Pengfei Xie, Xiao Rong, Xuelian Qin, Min Li, Yan Zuo, Bingjie Liu, Sujiao Cao, Jie Yang, Li Qiu
Ultrasound (US) becomes an appealing modality for stimulating or amplifying immune responses during cancer therapy, which is also termed sono-immunotherapy. However, the clinical prospect has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, for the first time a novel Os-doped Au-tri(pyridin-4-yl) amine coordination structure (Os@Au-TPA)-based sonosensitizer is originally designed and synthesized for sono-immunotherapy of breast-metastasized tumors. Impressively, Os@Au-TPA shows much higher US-mediated 1O2-producing activity than Au-TPA as well as the other traditional sonosensitizers, for example, ≈41.6 folds to ce6, 19.5 times to Protoporphyrin IX (PpIX), 12.0 to Indocyanine Green (ICG), and 11.1 to Iron phthalocyanine (Pc(Fe)). The Os@Au-TPA can not only generate abundant ROS upon US irradiation to implement sonodynamic therapy (SDT), stimulating cell apoptosis and further immunogenic cell death, but can also generate O2 to alleviate hypoxia to promote the polarization of M2 to M1 macrophages to enhance tumor immunogenicity. As a result, when combined with PD-L1 antibody, it remodels the immunosuppressive tumor microenvironment, achieves concurrent sonodynamic-triggered immune activation, and eradicates both the original and distant-metastasized tumors efficiently. This work not only provides a new strategy to construct potent sonosensitizers from pyridine-metal coordination structures but also proves that sonosensitizers with high performance are crucial in boosting cancer sono-immunotherapy.
{"title":"A Highly Potent Os@Au-TPA Coordination Structure-Based Sonosensitizer for Tumor Sono-Immunotherapies","authors":"Pengfei Xie, Xiao Rong, Xuelian Qin, Min Li, Yan Zuo, Bingjie Liu, Sujiao Cao, Jie Yang, Li Qiu","doi":"10.1002/adfm.202412564","DOIUrl":"https://doi.org/10.1002/adfm.202412564","url":null,"abstract":"Ultrasound (US) becomes an appealing modality for stimulating or amplifying immune responses during cancer therapy, which is also termed sono-immunotherapy. However, the clinical prospect has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, for the first time a novel Os-doped Au-tri(pyridin-4-yl) amine coordination structure (Os@Au-TPA)-based sonosensitizer is originally designed and synthesized for sono-immunotherapy of breast-metastasized tumors. Impressively, Os@Au-TPA shows much higher US-mediated <sup>1</sup>O<sub>2</sub>-producing activity than Au-TPA as well as the other traditional sonosensitizers, for example, ≈41.6 folds to ce6, 19.5 times to Protoporphyrin IX (PpIX), 12.0 to Indocyanine Green (ICG), and 11.1 to Iron phthalocyanine (Pc(Fe)). The Os@Au-TPA can not only generate abundant ROS upon US irradiation to implement sonodynamic therapy (SDT), stimulating cell apoptosis and further immunogenic cell death, but can also generate O<sub>2</sub> to alleviate hypoxia to promote the polarization of M2 to M1 macrophages to enhance tumor immunogenicity. As a result, when combined with PD-L1 antibody, it remodels the immunosuppressive tumor microenvironment, achieves concurrent sonodynamic-triggered immune activation, and eradicates both the original and distant-metastasized tumors efficiently. This work not only provides a new strategy to construct potent sonosensitizers from pyridine-metal coordination structures but also proves that sonosensitizers with high performance are crucial in boosting cancer sono-immunotherapy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"99 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Li, Yu Bian, Cong Xia, Bojin Zhao, Shihui Ma, Jiajia Wang, Hailong Qiu, Hongjun Liu, Ming Liu, Hongwei Yu, Ning Ye, Zhanggui Hu, Yicheng Wu
Quadratically nonlinear photodetectors (QNPDs) typically focus on 2D materials with high second-order nonlinear polarizability, thereby severely disregarding bulk nonlinear optical (NLO) crystals as these rely on phase-matching technology and achieving efficient bulk QNPDs remains a significant challenge. Weyl semimetal crystals have some signatures of inversion symmetry breaking, most notably second-order NLO polarizability, while the inability to balance the low transmittance limits frequency conversion of the zero-band gap absorption-induced crystal. Herein, this study investigates an efficient QNPD based on bulk NbAs crystals designed with a strong second-harmonic effect due to its large refractive index (≈5.0), resulting in an intense laser reflectivity of 50% on its surface, which creates a favorable environment for achieving second-harmonic generation (SHG) without phase matching. The QNPD has a rectification ratio exceeding 107 with a dark current of 164 pA and an enhanced photoresponse in the 355‒1900 nm range, exhibiting a maximum responsivity of 4.1 mA W−1 with a detectivity of 0.8 × 1010 Jones at 355 nm. The responsivity improvement rate is 88% higher than that of linear NbAs (001) photodetector. This study opens new avenues for designing QNPDs by utilizing the second harmonic effect in bulk Weyl semimetal crystals.
