首页 > 最新文献

Advanced Functional Materials最新文献

英文 中文
Upcycling Wind Turbine Blade Waste into Hierarchically Porous Silicon–Carbon Anodes for High‐Performance Lithium‐Ion Batteries 将风力涡轮机叶片废弃物升级为用于高性能锂离子电池的多孔硅碳阳极
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-14 DOI: 10.1002/adfm.202531483
Jiahao Chang, Yaduo Jia, Song Sun, Xin Zhang, Huiyang Gou, Gongkai Wang
The rapid global accumulation of retired wind turbine blades (RWTBs) has emerged as a critical environmental challenge requiring urgent resolution. Conventional recycling methods, primarily limited to landfilling, construction fillers, and co‐processing in cement production, fail to achieve true resource circularity. To address this pressing issue, this study pioneers an innovative value‐added utilization strategy that successfully converts glass fibers from RWTBs into high‐performance silicon–carbon (Si─C) composite anodes for next‐generation lithium‐ion batteries (LIBs). By integrating an alloying reaction‐nitridation treatment with precisely optimized chemical vapor deposition (CVD), we constructed a hierarchically porous recycled micron‐sized silicon (rP‐Si) scaffold structure with uniform carbon coating. The resulting rP‐Si@C composite exhibits exceptional electrochemical performance, maintaining a specific capacity of 1256 mAh g −1 after 300 cycles at 1 A g −1 while demonstrating exceptional structural integrity against mechanical deformation. Systematic characterization via advanced analytical techniques confirms that the unique multi‐level architecture not only effectively accommodates significant volume changes during cycling but also significantly enhances lithium‐ion (Li + ) diffusion kinetics. This work establishes a feasible technological pathway for the sustainable transformation of RWTBs into advanced energy storage components, thereby constructing a complete closed‐loop ecosystem for renewable energy infrastructure.
全球风力涡轮机叶片退役数量的迅速增加已经成为一个迫切需要解决的严峻环境挑战。传统的回收方法主要局限于垃圾填埋、建筑填料和水泥生产中的协同处理,无法实现真正的资源循环。为了解决这一紧迫的问题,本研究开创了一种创新的增值利用策略,成功地将RWTBs中的玻璃纤维转化为下一代锂离子电池(lib)的高性能硅碳(Si─C)复合阳极。通过将合金化反应-氮化处理与精确优化的化学气相沉积(CVD)相结合,我们构建了具有均匀碳涂层的分层多孔再生微米级硅(rP - Si)支架结构。由此产生的rP‐Si@C复合材料具有优异的电化学性能,在1 ag−1下循环300次后保持1256 mAh g−1的比容量,同时具有优异的抗机械变形的结构完整性。通过先进的分析技术进行的系统表征证实,独特的多层结构不仅有效地适应了循环过程中显著的体积变化,而且显著增强了锂离子(Li +)扩散动力学。本研究为rwtb向先进储能组件的可持续转型建立了可行的技术途径,从而构建了一个完整的可再生能源基础设施闭环生态系统。
{"title":"Upcycling Wind Turbine Blade Waste into Hierarchically Porous Silicon–Carbon Anodes for High‐Performance Lithium‐Ion Batteries","authors":"Jiahao Chang, Yaduo Jia, Song Sun, Xin Zhang, Huiyang Gou, Gongkai Wang","doi":"10.1002/adfm.202531483","DOIUrl":"https://doi.org/10.1002/adfm.202531483","url":null,"abstract":"The rapid global accumulation of retired wind turbine blades (RWTBs) has emerged as a critical environmental challenge requiring urgent resolution. Conventional recycling methods, primarily limited to landfilling, construction fillers, and co‐processing in cement production, fail to achieve true resource circularity. To address this pressing issue, this study pioneers an innovative value‐added utilization strategy that successfully converts glass fibers from RWTBs into high‐performance silicon–carbon (Si─C) composite anodes for next‐generation lithium‐ion batteries (LIBs). By integrating an alloying reaction‐nitridation treatment with precisely optimized chemical vapor deposition (CVD), we constructed a hierarchically porous recycled micron‐sized silicon (rP‐Si) scaffold structure with uniform carbon coating. The resulting rP‐Si@C composite exhibits exceptional electrochemical performance, maintaining a specific capacity of 1256 mAh g <jats:sup>−1</jats:sup> after 300 cycles at 1 A g <jats:sup>−1</jats:sup> while demonstrating exceptional structural integrity against mechanical deformation. Systematic characterization via advanced analytical techniques confirms that the unique multi‐level architecture not only effectively accommodates significant volume changes during cycling but also significantly enhances lithium‐ion (Li <jats:sup>+</jats:sup> ) diffusion kinetics. This work establishes a feasible technological pathway for the sustainable transformation of RWTBs into advanced energy storage components, thereby constructing a complete closed‐loop ecosystem for renewable energy infrastructure.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"53 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145962317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Reversible Anionic Redox via Homogeneous Transition Metal‐Oxygen Coordination in Li‐Rich Layered Oxides 通过均匀过渡金属-氧配位在富锂层状氧化物中实现可逆阴离子氧化还原
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.202530355
Xin‐Yu Li, Zhen‐Yu Miao, Yun‐Shan Jiang, Gang Sun, Fu‐Da Yu, Wang Ke, Liang Deng, Guo‐Xu Zhang, Lei Zhao, Zhen‐Bo Wang
