首页 > 最新文献

Advanced Functional Materials最新文献

英文 中文
Material Innovations and System Challenges in Hydrogen Storage: A Comprehensive Review 储氢材料创新与系统挑战综述
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1002/adfm.202529200
Yanrong Liu, Yajie Zhang, Tianmeng He, Zhengsi Yin, Chenhao Li, Xiaoyi Xue, Hao Wang, Ao Li, Suojiang Zhang
As a critical enabler for the global transition to low-carbon energy, hydrogen storage technologies are undergoing rapid innovation and diversification. This review systematically examines the four dominant hydrogen storage technologies, i.e., high-pressure gaseous, cryogenic liquid, solid-state (AB5, AB2, superlattices, magnesium-based materials, metal-organic frameworks (MOF) and activated carbon) and liquid organic hydrogen carriers (LOHCs) hydrogen storage technologies, highlighting their research advances in storage density, cost, energy consumption, hydrogen storage/release mechanisms, system integration and applications. Whilst high-pressure gaseous hydrogen storage remains the most mature technology, breakthroughs in high-capacity storage materials such as nanostructured magnesium-based materials, MOFs, and novel LOHCs catalysts, continuing to enhance storage capacity, kinetic and thermodynamic performances, and cycling stability. Looking ahead, the field is evolving toward machine learning-based intelligent material design and the development of hybrid energy systems integrating energy storage with flexible thermal/electrical loads. Establishing a diversified portfolio of hydrogen storage technologies, tailored for specific applications ranging from transportation to grid balancing, will effectively drive the large-scale adoption of hydrogen energy.
作为全球向低碳能源转型的关键推动因素,储氢技术正在经历快速创新和多样化。本文系统综述了高压气体、低温液体、固态(AB5、AB2、超晶格、镁基材料、金属有机框架(MOF)和活性炭)和液态有机氢载体(lohc)四种主要的储氢技术,重点介绍了它们在储氢密度、成本、能耗、储氢/放氢机理、系统集成和应用等方面的研究进展。虽然高压气体储氢技术仍然是最成熟的技术,但高容量储氢材料的突破,如纳米结构镁基材料、mof和新型lohc催化剂,不断提高储氢容量、动力学和热力学性能以及循环稳定性。展望未来,该领域正朝着基于机器学习的智能材料设计和将储能与柔性热/电负载集成在一起的混合能源系统的发展方向发展。建立多样化的储氢技术组合,为从运输到电网平衡的特定应用量身定制,将有效推动氢能的大规模采用。
{"title":"Material Innovations and System Challenges in Hydrogen Storage: A Comprehensive Review","authors":"Yanrong Liu, Yajie Zhang, Tianmeng He, Zhengsi Yin, Chenhao Li, Xiaoyi Xue, Hao Wang, Ao Li, Suojiang Zhang","doi":"10.1002/adfm.202529200","DOIUrl":"https://doi.org/10.1002/adfm.202529200","url":null,"abstract":"As a critical enabler for the global transition to low-carbon energy, hydrogen storage technologies are undergoing rapid innovation and diversification. This review systematically examines the four dominant hydrogen storage technologies, i.e., high-pressure gaseous, cryogenic liquid, solid-state (AB<sub>5</sub>, AB<sub>2</sub>, superlattices, magnesium-based materials, metal-organic frameworks (MOF) and activated carbon) and liquid organic hydrogen carriers (LOHCs) hydrogen storage technologies, highlighting their research advances in storage density, cost, energy consumption, hydrogen storage/release mechanisms, system integration and applications. Whilst high-pressure gaseous hydrogen storage remains the most mature technology, breakthroughs in high-capacity storage materials such as nanostructured magnesium-based materials, MOFs, and novel LOHCs catalysts, continuing to enhance storage capacity, kinetic and thermodynamic performances, and cycling stability. Looking ahead, the field is evolving toward machine learning-based intelligent material design and the development of hybrid energy systems integrating energy storage with flexible thermal/electrical loads. Establishing a diversified portfolio of hydrogen storage technologies, tailored for specific applications ranging from transportation to grid balancing, will effectively drive the large-scale adoption of hydrogen energy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"83 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavity-Networked Copper Nanocatalysts with Acid-Tolerant Microenvironments for Efficient CO2 Electroreduction to Ethylene (Adv. Funct. Mater. 11/2026) 具有耐酸微环境的腔网络铜纳米催化剂用于高效CO2电还原乙烯(adv功能)。板牙。11/2026)
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1002/adfm.73799
Zhongshuang Xu, Qikui Fan, Huanran Miao, Xinwei Zhang, Hongyu Zhang, Xi Cao, Pengxu Yan, Xiai Zhang, Zhimao Yang, Jian Yang, Chuncai Kong

Copper Nanocatalysts

The artwork depicts a copper-based cavity-networked structure (mountain) with a catalytic interface (river) facilitating CO2-to-ethylene conversion. The butterfly pea flowers at the base symbolize the bioinspired microstructure of Clitoria ternatea leaves, integrating natural aesthetics with advanced catalytic engineering. More information can be found in the Research Article by Qikui Fan, Jian Yang, Chuncai Kong, and co-workers (10.1002/adfm.202520743).