{"title":"Enhanced Second-Harmonic Generation in Quadratically Nonlinear Weyl Semimetal NbAs for Broadband Photodetection Applications","authors":"Xin Li, Yu Bian, Cong Xia, Bojin Zhao, Shihui Ma, Jiajia Wang, Hailong Qiu, Hongjun Liu, Ming Liu, Hongwei Yu, Ning Ye, Zhanggui Hu, Yicheng Wu","doi":"10.1002/adfm.202418485","DOIUrl":"https://doi.org/10.1002/adfm.202418485","url":null,"abstract":"Quadratically nonlinear photodetectors (QNPDs) typically focus on 2D materials with high second-order nonlinear polarizability, thereby severely disregarding bulk nonlinear optical (NLO) crystals as these rely on phase-matching technology and achieving efficient bulk QNPDs remains a significant challenge. Weyl semimetal crystals have some signatures of inversion symmetry breaking, most notably second-order NLO polarizability, while the inability to balance the low transmittance limits frequency conversion of the zero-band gap absorption-induced crystal. Herein, this study investigates an efficient QNPD based on bulk NbAs crystals designed with a strong second-harmonic effect due to its large refractive index (≈5.0), resulting in an intense laser reflectivity of 50% on its surface, which creates a favorable environment for achieving second-harmonic generation (SHG) without phase matching. The QNPD has a rectification ratio exceeding 10<sup>7</sup> with a dark current of 164 pA and an enhanced photoresponse in the 355‒1900 nm range, exhibiting a maximum responsivity of 4.1 mA W<sup>−1</sup> with a detectivity of 0.8 × 10<sup>10</sup> Jones at 355 nm. The responsivity improvement rate is 88% higher than that of linear NbAs (001) photodetector. This study opens new avenues for designing QNPDs by utilizing the second harmonic effect in bulk Weyl semimetal crystals.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"18 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fancong Zeng, Lin Xu, Chencheng Hu, Jiahe Xing, Yanjie Wu, Xue Bai, Biao Dong, Hongwei Song
Continuous breakthroughs of photoelectric conversion efficiency (PCE) in perovskite solar cells are achieved, but the inherent instability caused by residual tensile strain and interfacial defects remains a major obstacle to their application. In this study, a polydentate ligand-regulated dual-surface stress management strategy for perovskite (PVK) is introduced to eliminate tensile strain and interface defects via multidentate anchoring. 3-amino-5-bromopicolinaldehyde (BD) is employed on the lower surface of PVK, while its −CO, −NH2, and pyridine functional groups facilitate the bridging of SnO2 with PVK, alleviating tensile stress and lowering interfacial energy barriers. For the upper surface, the bis−SO2, pyridine, and bis−CF3 functional groups of N-(5-Chloro-2-pyridyl) bis(trifluoromethanesulfonimide) (FC) are utilized to increase the ion migration energy barrier through anchoring, which effectively diminishes tensile stress and defects. Besides, −CF3 also constructs a hydrophobic barrier on the upper surface. Notably, tensile stress successfully transforms into compressive stress based on the dual-surface stress regulation, significantly improving the framework stability of PVK. Consequently, the devices treated with BD and FC achieve an elevated open-circuit voltage of 1.24 V and PCE of 24.70%. The modified device (unencapsulated) maintains 92% of initial PCE after 2000 h in the atmosphere and 91% after 500 h under 85% RH, showcasing enhanced stability.