Li‐rich layered oxides (LLOs) are promising high‐capacity cathode materials for next generation Li‐ion batteries, but their practical application is hindered by voltage decay and capacity fading, which primarily originate from irreversible oxygen behaviors. Given that transition metal‐oxygen (TM─O) bonding is crucial for stabilizing anionic redox, this study reveals the critical role of elemental composition in determining the homogeneity of the TM‐O coordination environment within LLOs. This homogeneity directly influences the electrochemical behavior and structural stability of the material. Combining in situ X‐ray diffraction (XRD) and density‐functional theory (DFT) calculations on various model compounds, we demonstrate that while Co thermodynamically enhancing the Mn─O bonds, it forms highly covalent Co─O bonds that disrupt the uniformity of the TM─O bonding network. This inhomogeneity kinetically promotes irreversible ligand‐to‐metal charge transfer, exacerbates lattice strain along c ‐axis, and accelerates oxygen loss. In contrast, Ni promotes a homogeneous TM‐O coordination environment, facilitating reversible charge compensation and accommodating lattice strain through gentle ab ‐plane expansion. Consequently, the Ni‐rich cathodes achieve superior cycling stability and voltage retention. Our findings establish that a uniform TM─O bonding network is more crucial than the absolute bond strength for achieving reversible anionic redox, providing a new design principle for stable and high‐energy cathode materials.
富锂层状氧化物(LLOs)是下一代锂离子电池极具潜力的高容量正极材料,但其实际应用受到电压衰减和容量衰减的阻碍,这主要源于不可逆的氧行为。鉴于过渡金属-氧(TM─O)键对稳定阴离子氧化还原至关重要,本研究揭示了元素组成在确定LLOs中TM─O配位环境的均匀性方面的关键作用。这种均匀性直接影响材料的电化学行为和结构稳定性。结合原位X射线衍射(XRD)和密度泛函理论(DFT)对各种模型化合物的计算,我们证明了Co在热力学上增强Mn─O键的同时,它形成了高共价的Co─O键,破坏了TM─O键网络的均匀性。这种不均匀性从动力学上促进了不可逆的配体到金属的电荷转移,加剧了沿c轴的晶格应变,并加速了氧的损失。相反,Ni促进了均匀的TM - O配位环境,促进了可逆电荷补偿,并通过温和的ab平面膨胀调节了晶格应变。因此,富镍阴极具有优异的循环稳定性和电压保持性。我们的研究结果表明,对于实现可逆阴离子氧化还原,均匀的TM─O键合网络比绝对键合强度更重要,为稳定和高能阴极材料的设计提供了新的原则。
{"title":"Achieving Reversible Anionic Redox via Homogeneous Transition Metal‐Oxygen Coordination in Li‐Rich Layered Oxides","authors":"Xin‐Yu Li, Zhen‐Yu Miao, Yun‐Shan Jiang, Gang Sun, Fu‐Da Yu, Wang Ke, Liang Deng, Guo‐Xu Zhang, Lei Zhao, Zhen‐Bo Wang","doi":"10.1002/adfm.202530355","DOIUrl":"https://doi.org/10.1002/adfm.202530355","url":null,"abstract":"Li‐rich layered oxides (LLOs) are promising high‐capacity cathode materials for next generation Li‐ion batteries, but their practical application is hindered by voltage decay and capacity fading, which primarily originate from irreversible oxygen behaviors. Given that transition metal‐oxygen (TM─O) bonding is crucial for stabilizing anionic redox, this study reveals the critical role of elemental composition in determining the homogeneity of the TM‐O coordination environment within LLOs. This homogeneity directly influences the electrochemical behavior and structural stability of the material. Combining in situ X‐ray diffraction (XRD) and density‐functional theory (DFT) calculations on various model compounds, we demonstrate that while Co thermodynamically enhancing the Mn─O bonds, it forms highly covalent Co─O bonds that disrupt the uniformity of the TM─O bonding network. This inhomogeneity kinetically promotes irreversible ligand‐to‐metal charge transfer, exacerbates lattice strain along <jats:italic>c</jats:italic> ‐axis, and accelerates oxygen loss. In contrast, Ni promotes a homogeneous TM‐O coordination environment, facilitating reversible charge compensation and accommodating lattice strain through gentle <jats:italic>ab</jats:italic> ‐plane expansion. Consequently, the Ni‐rich cathodes achieve superior cycling stability and voltage retention. Our findings establish that a uniform TM─O bonding network is more crucial than the absolute bond strength for achieving reversible anionic redox, providing a new design principle for stable and high‐energy cathode materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"29 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Curie Temperature in 2D Fe 0.98 In 0.02 Te Ferromagnetic Semiconductor via Indium‐Induced Superexchange Enhancement 基于铟诱导超交换增强的二维fe0.98 in 0.02 Te铁磁半导体的高居里温度
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.202532088
Dingyi Yang, Yongjie Xu, Jiawei Liu, Yong Wang, Miao Wang, Yu Zhang, Yang Liu, Yongmei Wang, Qikun Li, Yue Hao, Yizhang Wu
2D ferromagnetic semiconductors are promising for spintronic and quantum applications by integrating electronic and magnetic functionalities at the atomic scale. However, most known ferromagnetic semiconductors suffer from Curie temperatures ( T C ) well below room temperature. Here, we report a 2D ferromagnetic semiconductor Fe 0.98 In 0.02 Te (FIT), exhibiting n‐type conduction and a record‐high T C of 860 K among known 2D magnetic materials to date. The intrinsic ferromagnetism and magnetic domain evolution were confirmed by X‐ray magnetic circular dichroism and magnetic force microscopy measurements. Density functional theory calculations indicate that In enhances ferromagnetic coupling and magnetic anisotropy energy in FIT through local electronic and structural modulation. Our findings pave the way for the applications of 2D ferromagnetic materials in spintronic device fabrication.