铜纳米催化剂该作品描绘了一个铜基的空腔网络结构(山),具有催化界面(河),促进二氧化碳到乙烯的转化。底部的蝴蝶豌豆花象征着阴蒂叶片的仿生微观结构,将自然美学与先进的催化工程相结合。更多信息可参见范启奎、杨健、孔春才等人的研究文章(10.1002/adfm.202520743)。
{"title":"Cavity-Networked Copper Nanocatalysts with Acid-Tolerant Microenvironments for Efficient CO2 Electroreduction to Ethylene (Adv. Funct. Mater. 11/2026)","authors":"Zhongshuang Xu,&nbsp;Qikui Fan,&nbsp;Huanran Miao,&nbsp;Xinwei Zhang,&nbsp;Hongyu Zhang,&nbsp;Xi Cao,&nbsp;Pengxu Yan,&nbsp;Xiai Zhang,&nbsp;Zhimao Yang,&nbsp;Jian Yang,&nbsp;Chuncai Kong","doi":"10.1002/adfm.73799","DOIUrl":"https://doi.org/10.1002/adfm.73799","url":null,"abstract":"<p><b>Copper Nanocatalysts</b></p><p>The artwork depicts a copper-based cavity-networked structure (mountain) with a catalytic interface (river) facilitating CO<sub>2</sub>-to-ethylene conversion. The butterfly pea flowers at the base symbolize the bioinspired microstructure of <i>Clitoria ternatea</i> leaves, integrating natural aesthetics with advanced catalytic engineering. More information can be found in the Research Article by Qikui Fan, Jian Yang, Chuncai Kong, and co-workers (10.1002/adfm.202520743).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"36 11","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.73799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the Role of Internal Strain Behavior on Stabilizing High Voltage LiCoO2-Based All-Solid-State Thin Film Batteries (Adv. Funct. Mater. 11/2026) 揭示内部应变行为在稳定高压licoo2基全固态薄膜电池中的作用。板牙。11/2026)
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1002/adfm.73797
Jinxu Qiu, Yaxuan He, Yongmin Wu, Hongliang Li, Yuezhen Hua, Tao Wu, Yu Zhao, Yongjin Chen, Jie Shu, Keyu Xie, Yanhua Cui

All-Solid-State Thin-Film Batteries

In their Research Article (10.1002/adfm.202520552), Yanhua Cui and co-workers evaluate the effects of growth strain relaxation and intragranular structure defect distribution on the reversible structural phase transition for high-voltage thin-film cathodes. The image depicts that the longitudinal transition metal layer can be locked by the robust substrate layer, protecting the host structure against distortion and holding long-term cycle life.