{"title":"Dual-Surface Polydentate Anchoring Enabled Strain Regulation for Stable and Efficient Perovskite Solar Cells","authors":"Fancong Zeng, Lin Xu, Chencheng Hu, Jiahe Xing, Yanjie Wu, Xue Bai, Biao Dong, Hongwei Song","doi":"10.1002/adfm.202415547","DOIUrl":"https://doi.org/10.1002/adfm.202415547","url":null,"abstract":"Continuous breakthroughs of photoelectric conversion efficiency (PCE) in perovskite solar cells are achieved, but the inherent instability caused by residual tensile strain and interfacial defects remains a major obstacle to their application. In this study, a polydentate ligand-regulated dual-surface stress management strategy for perovskite (PVK) is introduced to eliminate tensile strain and interface defects via multidentate anchoring. 3-amino-5-bromopicolinaldehyde (BD) is employed on the lower surface of PVK, while its −CO, −NH<sub>2</sub>, and pyridine functional groups facilitate the bridging of SnO<sub>2</sub> with PVK, alleviating tensile stress and lowering interfacial energy barriers. For the upper surface, the bis−SO<sub>2</sub>, pyridine, and bis−CF<sub>3</sub> functional groups of N-(5-Chloro-2-pyridyl) bis(trifluoromethanesulfonimide) (FC) are utilized to increase the ion migration energy barrier through anchoring, which effectively diminishes tensile stress and defects. Besides, −CF<sub>3</sub> also constructs a hydrophobic barrier on the upper surface. Notably, tensile stress successfully transforms into compressive stress based on the dual-surface stress regulation, significantly improving the framework stability of PVK. Consequently, the devices treated with BD and FC achieve an elevated open-circuit voltage of 1.24 V and PCE of 24.70%. The modified device (unencapsulated) maintains 92% of initial PCE after 2000 h in the atmosphere and 91% after 500 h under 85% RH, showcasing enhanced stability.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"128 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Cheng, Pan Zhang, Xinyu Ouyang, Weijia Tang, Bing Song, Youwei Zhang, Yu Zheng, Anlian Pan
Defect engineering is extensively utilized in 2D memory devices due to its effectiveness in enhancing charge-trapping ability. However, conventional defect modulation techniques usually introduce only single types of carrier traps and cannot reconfigure trap types and densities after device fabrication. Here, for the first time, electrical stimulation-driven long-range migration of Cu ions within CuInP2S6 (CIPS) films is demonstrated to simultaneously introduce both electron and hole traps and enable reconfigurable modulation of interfacial defect trapping. This process is referred to as “electrical stimulation-induced defect engineering”. By integrating these defect traps and the dual-gate coupling effect, the memory window-to-scan range (MW/S.R) ratio, which reflects the device's charge trapping ability, doubled and peaked at 78.1% at Vbg = ± 80 V. Additionally, the dual-gate memory device based on the graphene/CIPS/h-BN/WSe2 heterostructure exhibits a maximum on/off ratio reaching 107 for multi-level storage states, integrating neuromorphic computing and logic operations within a single platform. With 81 storage states and paired-pulse facilitation (PPF), it achieves ≈90% accuracy in reservoir computing (RC) simulations. These results highlight the potential of electrical stimulation-induced defect engineering for next-generation electronics.
