparative Study of Digital Memristor‐Based Processing‐In‐Memory from a Device and Reliability Perspective","authors":"Thomas Neuner, Henriette Padberg, Lior Kornblum, Eilam Yalon, Pedram Khalili Amiri, Shahar Kvatinsky","doi":"10.1002/aelm.202500348","DOIUrl":"https://doi.org/10.1002/aelm.202500348","url":null,"abstract":"As data‐intensive applications increasingly strain conventional computing systems, processing‐in‐memory (PIM) has emerged as a promising paradigm to alleviate the memory wall by minimizing data transfer between memory and processing units. This review presents the recent advances in both stateful and non‐stateful logic techniques for PIM, focusing on emerging nonvolatile memory technologies such as resistive random‐access memory (RRAM), phase‐change memory (PCM), and magnetoresistive random‐access memory (MRAM). Both experimentally demonstrated and simulated logic designs are critically examined, highlighting key challenges in reliability and the role of device‐level optimization in enabling scalable and commercial viable PIM systems. The review begins with an overview of relevant logic families, memristive device types, and associated reliability metrics. Each logic family is then explored in terms of how it capitalizes on distinct device properties to implement logic techniques. A comparative table of representative device stacks and performance parameters illustrates trade‐offs and quality indicators. Through this comprehensive analysis, the development of optimized, robust memristive devices for next‐generation PIM applications is supported.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring Topological States and Anomalous Transport via Magnetization Direction in MnSb MnSb中拓扑态裁剪和磁化方向上的异常输运
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-25 DOI: 10.1002/aelm.202500714
Jiangtao Yu, Zezhong Li, Zhenzhou Guo, Shifeng Qian, Xiaotian Wang, Zhuhong Liu

Based on first-principles calculations and symmetry analysis, we report a magnetization-orientation-controlled topological phase transition and anomalous transport effects in hexagonal MnSb. Owing to its remarkably low magnetic anisotropy energy (0.465 meV), the magnetization direction in MnSb can be readily manipulated by external perturbations. Without spin-orbit coupling (SOC), a symmetry-protected Dirac point (DP) lies 9 meV below the Fermi level. Upon inclusion of SOC, this DP undergoes an evolution as a function of magnetization orientation: it opens a gap at θ = 0° (magnetization along the a-axis) due to the symmetry breaking, and transforms into four Weyl points at θ = 90° (magnetization along the c-axis). These topological transitions are accompanied by significant Berry curvature reconstruction, which profoundly influences the anomalous transport responses. Specifically, the anomalous Hall conductivity increases monotonically from –100.64 Ω−1cm−1 at θ = 0° to a maximum of –754.72 Ω−1cm−1 at θ = 90°, whereas the anomalous Nernst coefficient undergoes a sign reversal, changing from +0.50 Am−1K−1 to –0.09 Am−1K−1 as the magnetization rotates. Our work establishes a design principle for engineering magnetic topological materials, with MnSb serving as a representative example to explore the interplay between magnetic order and topology-driven transport phenomena. These findings bridge magnetism, topology, and transport physics, opening a pathway toward novel spintronic devices through tunable magnetization direction.

基于第一性原理计算和对称性分析,我们报道了磁化取向控制的六边形微晶石的拓扑相变和异常输运效应。由于其磁各向异性能量非常低(0.465 meV),磁化方向可以很容易地被外部扰动操纵。在没有自旋轨道耦合(SOC)的情况下,对称保护的狄拉克点(DP)位于费米能级以下9 meV。在加入SOC后,该DP随着磁化方向的变化而变化:由于对称破缺,它在θ = 0°(沿a轴磁化)处打开一个间隙,并在θ = 90°(沿c轴磁化)处转变为四个Weyl点。这些拓扑转变伴随着显著的Berry曲率重建,这深刻地影响了异常输运响应。特别地,异常霍尔电导率从θ = 0°时的-100.64 Ω−1 cm−1单调增加到θ = 90°时的最大值-754.72 Ω−1 cm−1,而异常能系数则经历了一个符号反转,随着磁化旋转从+0.50 Am−1 K−1变化到-0.09 Am−1 K−1。我们的工作建立了一个工程磁性拓扑材料的设计原则,以MnSb为代表的例子来探索磁有序和拓扑驱动输运现象之间的相互作用。这些发现架起了磁学、拓扑学和输运物理学的桥梁,通过可调磁化方向开辟了通向新型自旋电子器件的途径。
{"title":"Tailoring Topological States and Anomalous Transport via Magnetization Direction in MnSb","authors":"Jiangtao Yu,&nbsp;Zezhong Li,&nbsp;Zhenzhou Guo,&nbsp;Shifeng Qian,&nbsp;Xiaotian Wang,&nbsp;Zhuhong Liu","doi":"10.1002/aelm.202500714","DOIUrl":"10.1002/aelm.202500714","url":null,"abstract":"<p>Based on first-principles calculations and symmetry analysis, we report a magnetization-orientation-controlled topological phase transition and anomalous transport effects in hexagonal MnSb. Owing to its remarkably low magnetic anisotropy energy (0.465 meV), the magnetization direction in MnSb can be readily manipulated by external perturbations. Without spin-orbit coupling (SOC), a symmetry-protected Dirac point (DP) lies 9 meV below the Fermi level. Upon inclusion of SOC, this DP undergoes an evolution as a function of magnetization orientation: it opens a gap at <i>θ</i> = 0° (magnetization along the <i>a</i>-axis) due to the symmetry breaking, and transforms into four Weyl points at <i>θ</i> = 90° (magnetization along the <i>c</i>-axis). These topological transitions are accompanied by significant Berry curvature reconstruction, which profoundly influences the anomalous transport responses. Specifically, the anomalous Hall conductivity increases monotonically from –100.64 Ω<sup>−1</sup>cm<sup>−1</sup> at <i>θ</i> = 0° to a maximum of –754.72 Ω<sup>−1</sup>cm<sup>−1</sup> at <i>θ</i> = 90°, whereas the anomalous Nernst coefficient undergoes a sign reversal, changing from +0.50 Am<sup>−1</sup>K<sup>−1</sup> to –0.09 Am<sup>−1</sup>K<sup>−1</sup> as the magnetization rotates. Our work establishes a design principle for engineering magnetic topological materials, with MnSb serving as a representative example to explore the interplay between magnetic order and topology-driven transport phenomena. These findings bridge magnetism, topology, and transport physics, opening a pathway toward novel spintronic devices through tunable magnetization direction.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 20","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500714","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Electronic Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1