二维铁磁半导体通过在原子尺度上集成电子和磁功能,在自旋电子和量子应用方面有很大的前景。然而,大多数已知的铁磁半导体的居里温度(T C)远低于室温。在这里,我们报道了一种二维铁磁半导体Fe 0.98 In 0.02 Te (FIT),在迄今已知的二维磁性材料中,它表现出n型导电和860 K的高温。通过X射线磁性圆二色性和磁力显微镜测量证实了材料的固有铁磁性和磁畴演化。密度泛函理论计算表明,In通过局部电子和结构调制增强了FIT中的铁磁耦合和磁各向异性能。我们的发现为二维铁磁材料在自旋电子器件制造中的应用铺平了道路。
{"title":"High Curie Temperature in 2D Fe 0.98 In 0.02 Te Ferromagnetic Semiconductor via Indium‐Induced Superexchange Enhancement","authors":"Dingyi Yang, Yongjie Xu, Jiawei Liu, Yong Wang, Miao Wang, Yu Zhang, Yang Liu, Yongmei Wang, Qikun Li, Yue Hao, Yizhang Wu","doi":"10.1002/adfm.202532088","DOIUrl":"https://doi.org/10.1002/adfm.202532088","url":null,"abstract":"2D ferromagnetic semiconductors are promising for spintronic and quantum applications by integrating electronic and magnetic functionalities at the atomic scale. However, most known ferromagnetic semiconductors suffer from Curie temperatures ( <jats:italic>T</jats:italic> <jats:sub>C</jats:sub> ) well below room temperature. Here, we report a 2D ferromagnetic semiconductor Fe <jats:sub>0.98</jats:sub> In <jats:sub>0.02</jats:sub> Te (FIT), exhibiting n‐type conduction and a record‐high <jats:italic>T</jats:italic> <jats:sub>C</jats:sub> of 860 K among known 2D magnetic materials to date. The intrinsic ferromagnetism and magnetic domain evolution were confirmed by X‐ray magnetic circular dichroism and magnetic force microscopy measurements. Density functional theory calculations indicate that In enhances ferromagnetic coupling and magnetic anisotropy energy in FIT through local electronic and structural modulation. Our findings pave the way for the applications of 2D ferromagnetic materials in spintronic device fabrication.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realization of Complex‐Shaped Magnetic Nanotubes with 3D Printing and Electrodeposition (Adv. Funct. Mater. 4/2026) 复杂形状磁性纳米管的3D打印和电沉积实现板牙。4/2026)
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.73580
Claudia Fernández‐González, Pamela Morales‐Fernández, Luke Alexander Turnbull, Claas Abert, Dieter Suess, Michael Foerster, Miguel Á. Niño, Pawel Nita, Anna Mandziak, Simone Finizio, Nuria Bagués, Eva Pereiro, Amalio Fernández‐Pacheco, Lucas Pérez, Sandra Ruiz‐Gómez, Claire Donnelly
{"title":"Realization of Complex‐Shaped Magnetic Nanotubes with 3D Printing and Electrodeposition (Adv. Funct. Mater. 4/2026)","authors":"Claudia Fernández‐González, Pamela Morales‐Fernández, Luke Alexander Turnbull, Claas Abert, Dieter Suess, Michael Foerster, Miguel Á. Niño, Pawel Nita, Anna Mandziak, Simone Finizio, Nuria Bagués, Eva Pereiro, Amalio Fernández‐Pacheco, Lucas Pérez, Sandra Ruiz‐Gómez, Claire Donnelly","doi":"10.1002/adfm.73580","DOIUrl":"https://doi.org/10.1002/adfm.73580","url":null,"abstract":"","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"4 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Square‐Wettability Patterned, Recyclable Polyolefin Elastomer Sorbents for Efficient Chemical and Oil Spill Collection (Adv. Funct. Mater. 4/2026) 方形润湿性图案,可回收的聚烯烃弹性体吸附剂,用于有效的化学品和溢油收集(ad .功能)。板牙。4/2026)
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.73579
Youngmin Choi, Jinhyeok Kang, Changwoo Nam
{"title":"Square‐Wettability Patterned, Recyclable Polyolefin Elastomer Sorbents for Efficient Chemical and Oil Spill Collection (Adv. Funct. Mater. 4/2026)","authors":"Youngmin Choi, Jinhyeok Kang, Changwoo Nam","doi":"10.1002/adfm.73579","DOIUrl":"https://doi.org/10.1002/adfm.73579","url":null,"abstract":"","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"57 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive‐Manufacturing‐Based Flexible Tactile Sensors 基于增材制造的柔性触觉传感器
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.202532112
Song Gao, Hao Li, Ning Li, Wenjing Yue, Hongsen Niu, Binghao Wang, Yang Li
Flexible tactile sensors are rapidly evolving toward high‐resolution, multimodal sensing and large‐area integrability, but traditional manufacturing processes face inherent limitations in complex 3D structure construction, material system compatibility, and fast and efficient manufacturing. Additive manufacturing (AM) technology, with its unique advantages such as on‐demand forming, high structural freedom, and multi‐material collaborative processing, is becoming a core driving force for breakthroughs in sensing performance and integration, moving the field toward cross‐process integration and accelerated innovation. However, AM processes and applications have not yet formed a complete system, and the development and intelligentization of AM‐based flexible tactile sensors have reached a bottleneck, urgently requiring a comprehensive and systematic review to achieve breakthrough progress. Therefore, this review systematically examines the mechanisms by which different AM processes affect the material properties, structural construction, and overall performance of devices, evaluates their applicability, process advantages, and limitations in micro‐nano structure manufacturing, and summarizes their latest advancements in intelligent systems and emerging application scenarios. Finally, it provides an in‐depth outlook on the future development challenges and potential opportunities of AM‐based flexible tactile sensors.