{"title":"2D Memory Enabled by Electrical Stimulation-Induced Defect Engineering for Complicated Neuromorphic Computing","authors":"Jie Cheng, Pan Zhang, Xinyu Ouyang, Weijia Tang, Bing Song, Youwei Zhang, Yu Zheng, Anlian Pan","doi":"10.1002/adfm.202416333","DOIUrl":"https://doi.org/10.1002/adfm.202416333","url":null,"abstract":"Defect engineering is extensively utilized in 2D memory devices due to its effectiveness in enhancing charge-trapping ability. However, conventional defect modulation techniques usually introduce only single types of carrier traps and cannot reconfigure trap types and densities after device fabrication. Here, for the first time, electrical stimulation-driven long-range migration of Cu ions within CuInP<sub>2</sub>S<sub>6</sub> (CIPS) films is demonstrated to simultaneously introduce both electron and hole traps and enable reconfigurable modulation of interfacial defect trapping. This process is referred to as “electrical stimulation-induced defect engineering”. By integrating these defect traps and the dual-gate coupling effect, the memory window-to-scan range (MW/S.R) ratio, which reflects the device's charge trapping ability, doubled and peaked at 78.1% at <i>V</i><sub>bg</sub> = ± 80 V. Additionally, the dual-gate memory device based on the graphene/CIPS/h-BN/WSe<sub>2</sub> heterostructure exhibits a maximum on/off ratio reaching 10<sup>7</sup> for multi-level storage states, integrating neuromorphic computing and logic operations within a single platform. With 81 storage states and paired-pulse facilitation (<i>PPF</i>), it achieves ≈90% accuracy in reservoir computing (RC) simulations. These results highlight the potential of electrical stimulation-induced defect engineering for next-generation electronics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"18 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunchun Yin, Yirong Wang, Jinfeng Wang, Jingxuan You, Xi Wang, Jun Zhang, Jinming Zhang
Recycling of real waste plastics with diverse composition is extremely difficult. Herein, an eco-friendly and easy-to-operate strategy is demonstrated to facilitate the recycling of plastic composites and mixtures by using only water. An aqu-thermoplastic bioplastic (CPp-TA) is constructed with switchable water solubility and excellent thermoplastic property from natural cellulose. CPp-TA consisted of the cellulose main chain (C) and two functional groups, internal-plasticizing group (Pp) and switchable group (TA). It not only has outstanding thermo-plastic formability, water resistance, and mechanical property to satisfy the daily needs, but also can be easily recycled with water by switching to the water-soluble state. CPp-TA can processed into various high-performance plastic parts, fibers, heat-sealing packaging, transparent cups, paper-plastic composites, and aluminum-plastic composites by conventional thermoplastic processing methods. The obtained CPp-TA/Al/paper composite exhibits better barrier performance than the famous Tetra Pak with a complex recycling process, and can be easily separated into CPp-TA, Al foil, and paper by using basic aqueous solution to trigger the water solubility of CPp-TA. Similarly, CPp-TA can be effectively separated from plastic mixtures. The recovery yield achieves to 100%. The revolutionary aqu-thermoplastic materials and water-recycling strategy markedly reduce the recycling difficulty of intricate plastics and promote the sustainable development.
{"title":"Aqu-Thermoplastics: Recycling Plastics with Water","authors":"Chunchun Yin, Yirong Wang, Jinfeng Wang, Jingxuan You, Xi Wang, Jun Zhang, Jinming Zhang","doi":"10.1002/adfm.202417119","DOIUrl":"https://doi.org/10.1002/adfm.202417119","url":null,"abstract":"Recycling of real waste plastics with diverse composition is extremely difficult. Herein, an eco-friendly and easy-to-operate strategy is demonstrated to facilitate the recycling of plastic composites and mixtures by using only water. An aqu-thermoplastic bioplastic (CPp-TA) is constructed with switchable water solubility and excellent thermoplastic property from natural cellulose. CPp-TA consisted of the cellulose main chain (C) and two functional groups, internal-plasticizing group (Pp) and switchable group (TA). It not only has outstanding thermo-plastic formability, water resistance, and mechanical property to satisfy the daily needs, but also can be easily recycled with water by switching to the water-soluble state. CPp-TA can processed into various high-performance plastic parts, fibers, heat-sealing packaging, transparent cups, paper-plastic composites, and aluminum-plastic composites by conventional thermoplastic processing methods. The obtained CPp-TA/Al/paper composite exhibits better barrier performance than the famous Tetra Pak with a complex recycling process, and can be easily separated into CPp-TA, Al foil, and paper by using basic aqueous solution to trigger the water solubility of CPp-TA. Similarly, CPp-TA can be effectively separated from plastic mixtures. The recovery yield achieves to 100%. The revolutionary aqu-thermoplastic materials and water-recycling strategy markedly reduce the recycling difficulty of intricate plastics and promote the sustainable development.