全固态薄膜电池
{"title":"Revealing the Role of Internal Strain Behavior on Stabilizing High Voltage LiCoO2-Based All-Solid-State Thin Film Batteries (Adv. Funct. Mater. 11/2026)","authors":"Jinxu Qiu,&nbsp;Yaxuan He,&nbsp;Yongmin Wu,&nbsp;Hongliang Li,&nbsp;Yuezhen Hua,&nbsp;Tao Wu,&nbsp;Yu Zhao,&nbsp;Yongjin Chen,&nbsp;Jie Shu,&nbsp;Keyu Xie,&nbsp;Yanhua Cui","doi":"10.1002/adfm.73797","DOIUrl":"10.1002/adfm.73797","url":null,"abstract":"<p><b>All-Solid-State Thin-Film Batteries</b></p><p>In their Research Article (10.1002/adfm.202520552), Yanhua Cui and co-workers evaluate the effects of growth strain relaxation and intragranular structure defect distribution on the reversible structural phase transition for high-voltage thin-film cathodes. The image depicts that the longitudinal transition metal layer can be locked by the robust substrate layer, protecting the host structure against distortion and holding long-term cycle life.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"36 11","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.73797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping Nanoscale Buckling in Atomically Thin Cr2Ge2Te6 原子级薄Cr2Ge2Te6的纳米屈曲映射
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1002/adfm.202526564
Amy Carl, Nicholas Clark, David G. Hopkinson, Matthew Hamer, Matthew Watson, Laxman Nagireddy, James E. Nunn, Alexei Barinov, Yichao Zou, William Thornley, Casey Cheung, Wendong Wang, Sam Sullivan-Allsop, Xiao Li, Astrid Weston, Eli G. Castanon, Andrey V Kretinin, Cephise Cacho, Neil R. Wilson, Sarah J. Haigh, Roman Gorbachev
Magnetic two-dimensional materials are a promising platform for novel nano-electronic device architectures. One such layered crystal is the ferromagnetic semiconductor chromium germanium telluride (Cr2Ge2Te6) which recently attracted interest due to its potential for spintronics and memory applications. Here we investigate its properties from the structural standpoint using atomic resolution Scanning Transmission Electron Microscopy (STEM) and present the first atomic resolution images down to its monolayer limit. We develop a novel technique that allows one to map the local tilt with unprecedented spatial resolution using only high-resolution images, enabling mapping of the topography and morphological variation of atomically thin crystals. Using it, we show that the Cr2Ge2Te6 monolayer has an unusually large out-of-plane rippling, with local tilt variation reaching 20° over few nm length scales. We hypothesize that such a strongly buckled structure originates from both point and extended lattice defects which are more prevalent in monolayer crystals. In addition, we correlate the structural observations with the band structure measurements using Angle-Resolved Photoemission Spectroscopy (ARPES). We believe that both the atomic scale insights we have gained on Cr2Ge2Te6 and our novel approach to nanoscale topography mapping will benefit the development of van der Waals heterostructures in both fundamental and applied research.
磁性二维材料是新型纳米电子器件结构的一个有前途的平台。一种这样的层状晶体是铁磁性半导体碲化铬锗(Cr2Ge2Te6),由于其在自旋电子学和存储应用方面的潜力,最近引起了人们的兴趣。在这里,我们使用原子分辨率扫描透射电子显微镜(STEM)从结构的角度研究了它的性质,并呈现了第一个原子分辨率图像,直到它的单层极限。我们开发了一种新技术,允许人们仅使用高分辨率图像以前所未有的空间分辨率绘制局部倾斜,从而能够绘制原子薄晶体的地形和形态变化。利用它,我们发现Cr2Ge2Te6单层具有异常大的面外波纹,在几个nm长度尺度上局部倾斜变化达到20°。我们假设这种强屈曲结构源于点晶格缺陷和扩展晶格缺陷,这两种缺陷在单层晶体中更为普遍。此外,我们利用角分辨光电发射光谱(ARPES)将结构观测与波段结构测量相关联。我们相信,我们在Cr2Ge2Te6上获得的原子尺度的见解和我们在纳米尺度上的地形测绘的新方法将有利于范德华异质结构在基础和应用研究中的发展。
{"title":"Mapping Nanoscale Buckling in Atomically Thin Cr2Ge2Te6","authors":"Amy Carl, Nicholas Clark, David G. Hopkinson, Matthew Hamer, Matthew Watson, Laxman Nagireddy, James E. Nunn, Alexei Barinov, Yichao Zou, William Thornley, Casey Cheung, Wendong Wang, Sam Sullivan-Allsop, Xiao Li, Astrid Weston, Eli G. Castanon, Andrey V Kretinin, Cephise Cacho, Neil R. Wilson, Sarah J. Haigh, Roman Gorbachev","doi":"10.1002/adfm.202526564","DOIUrl":"https://doi.org/10.1002/adfm.202526564","url":null,"abstract":"Magnetic two-dimensional materials are a promising platform for novel nano-electronic device architectures. One such layered crystal is the ferromagnetic semiconductor chromium germanium telluride (Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>) which recently attracted interest due to its potential for spintronics and memory applications. Here we investigate its properties from the structural standpoint using atomic resolution Scanning Transmission Electron Microscopy (STEM) and present the first atomic resolution images down to its monolayer limit. We develop a novel technique that allows one to map the local tilt with unprecedented spatial resolution using only high-resolution images, enabling mapping of the topography and morphological variation of atomically thin crystals. Using it, we show that the Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> monolayer has an unusually large out-of-plane rippling, with local tilt variation reaching 20° over few nm length scales. We hypothesize that such a strongly buckled structure originates from both point and extended lattice defects which are more prevalent in monolayer crystals. In addition, we correlate the structural observations with the band structure measurements using Angle-Resolved Photoemission Spectroscopy (ARPES). We believe that both the atomic scale insights we have gained on Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> and our novel approach to nanoscale topography mapping will benefit the development of van der Waals heterostructures in both fundamental and applied research.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"46 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dandelion-Inspired Radial Oriented Microspheres for Dynamic Interface Thermal Management (Adv. Funct. Mater. 11/2026) 基于蒲公英的径向定向微球动态界面热管理板牙。11/2026)
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-05 DOI: 10.1002/adfm.73794
Qingxia He, Heng Zhang, Zhixing Zhang, Yanshuai Duan, Mengmeng Qin, Wei Feng