柔性触觉传感器正迅速向高分辨率、多模态传感和大面积集成方向发展,但传统的制造工艺在复杂的3D结构构建、材料系统兼容性和快速高效制造方面面临着固有的局限性。增材制造(AM)技术以其独特的优势,如按需成形、高结构自由度和多材料协同加工,正在成为突破传感性能和集成的核心驱动力,推动该领域朝着跨工艺集成和加速创新的方向发展。然而,增材制造工艺和应用尚未形成完整的体系,基于增材制造的柔性触觉传感器的发展和智能化已经达到瓶颈,迫切需要全面、系统的综述以取得突破性进展。因此,本文系统地研究了不同增材制造工艺对材料性能、结构结构和器件整体性能的影响机制,评估了它们在微纳米结构制造中的适用性、工艺优势和局限性,并总结了它们在智能系统和新兴应用场景中的最新进展。最后,对基于AM的柔性触觉传感器的未来发展挑战和潜在机遇进行了深入的展望。
{"title":"Additive‐Manufacturing‐Based Flexible Tactile Sensors","authors":"Song Gao, Hao Li, Ning Li, Wenjing Yue, Hongsen Niu, Binghao Wang, Yang Li","doi":"10.1002/adfm.202532112","DOIUrl":"https://doi.org/10.1002/adfm.202532112","url":null,"abstract":"Flexible tactile sensors are rapidly evolving toward high‐resolution, multimodal sensing and large‐area integrability, but traditional manufacturing processes face inherent limitations in complex 3D structure construction, material system compatibility, and fast and efficient manufacturing. Additive manufacturing (AM) technology, with its unique advantages such as on‐demand forming, high structural freedom, and multi‐material collaborative processing, is becoming a core driving force for breakthroughs in sensing performance and integration, moving the field toward cross‐process integration and accelerated innovation. However, AM processes and applications have not yet formed a complete system, and the development and intelligentization of AM‐based flexible tactile sensors have reached a bottleneck, urgently requiring a comprehensive and systematic review to achieve breakthrough progress. Therefore, this review systematically examines the mechanisms by which different AM processes affect the material properties, structural construction, and overall performance of devices, evaluates their applicability, process advantages, and limitations in micro‐nano structure manufacturing, and summarizes their latest advancements in intelligent systems and emerging application scenarios. Finally, it provides an in‐depth outlook on the future development challenges and potential opportunities of AM‐based flexible tactile sensors.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"92 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic Enhancement Enables Deactivation Resilient TiO 2 for Sustainable VOCs Remediation under Practical Conditions 等离子体增强使失活弹性tio2在实际条件下可持续的VOCs修复
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.202526193
Gahye Shin, Subhash Chandra Shit, Min Seok Koo, Dong Jin Ham, Hyuk Jae Kwon, Hyunwoong Park, Wooyul Kim
Indoor exposure to volatile organic compounds (VOCs) such as acetaldehyde and toluene poses major health risks, but photocatalytic oxidation over TiO 2 is strongly modulated by humidity and pollutant complexity. Here, we reveal contrasting humidity responses of acetaldehyde and toluene on TiO 2 : acetaldehyde degradation improves under dry conditions, whereas toluene removal requires humid environments to avoid severe deactivation. These divergent behaviors are amplified under mixed‐VOCs feeds, where toluene deactivation suppresses overall mineralization efficiency. Remarkably, plasmonic Au/TiO 2 catalysts exhibit humidity resilient and durable performance, maintaining >70% removal efficiency for both VOCs across RH 25%–80%. Spectroscopic characterizations (XPS, Raman, soft and hard XAS) demonstrate that Au nanoparticles establish strong electronic interactions with TiO 2 facilitating interfacial charge transfer and enhanced ROS generation, while in situ EPR distinguishes the specific formation pathways of OH, O 2 •− , and h + , demonstrating that plasmonic excitation sustains ROS activity even under conditions where TiO 2 alone becomes inactive. Critically, wavelength‐resolved operando FT‐IR directly shows plasmon excitation selectively accelerates ring‐opening step providing clear evidence of plasmon‐driven regeneration processes. Collectively, these results provide direct mechanistic evidence that plasmonic excitation at the Au/TiO 2 interface sustains VOCs mineralization offering a generalizable strategy to design deactivation resilient photocatalysts for indoor air remediation.