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"99 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanqiang Wang, Zhicheng Zhong, Sergio Gámez-Valenzuela, Jin-Woo Lee, Bolin Li, Changjing Xu, Jie Yang, Huiliang Sun, Bumjoon J. Kim, Bin Liu, Xugang Guo
A key factor in optimizing organic solar cells (OSCs) is the precise control of blend film morphology to enhance exciton dissociation and charge transport. Solid additives play a vital role in this process, with 3D polyhedral or spherical molecules being ideal candidates due to their delocalized π-orbitals and omnidirectional charge transport. However, the application of classical fullerene derivatives as spherical additives is limited by their synthetic complicacy and poor solubility. Herein, the potential of 3D globally aromatic carboranyl cages as solid additives, specifically 1-amino-o-carborane (CB-NH2) and 1-carboxy-o-carborane (CB-COOH), is explored to fine-tune the film morphology and improve the performance of OSCs. These spherical molecules provide an extensive surface for hydrogen bonding interactions, which serve as the driving force for manipulating the vertical phase separation and active layer crystallinity. Remarkably, CB-NH2-processed devices with well-tuned morphology yield a remarkable power conversion efficiency of 19.48%, highlighting the effectiveness of 3D carboranyl additives on improving OSC performance. This work challenges the reliance on fullerene derivatives as spherical additives and offers new insights into the mechanisms by which 3D globally aromatic additives can achieve high performance in OSCs, emphasizing the significance of molecular engineering in the development of next-generation solar cell technology.
{"title":"High-Performance Organic Solar Cells Enabled by 3D Globally Aromatic Carboranyl Solid Additive","authors":"Hanqiang Wang, Zhicheng Zhong, Sergio Gámez-Valenzuela, Jin-Woo Lee, Bolin Li, Changjing Xu, Jie Yang, Huiliang Sun, Bumjoon J. Kim, Bin Liu, Xugang Guo","doi":"10.1002/adfm.202418805","DOIUrl":"https://doi.org/10.1002/adfm.202418805","url":null,"abstract":"A key factor in optimizing organic solar cells (OSCs) is the precise control of blend film morphology to enhance exciton dissociation and charge transport. Solid additives play a vital role in this process, with 3D polyhedral or spherical molecules being ideal candidates due to their delocalized π-orbitals and omnidirectional charge transport. However, the application of classical fullerene derivatives as spherical additives is limited by their synthetic complicacy and poor solubility. Herein, the potential of 3D globally aromatic carboranyl cages as solid additives, specifically 1-amino-<i>o</i>-carborane (CB-NH<sub>2</sub>) and 1-carboxy-<i>o</i>-carborane (CB-COOH), is explored to fine-tune the film morphology and improve the performance of OSCs. These spherical molecules provide an extensive surface for hydrogen bonding interactions, which serve as the driving force for manipulating the vertical phase separation and active layer crystallinity. Remarkably, CB-NH<sub>2</sub>-processed devices with well-tuned morphology yield a remarkable power conversion efficiency of 19.48%, highlighting the effectiveness of 3D carboranyl additives on improving OSC performance. This work challenges the reliance on fullerene derivatives as spherical additives and offers new insights into the mechanisms by which 3D globally aromatic additives can achieve high performance in OSCs, emphasizing the significance of molecular engineering in the development of next-generation solar cell technology.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah
Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V2O5) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V2O5 precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm−2, areal energy of 50.18 µWh cm−2, and areal power of 53 µW cm−2 at 50 µA cm−2 in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.