Dynamic Interface Thermal Management

In their Research Article (10.1002/adfm.202520631), Wei Feng, Mengmeng Qin, and co-workers draw inspiration from the radial structure of dandelion to develop an innovative, custom-composite strategy tailored for elastic thermal interface materials (TIMs). By constructing dandelion-inspired microspheres, they create a synergistically enhanced 3D thermal network featuring high thermal conductivity and excellent mechanical compliance. This 3D thermal networks-based TIMs exhibit stable and efficient thermal management capabilities under dynamic stress, paving the way for advanced thermal management in next-generation flexible electronics and aerospace systems.

动态界面热管理研究论文(10.1002/adfm)。202520631),冯伟,秦梦梦及其同事从蒲公英的径向结构中汲取灵感,开发了一种针对弹性热界面材料(TIMs)的创新定制复合策略。通过构建蒲公英启发的微球,他们创建了一个协同增强的3D热网络,具有高导热性和优异的机械顺应性。这种基于3D热网络的TIMs在动态应力下表现出稳定高效的热管理能力,为下一代柔性电子和航空航天系统的先进热管理铺平了道路。
{"title":"Dandelion-Inspired Radial Oriented Microspheres for Dynamic Interface Thermal Management (Adv. Funct. Mater. 11/2026)","authors":"Qingxia He,&nbsp;Heng Zhang,&nbsp;Zhixing Zhang,&nbsp;Yanshuai Duan,&nbsp;Mengmeng Qin,&nbsp;Wei Feng","doi":"10.1002/adfm.73794","DOIUrl":"https://doi.org/10.1002/adfm.73794","url":null,"abstract":"<p><b>Dynamic Interface Thermal Management</b></p><p>In their Research Article (10.1002/adfm.202520631), Wei Feng, Mengmeng Qin, and co-workers draw inspiration from the radial structure of dandelion to develop an innovative, custom-composite strategy tailored for elastic thermal interface materials (TIMs). By constructing dandelion-inspired microspheres, they create a synergistically enhanced 3D thermal network featuring high thermal conductivity and excellent mechanical compliance. This 3D thermal networks-based TIMs exhibit stable and efficient thermal management capabilities under dynamic stress, paving the way for advanced thermal management in next-generation flexible electronics and aerospace systems.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"36 11","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.73794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologically Adaptive Soft Millirobot for Atraumatic Endovascular Therapy 用于非创伤性血管内治疗的生理适应性软微机器人
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1002/adfm.202531400
Tuan-Anh Le, Husnu H. Alabay, Prabh G. Singh, Melissa Gioia Austin, Pamela A. Manco Urbina, Sanjay Misra, Hakan Ceylan
Atraumatic and localized drug delivery to the vascular endothelium remains a critical unmet need in interventional medicine, with major implications for arterial and venous disease management. Here, we present EndoBot, an untethered elastic millirobot designed to enable endothelial-safe, soft-contact operation, under physiologic blood flow. EndoBot is magnetically actuated and navigates along the vessel lumen through curved, non-uniform geometries while maintaining ultra-low radial contact pressures (<1 kPa), far below endothelial injury thresholds. We demonstrate stable locomotion, with intrinsically compliant mechanics within a defined safety envelope under arterial and venous hemodynamics in phantom vessels, ex vivo human umbilical veins, and an in vivo rat inferior vena cava, without detectable vessel damage. EndoBot is compatible with standard vascular sheaths for wireless deployment and retrieval and is controlled under clinical fluoroscopic guidance using a human-scale magnetic manipulation platform. Blood compatibility testing confirms safety, with minimal hemolysis and no increased coagulation tendency during navigation. For localized therapy, EndoBot employs a gentle endoluminal painting strategy, transferring a washout-resistant drug depot directly onto the vessel lumen. By combining atraumatic mobility, clinical deployability, and localized drug deposition, EndoBot establishes a translationally viable platform for developingmaintenance-oriented endovascular therapies, supporting prevention of restonosis, thrombosis and inflammatory remodeling following intervention.