室内暴露于挥发性有机化合物(VOCs)如乙醛和甲苯会造成主要的健康风险,但二氧化钛的光催化氧化受到湿度和污染物复杂性的强烈调节。在这里,我们揭示了乙醛和甲苯对tio2的不同湿度响应:干燥条件下乙醛降解改善,而甲苯去除需要潮湿环境以避免严重失活。这些不同的行为在混合VOCs饲料中被放大,其中甲苯失活抑制了整体矿化效率。值得注意的是,等离子体Au/ tio2催化剂具有抗湿性和耐用性,在相对湿度为25%-80%的情况下,对这两种挥发性有机化合物的去除效率均达到70%。光谱表征(XPS,拉曼,软XAS和硬XAS)表明,Au纳米颗粒与tio2建立了强电子相互作用,促进了界面电荷转移和增强ROS的产生,而原位EPR区分了•OH, O 2•−和h +的特定形成途径,表明等离子体激发即使在单独的tio2变得不活跃的情况下也能维持ROS活性。关键的是,波长分辨的operando FT - IR直接显示等离子激元激发选择性地加速开环步骤,为等离子激元驱动的再生过程提供了明确的证据。总的来说,这些结果提供了直接的机制证据,表明Au/ tio2界面的等离子体激发维持了VOCs的矿化,为设计用于室内空气修复的失活弹性光催化剂提供了一种通用策略。
{"title":"Plasmonic Enhancement Enables Deactivation Resilient TiO 2 for Sustainable VOCs Remediation under Practical Conditions","authors":"Gahye Shin, Subhash Chandra Shit, Min Seok Koo, Dong Jin Ham, Hyuk Jae Kwon, Hyunwoong Park, Wooyul Kim","doi":"10.1002/adfm.202526193","DOIUrl":"https://doi.org/10.1002/adfm.202526193","url":null,"abstract":"Indoor exposure to volatile organic compounds (VOCs) such as acetaldehyde and toluene poses major health risks, but photocatalytic oxidation over TiO <jats:sub>2</jats:sub> is strongly modulated by humidity and pollutant complexity. Here, we reveal contrasting humidity responses of acetaldehyde and toluene on TiO <jats:sub>2</jats:sub> : acetaldehyde degradation improves under dry conditions, whereas toluene removal requires humid environments to avoid severe deactivation. These divergent behaviors are amplified under mixed‐VOCs feeds, where toluene deactivation suppresses overall mineralization efficiency. Remarkably, plasmonic Au/TiO <jats:sub>2</jats:sub> catalysts exhibit humidity resilient and durable performance, maintaining &gt;70% removal efficiency for both VOCs across RH 25%–80%. Spectroscopic characterizations (XPS, Raman, soft and hard XAS) demonstrate that Au nanoparticles establish strong electronic interactions with TiO <jats:sub>2</jats:sub> facilitating interfacial charge transfer and enhanced ROS generation, while in situ EPR distinguishes the specific formation pathways of <jats:sup>•</jats:sup> OH, O <jats:sub>2</jats:sub> <jats:sup>•−</jats:sup> , and h <jats:sup>+</jats:sup> , demonstrating that plasmonic excitation sustains ROS activity even under conditions where TiO <jats:sub>2</jats:sub> alone becomes inactive. Critically, wavelength‐resolved operando FT‐IR directly shows plasmon excitation selectively accelerates ring‐opening step providing clear evidence of plasmon‐driven regeneration processes. Collectively, these results provide direct mechanistic evidence that plasmonic excitation at the Au/TiO <jats:sub>2</jats:sub> interface sustains VOCs mineralization offering a generalizable strategy to design deactivation resilient photocatalysts for indoor air remediation.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"29 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving the Activity–Selectivity Trade‐Off in NH 3 Oxidation with an Intermetallic‐Oxide Dual‐Site Catalyst 金属间氧化物双位点催化剂对nh3氧化活性-选择性的影响
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.202530020
Jiaxing Li, William Orbell, Xinbo Li, Yifan Li, Yunpeng Long, Yarong Bai, Lin Chen, Chuan Gao, Liang Zhang, Junhua Li, Yue Peng
Selective catalytic oxidation of NH3 is limited by a fundamental activity‐selectivity trade‐off: catalysts that accelerate low‐temperature turnover often promote NH 3 over‐oxidation to NO x and N 2 O at higher temperature. Here, we address this limitation with a bifunctional platinum‐copper catalyst that combines distinct intermetallic and oxide sites supported on γ‐Al 2 O 3 . The catalyst exhibits > 90% NH 3 conversion at 140°C and sustains > 80% N 2 selectivity up to 300°C. Atomic‐resolution microscopy and X‐ray absorption spectroscopy identify L1 0 ‐ordered PtCu intermetallic nanoparticles with Pt‐enriched surfaces, coexisting with CuO x clusters that host isolated Pt single atoms (Pt 1 CuO x ). DRIFTS analysis determines an internal selective catalytic reduction sequence that converts in situ formed NO x to N 2 on the Pt 1 