{"title":"Chemically Processed Porous V2O5 Thin-Film Cathodes for High-Performance Thin-film Zn-Ion Batteries","authors":"Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah","doi":"10.1002/adfm.202417607","DOIUrl":"https://doi.org/10.1002/adfm.202417607","url":null,"abstract":"Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V<sub>2</sub>O<sub>5</sub>) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V<sub>2</sub>O<sub>5</sub> precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm<sup>−</sup><sup>2</sup>, areal energy of 50.18 µWh cm<sup>−</sup><sup>2</sup>, and areal power of 53 µW cm<sup>−</sup><sup>2</sup> at 50 µA cm<sup>−</sup><sup>2</sup> in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunyu Liu, Denghui Liu, Deli Li, Tong Wang, Di Liu, Xilin Mu, Jiasen Zhang, Tingting Feng, Kaibo Fang, Shi-Jian Su, Yubo Zhou, Siyao Wu, Wei Li, Ziyi Ge
The development of blue electroluminescent (EL) materials remains a significant challenge in organic light-emitting diode (OLED) technology. In this study, a novel design strategy is proposed for blue hot exciton (HE) materials, which involves utilizing a “cross” shaped molecular structure characterized by substantial steric hindrance and a highly twisted conformation. The unique cross-shaped molecular architecture with distinct “arms” enables flexible control over the excited state properties of the molecule, thereby facilitating precise modulation of high-lying triplet and low-lying singlet excited state energy levels. Furthermore, the 3D spatial configuration of the molecule effectively reduces close molecular packing, thereby minimizing the risk of material concentration quenching. The proof-of-concept HE emitters CN-PI and TP-PI exhibit non-π-π stacking configurations in single crystals, achieving high photoluminescence quantum yield (PLQY) values up to 51.3% and 46.5% in non-doped thin films, respectively, along with rapid radiation decay rates and reasonable distribution of Tm (m ≤ 5) and S1 states. Non-doped OLEDs incorporating these emitters demonstrate exceptional external quantum efficiencies (EQE), reaching 7.3% and 6.4%, respectively, while exhibiting minimal efficiency roll-off at high luminance. This research introduces a promising approach for developing high-performance blue HE emitters.
{"title":"Highly Efficient Blue Organic Light-Emitting Devices Based on “Cross”-Shaped Hot Exciton Emitters","authors":"Chunyu Liu, Denghui Liu, Deli Li, Tong Wang, Di Liu, Xilin Mu, Jiasen Zhang, Tingting Feng, Kaibo Fang, Shi-Jian Su, Yubo Zhou, Siyao Wu, Wei Li, Ziyi Ge","doi":"10.1002/adfm.202415633","DOIUrl":"https://doi.org/10.1002/adfm.202415633","url":null,"abstract":"The development of blue electroluminescent (EL) materials remains a significant challenge in organic light-emitting diode (OLED) technology. In this study, a novel design strategy is proposed for blue hot exciton (HE) materials, which involves utilizing a “cross” shaped molecular structure characterized by substantial steric hindrance and a highly twisted conformation. The unique cross-shaped molecular architecture with distinct “arms” enables flexible control over the excited state properties of the molecule, thereby facilitating precise modulation of high-lying triplet and low-lying singlet excited state energy levels. Furthermore, the 3D spatial configuration of the molecule effectively reduces close molecular packing, thereby minimizing the risk of material concentration quenching. The proof-of-concept HE emitters CN-PI and TP-PI exhibit non-π-π stacking configurations in single crystals, achieving high photoluminescence quantum yield (PLQY) values up to 51.3% and 46.5% in non-doped thin films, respectively, along with rapid radiation decay rates and reasonable distribution of T<sub>m</sub> (m ≤ 5) and S<sub>1</sub> states. Non-doped OLEDs incorporating these emitters demonstrate exceptional external quantum efficiencies (EQE), reaching 7.3% and 6.4%, respectively, while exhibiting minimal efficiency roll-off at high luminance. This research introduces a promising approach for developing high-performance blue HE emitters.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"248 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huizhen Fan, Ka Ioi Wong, Yingying Ma, Ming Li, Hanqing Li, Li Wei, Shen Wang, Min Yao, Min Lu
Metal ion-based inhibition of urease activity is a promising strategy for treating Helicobacter pylori (H. pylori) infections. However, the challenges of safe delivery and reducing cytotoxicity persist. In this study, an innovative nanocarrier capable of acid-responsive release of Ag+ and antibiotics is developed, with complete degradation after treatment. Mesoporous organosilica nanoparticle (MON) is encapsulated with hyaluronic acid (HA) to prevent drug leakage and further coated with bacterial outer membrane vesicle (OMV) from Escherichia coli Nissle 1917, creating a nanocarrier with cell-protective capabilities. Ag+ and antibiotic clarithromycin (CLR) are incorporated into the nanocarrier to form CLR-Ag+@MON@HA@OMV (CAMO), designed for the targeted treatment of gastric H. pylori infection. The HA encapsulation ensures acid-responsive release of CLR and Ag+ in the stomach, preventing premature release at non-inflammatory sites. There is a potential for Ag⁺ in CAMO to replace Ni2⁺ at the active site of urease, enhancing the bactericidal effect of CLR through urease inhibition. Furthermore, the OMV provides additional cytoprotection, mitigating cell damage and inflammation response induced by the H. pylori infection. This study introduces a safe and effective nanocarrier that eradicates H. pylori and alleviates gastric inflammation.
{"title":"Biodegradable Acid-Responsive Nanocarrier for Enhanced Antibiotic Therapy Against Drug-Resistant Helicobacter Pylori via Urease Inhibition","authors":"Huizhen Fan, Ka Ioi Wong, Yingying Ma, Ming Li, Hanqing Li, Li Wei, Shen Wang, Min Yao, Min Lu","doi":"10.1002/adfm.202412893","DOIUrl":"https://doi.org/10.1002/adfm.202412893","url":null,"abstract":"Metal ion-based inhibition of urease activity is a promising strategy for treating <i>Helicobacter pylori</i> (<i>H. pylori</i>) infections. However, the challenges of safe delivery and reducing cytotoxicity persist. In this study, an innovative nanocarrier capable of acid-responsive release of Ag<sup>+</sup> and antibiotics is developed, with complete degradation after treatment. Mesoporous organosilica nanoparticle (MON) is encapsulated with hyaluronic acid (HA) to prevent drug leakage and further coated with bacterial outer membrane vesicle (OMV) from <i>Escherichia coli</i> Nissle 1917, creating a nanocarrier with cell-protective capabilities. Ag<sup>+</sup> and antibiotic clarithromycin (CLR) are incorporated into the nanocarrier to form CLR-Ag<sup>+</sup>@MON@HA@OMV (CAMO), designed for the targeted treatment of gastric <i>H. pylori</i> infection. The HA encapsulation ensures acid-responsive release of CLR and Ag<sup>+</sup> in the stomach, preventing premature release at non-inflammatory sites. There is a potential for Ag⁺ in CAMO to replace Ni<sup>2</sup>⁺ at the active site of urease, enhancing the bactericidal effect of CLR through urease inhibition. Furthermore, the OMV provides additional cytoprotection, mitigating cell damage and inflammation response induced by the <i>H. pylori</i> infection. This study introduces a safe and effective nanocarrier that eradicates <i>H. pylori</i> and alleviates gastric inflammation.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"48 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youngsang Ko, Suji Lee, Jieun Jang, Goomin Kwon, Kangyun Lee, Youngho Jeon, Ajeong Lee, Teahoon Park, Jeonghun Kim, Jungmok You
Clean-water harvesting through solar interfacial evaporation technology has recently emerged as a strategy for resolving global water scarcity. In this study, rapid carbon-dioxide-laser-induced carbonization and facile ice-templating is employed to construct a cellulose-based solar evaporator bearing a hybrid multi-layer micro-/nano-architecture (i.e., a laser-induced carbon (LC) nanostructure and a cellulose aerogel (CA) nano/microstructure). The LC exhibits a light-absorbing/photothermal nanoporous carbon structure that offers high light absorption and multiple light scattering. Additionally, the CA exhibits numerous nanopores and unidirectional microchannels that facilitate rapid water transport via capillary action. This hybrid LC/CA micro-/nano-architecture enabled rapid vapor generation with an average water evaporation rate (ν) of 1.62 kg m−2 h−1 and an evaporation efficiency (η) of 66.6%. To further enhance the evaporation performance, a polydimethylsiloxane (PDMS) layer is coated onto the side of the LC/CA evaporator to increase its floatability in the simulated water; ν and η of the PDMS-coated LC/CA evaporator (LC/CA/PDMS) increased to 1.9 kg m−2 h−1 and 83.8%, respectively. Additionally, the LC/CA/PDMS evaporator exhibited a high ν value of 1.68 kg m−2 h−1 in simulated seawater, originating from excellent resistance to salt accumulation via its self-cleaning ability. Furthermore, the solar evaporator exhibited scalability for fabrication as well as biodegradable properties.