CuO x . Meanwhile, the enhanced low‐temperature activity of the PtCu intermetallic nanoparticles was explained through DFT calculations and microkinetic modeling: electron‐enrichment of Pt by alloying with Cu lowers the upper d‐band edge (ε u ), which weakens *N adsorption and reduces the barrier of the rate‐determining step of N–N coupling. This work proposes a dual‐site design concept of intermetallic‐oxide hybrid catalysts, harnessing ε u engineering of intermetallic sites for activity control, with tandem conversion of in situ formed by‐products on oxide sites for N 2 selectivity control.
NH3的选择性催化氧化受到基本活性-选择性权衡的限制:加速低温转化的催化剂通常会在较高温度下促进NH3过度氧化为NO x和n2o。在这里,我们用双功能铂-铜催化剂解决了这一限制,该催化剂结合了γ - Al 2o3支撑的不同金属间和氧化物位点。该催化剂在140°C时表现出90%的nh3转化率,在300°C时保持80%的n2选择性。原子分辨率显微镜和X射线吸收光谱鉴定出L1 - 0有序的PtCu金属间纳米颗粒具有富集Pt的表面,与含有分离Pt单原子(Pt 1 CuO X)的CuO X簇共存。DRIFTS分析确定了内部选择性催化还原序列,将原位形成的NO x转化为Pt 1 CuO x上的n2。同时,通过DFT计算和微动力学模型解释了PtCu金属间纳米粒子低温活性增强的原因:通过与Cu合金化,Pt的电子富集降低了d能带上边缘(ε u),从而减弱了*N的吸附,降低了N - N耦合速率决定步骤的屏障。本研究提出了金属间氧化物杂化催化剂的双位点设计概念,利用金属间位点的ε u工程来控制活性,通过在氧化物位点上形成的副产物的串联转化来控制n2选择性。
{"title":"Resolving the Activity–Selectivity Trade‐Off in NH 3 Oxidation with an Intermetallic‐Oxide Dual‐Site Catalyst","authors":"Jiaxing Li, William Orbell, Xinbo Li, Yifan Li, Yunpeng Long, Yarong Bai, Lin Chen, Chuan Gao, Liang Zhang, Junhua Li, Yue Peng","doi":"10.1002/adfm.202530020","DOIUrl":"https://doi.org/10.1002/adfm.202530020","url":null,"abstract":"Selective catalytic oxidation of NH3 is limited by a fundamental activity‐selectivity trade‐off: catalysts that accelerate low‐temperature turnover often promote NH <jats:sub>3</jats:sub> over‐oxidation to NO <jats:sub>x</jats:sub> and N <jats:sub>2</jats:sub> O at higher temperature. Here, we address this limitation with a bifunctional platinum‐copper catalyst that combines distinct intermetallic and oxide sites supported on γ‐Al <jats:sub>2</jats:sub> O <jats:sub>3</jats:sub> . The catalyst exhibits &gt; 90% NH <jats:sub>3</jats:sub> conversion at 140°C and sustains &gt; 80% N <jats:sub>2</jats:sub> selectivity up to 300°C. Atomic‐resolution microscopy and X‐ray absorption spectroscopy identify L1 <jats:sub>0</jats:sub> ‐ordered PtCu intermetallic nanoparticles with Pt‐enriched surfaces, coexisting with CuO <jats:sub>x</jats:sub> clusters that host isolated Pt single atoms (Pt <jats:sub>1</jats:sub> CuO <jats:sub>x</jats:sub> ). DRIFTS analysis determines an internal selective catalytic reduction sequence that converts in situ formed NO <jats:sub>x</jats:sub> to N <jats:sub>2</jats:sub> on the Pt <jats:sub>1</jats:sub> CuO <jats:sub>x</jats:sub> . Meanwhile, the enhanced low‐temperature activity of the PtCu intermetallic nanoparticles was explained through DFT calculations and microkinetic modeling: electron‐enrichment of Pt by alloying with Cu lowers the upper d‐band edge (ε <jats:sub>u</jats:sub> ), which weakens *N adsorption and reduces the barrier of the rate‐determining step of N–N coupling. This work proposes a dual‐site design concept of intermetallic‐oxide hybrid catalysts, harnessing ε <jats:sub>u</jats:sub> engineering of intermetallic sites for activity control, with tandem conversion of in situ formed by‐products on oxide sites for N <jats:sub>2</jats:sub> selectivity control.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"47 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cointercalation of Zero‐Valent Iron for Improving Spatiotemporal Selectivity toward Heavy Metals in Wastewater 零价铁共插层提高废水中重金属的时空选择性
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/adfm.202528568
Hua Liu, Zhen Li, Yuankui Sun, Ziwei Bao, Minyao Zhou, Jinxiang Li, Xiaohong Guan
Zero‐valent iron (ZVI) has been extensively utilized for heavy metal sequestration. However, its limited spatiotemporal selectivity—defined as the ability to selectively remove coexisting metals at distinct locations and times—often leads to unbalanced reactivity and rapid passivation. Herein, we develop ZVI cointercalated with sulfur and aluminum (SA‐ZVI) to achieve the simultaneous and selective removal of Cr(VI) and complexed Cu(II). The rate constant ratio (R = k Cu / k Cr ) increases from 0.56 for ZVI to 1.33 for SA‐ZVI, demonstrating enhanced Cu(II) selectivity under Cr(VI) stress. Cross‐sectional FIB‐SEM imaging reveals spatially decoupled reactivity, with Cr predominantly enriched at the surface and Cu deposited in the core. Further correlation analysis shows that Cu immobilization is closely linked to sulfur‐enriched FeS x domains, while Cr removal correlates with Al‐modified adsorption sites. Depth‐resolved XPS analysis suggests that sulfur forms conductive FeS x domains, facilitating Cu(II) reduction, while aluminum promotes selective adsorption of Cr(VI) and mitigates Fe–Cr passivation. Finally, the Kirkendall effect and galvanic replacement induce Fe diffusion and inward Cu growth, leading to enhanced Cu enrichment within SA‐ZVI. This cointercalation‐driven interface engineering effectively balances reactivity with selectivity and provides a mechanistic framework for designing multifunctional iron‐based materials with programmable spatiotemporal selectivity for wastewater treatment and resource recovery.
零价铁(Zero - valent iron, ZVI)已被广泛应用于重金属的固存。然而,其有限的时空选择性(定义为在不同位置和时间选择性去除共存金属的能力)往往导致反应性不平衡和快速钝化。在此,我们开发了与硫和铝共插层的ZVI (SA‐ZVI),以实现同时和选择性去除Cr(VI)和络合Cu(II)。速率常数比(R = k Cu / k Cr)从ZVI的0.56增加到SA‐ZVI的1.33,表明在Cr(VI)胁迫下Cu(II)选择性增强。截面FIB - SEM成像显示空间去耦反应性,Cr主要富集在表面,Cu沉积在岩心。进一步的相关分析表明,Cu的固定化与富硫FeS x结构域密切相关,而Cr的去除与Al修饰的吸附位点相关。深度分辨XPS分析表明,硫形成导电的FeS x结构域,促进Cu(II)的还原,而铝促进Cr(VI)的选择性吸附并减轻Fe-Cr的钝化。最后,Kirkendall效应和电替换诱导Fe扩散和Cu向内生长,导致SA‐ZVI内Cu富集增强。这种共插层驱动的界面工程有效地平衡了反应性和选择性,并为设计具有可编程时空选择性的多功能铁基材料提供了一个机制框架,用于废水处理和资源回收。
{"title":"Cointercalation of Zero‐Valent Iron for Improving Spatiotemporal Selectivity toward Heavy Metals in Wastewater","authors":"Hua Liu, Zhen Li, Yuankui Sun, Ziwei Bao, Minyao Zhou, Jinxiang Li, Xiaohong Guan","doi":"10.1002/adfm.202528568","DOIUrl":"https://doi.org/10.1002/adfm.202528568","url":null,"abstract":"Zero‐valent iron (ZVI) has been extensively utilized for heavy metal sequestration. However, its limited spatiotemporal selectivity—defined as the ability to selectively remove coexisting metals at distinct locations and times—often leads to unbalanced reactivity and rapid passivation. Herein, we develop ZVI cointercalated with sulfur and aluminum (SA‐ZVI) to achieve the simultaneous and selective removal of Cr(VI) and complexed Cu(II). The rate constant ratio (R = <jats:italic>k</jats:italic> <jats:sub>Cu</jats:sub> / <jats:italic>k</jats:italic> <jats:sub>Cr</jats:sub> ) increases from 0.56 for ZVI to 1.33 for SA‐ZVI, demonstrating enhanced Cu(II) selectivity under Cr(VI) stress. Cross‐sectional FIB‐SEM imaging reveals spatially decoupled reactivity, with Cr predominantly enriched at the surface and Cu deposited in the core. Further correlation analysis shows that Cu immobilization is closely linked to sulfur‐enriched FeS <jats:sub>x</jats:sub> domains, while Cr removal correlates with Al‐modified adsorption sites. Depth‐resolved XPS analysis suggests that sulfur forms conductive FeS <jats:sub>x</jats:sub> domains, facilitating Cu(II) reduction, while aluminum promotes selective adsorption of Cr(VI) and mitigates Fe–Cr passivation. Finally, the Kirkendall effect and galvanic replacement induce Fe diffusion and inward Cu growth, leading to enhanced Cu enrichment within SA‐ZVI. This cointercalation‐driven interface engineering effectively balances reactivity with selectivity and provides a mechanistic framework for designing multifunctional iron‐based materials with programmable spatiotemporal selectivity for wastewater treatment and resource recovery.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"248 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Area Self-Assembled Graphene Source Electrodes for High-Performance Vertical Organic Field-Effect Transistors and their Arrays 高性能垂直场效应晶体管的大面积自组装石墨烯源电极及其阵列