最近,通过太阳能界面蒸发技术收集清洁水源已成为解决全球水资源短缺问题的一种策略。在这项研究中,利用激光诱导的二氧化碳快速碳化和简便的铸冰技术,构建了一种纤维素基太阳能蒸发器,该蒸发器具有多层微/纳米混合结构(即激光诱导碳(LC)纳米结构和纤维素气凝胶(CA)纳米/微结构)。LC 具有光吸收/光热纳米多孔碳结构,具有高光吸收性和多重光散射性。此外,CA 具有大量纳米孔和单向微通道,可通过毛细作用促进水的快速传输。这种混合 LC/CA 微/纳米结构能够快速产生水蒸气,平均水蒸发率 (ν) 为 1.62 kg m-2 h-1,蒸发效率 (η) 为 66.6%。为了进一步提高蒸发性能,在 LC/CA 蒸发器的侧面涂上了一层聚二甲基硅氧烷 (PDMS),以增加其在模拟水中的漂浮性;涂有 PDMS 的 LC/CA 蒸发器(LC/CA/PDMS)的 ν 和 η 分别增加到 1.9 kg m-2 h-1 和 83.8%。此外,LC/CA/PDMS 蒸发器在模拟海水中的 ν 值高达 1.68 kg m-2 h-1,这源于其出色的自清洁能力,可有效防止盐分积累。此外,太阳能蒸发器还具有可扩展性和可生物降解性。
{"title":"Nanocellulose-Based Interfacial Solar Evaporator: Integrating Sustainable Materials and Micro-/Nano-Architectures for Solar Desalination","authors":"Youngsang Ko, Suji Lee, Jieun Jang, Goomin Kwon, Kangyun Lee, Youngho Jeon, Ajeong Lee, Teahoon Park, Jeonghun Kim, Jungmok You","doi":"10.1002/adfm.202414576","DOIUrl":"https://doi.org/10.1002/adfm.202414576","url":null,"abstract":"Clean-water harvesting through solar interfacial evaporation technology has recently emerged as a strategy for resolving global water scarcity. In this study, rapid carbon-dioxide-laser-induced carbonization and facile ice-templating is employed to construct a cellulose-based solar evaporator bearing a hybrid multi-layer micro-/nano-architecture (i.e., a laser-induced carbon (LC) nanostructure and a cellulose aerogel (CA) nano/microstructure). The LC exhibits a light-absorbing/photothermal nanoporous carbon structure that offers high light absorption and multiple light scattering. Additionally, the CA exhibits numerous nanopores and unidirectional microchannels that facilitate rapid water transport via capillary action. This hybrid LC/CA micro-/nano-architecture enabled rapid vapor generation with an average water evaporation rate (ν) of 1.62 kg m<sup>−2</sup> h<sup>−1</sup> and an evaporation efficiency (η) of 66.6%. To further enhance the evaporation performance, a polydimethylsiloxane (PDMS) layer is coated onto the side of the LC/CA evaporator to increase its floatability in the simulated water; ν and η of the PDMS-coated LC/CA evaporator (LC/CA/PDMS) increased to 1.9 kg m<sup>−2</sup> h<sup>−1</sup> and 83.8%, respectively. Additionally, the LC/CA/PDMS evaporator exhibited a high ν value of 1.68 kg m<sup>−2</sup> h<sup>−1</sup> in simulated seawater, originating from excellent resistance to salt accumulation via its self-cleaning ability. Furthermore, the solar evaporator exhibited scalability for fabrication as well as biodegradable properties.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}