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-12 DOI: 10.1002/adfm.202530029
Fangcong Zhang, Shunhong Dong, Suyun Tian, Hangyuan Cui, Lingxiang Zhang, Changjin Wan, Huiting Fu, Qingdong Zheng
Vertical organic field-effect transistors (VOFETs) have garnered significant attention due to their inherently short-channel design, which facilitates high-frequency operation, low power consumption, and the capability to drive high current densities. However, the incompatibility between traditional source electrodes and solution-processed organic semiconductors severely limits large-scale integration and performance enhancement of VOFETs. In this study, we report a controllable solvent interface self-assembly strategy for fabricating ultra-thin, low-roughness graphene source electrodes. Based on the source electrodes and precise control of the molecular packing of the polymer semiconductor (PffBT4T-2OD), the resulting polymer-based VOFETs demonstrate competitive performance metrics, including a high on/off ratio of 3.4 × 106 and a current density of 63.2 mA cm−2, along with exceptional operational stability. Furthermore, devices with operating voltages as low as −1.5 V and channel lengths down-scaled to 37 nm have been realized. Importantly, large-area VOFET arrays with a device density of 3906 devices per cm2 have been successfully fabricated, laying the groundwork for high-density, low-power organic integrated circuits. This advancement provides a scalable manufacturing solution for flexible electronics and organic electronic system-on-chip applications.
垂直有机场效应晶体管(vofet)由于其固有的短通道设计而获得了极大的关注,这有利于高频工作,低功耗和驱动高电流密度的能力。然而,传统源电极与溶液处理有机半导体之间的不兼容性严重限制了vofet的大规模集成和性能提升。在这项研究中,我们报告了一种可控制的溶剂界面自组装策略,用于制造超薄、低粗糙度的石墨烯源电极。基于源电极和对聚合物半导体(PffBT4T-2OD)分子封装的精确控制,所得到的基于聚合物的vofet表现出具有竞争力的性能指标,包括3.4 × 106的高开/关比和63.2 mA cm−2的电流密度,以及出色的工作稳定性。此外,工作电压低至- 1.5 V,通道长度缩小至37 nm的器件已经实现。重要的是,器件密度为每平方厘米3906个器件的大面积VOFET阵列已经成功制造,为高密度、低功耗有机集成电路奠定了基础。这一进步为柔性电子和有机电子片上系统应用提供了可扩展的制造解决方案。
{"title":"Large-Area Self-Assembled Graphene Source Electrodes for High-Performance Vertical Organic Field-Effect Transistors and their Arrays","authors":"Fangcong Zhang, Shunhong Dong, Suyun Tian, Hangyuan Cui, Lingxiang Zhang, Changjin Wan, Huiting Fu, Qingdong Zheng","doi":"10.1002/adfm.202530029","DOIUrl":"https://doi.org/10.1002/adfm.202530029","url":null,"abstract":"Vertical organic field-effect transistors (VOFETs) have garnered significant attention due to their inherently short-channel design, which facilitates high-frequency operation, low power consumption, and the capability to drive high current densities. However, the incompatibility between traditional source electrodes and solution-processed organic semiconductors severely limits large-scale integration and performance enhancement of VOFETs. In this study, we report a controllable solvent interface self-assembly strategy for fabricating ultra-thin, low-roughness graphene source electrodes. Based on the source electrodes and precise control of the molecular packing of the polymer semiconductor (PffBT4T-2OD), the resulting polymer-based VOFETs demonstrate competitive performance metrics, including a high on/off ratio of 3.4 × 10<sup>6</sup> and a current density of 63.2 mA cm<sup>−2</sup>, along with exceptional operational stability. Furthermore, devices with operating voltages as low as −1.5 V and channel lengths down-scaled to 37 nm have been realized. Importantly, large-area VOFET arrays with a device density of 3906 devices per cm<sup>2</sup> have been successfully fabricated, laying the groundwork for high-density, low-power organic integrated circuits. This advancement provides a scalable manufacturing solution for flexible electronics and organic electronic system-on-chip applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"4 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Functional Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1