在介入医学中,无创伤和局部给药血管内皮仍然是一个关键的未满足的需求,对动脉和静脉疾病管理具有重要意义。在这里,我们展示了EndoBot,一种无系留弹性微机器人,设计用于在生理血流下实现内皮安全、软接触手术。EndoBot是由磁力驱动的,可以沿着弯曲的、不均匀的几何形状沿着血管腔导航,同时保持超低的径向接触压力(1kpa),远低于内皮损伤阈值。我们在幻影血管、离体人脐静脉和体内大鼠下腔静脉的动脉和静脉血流动力学下,展示了稳定的运动,在定义的安全包络内具有内在的顺应力学,没有可检测到的血管损伤。EndoBot与标准血管鞘兼容,用于无线部署和检索,并在临床透视指导下使用人体尺度的磁性操作平台进行控制。血液相容性测试证实安全,在航行过程中溶血最小,没有增加凝血倾向。对于局部治疗,EndoBot采用温和的腔内涂布策略,将耐冲洗药物库直接转移到血管腔中。通过结合非创伤性移动性、临床可部署性和局部药物沉积,EndoBot建立了一个翻译可行的平台,用于开发以维持为导向的血管内治疗,支持预防干预后的再狭窄、血栓形成和炎症重塑。
{"title":"Physiologically Adaptive Soft Millirobot for Atraumatic Endovascular Therapy","authors":"Tuan-Anh Le, Husnu H. Alabay, Prabh G. Singh, Melissa Gioia Austin, Pamela A. Manco Urbina, Sanjay Misra, Hakan Ceylan","doi":"10.1002/adfm.202531400","DOIUrl":"https://doi.org/10.1002/adfm.202531400","url":null,"abstract":"Atraumatic and localized drug delivery to the vascular endothelium remains a critical unmet need in interventional medicine, with major implications for arterial and venous disease management. Here, we present EndoBot, an untethered elastic millirobot designed to enable endothelial-safe, soft-contact operation, under physiologic blood flow. EndoBot is magnetically actuated and navigates along the vessel lumen through curved, non-uniform geometries while maintaining ultra-low radial contact pressures (&lt;1 kPa), far below endothelial injury thresholds. We demonstrate stable locomotion, with intrinsically compliant mechanics within a defined safety envelope under arterial and venous hemodynamics in phantom vessels, ex vivo human umbilical veins, and an in vivo rat inferior vena cava, without detectable vessel damage. EndoBot is compatible with standard vascular sheaths for wireless deployment and retrieval and is controlled under clinical fluoroscopic guidance using a human-scale magnetic manipulation platform. Blood compatibility testing confirms safety, with minimal hemolysis and no increased coagulation tendency during navigation. For localized therapy, EndoBot employs a gentle endoluminal painting strategy, transferring a washout-resistant drug depot directly onto the vessel lumen. By combining atraumatic mobility, clinical deployability, and localized drug deposition, EndoBot establishes a translationally viable platform for developingmaintenance-oriented endovascular therapies, supporting prevention of restonosis, thrombosis and inflammatory remodeling following intervention.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"241 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muscle-Inspired Fibers from Immunoglobulin Domains Combine Superior Mechanical Performance, Energy Damping, and Shape Memory Properties 来自免疫球蛋白域的肌肉纤维结合了优越的机械性能,能量阻尼和形状记忆特性
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1002/adfm.202529451
Shri Venkatesh Subramani, Qingyue Guo, Huamin Gao, Kok Zhi Lee, Tate Darin, Faramarz Joodaki, Sinan Keten, Fuzhong Zhang
Animal muscle is an intriguing natural material whose mechanical properties arise from sequence-diverse protein domains, many of which remain unexplored for material design. Among them, Immunoglobulin-like (Ig) domains act as molecular springs that can unfold and refold repetitively without losing function, dissipating mechanical energy as heat, making them promising building blocks for next-generation protein-based materials (PBMs). In this study, we translate these molecular features to the macroscale by fabricating fibers from microbially-synthesized Ig domains of various muscle proteins. Among them, Filamin-derived Ig fibers (MW = 123 kDa) exhibited a unique combination of high tensile strength (412 ± 22 MPa), high toughness (120 ± 17 MJ/m3), remarkable mechanical stability (∼89%) under 90% humidity, high energy damping capacity (∼80%), and complete shape recovery (∼100%) over repeated loading–unloading cycles. Our results further revealed molecular mechanisms underlying these properties: (i) Ig domain hydrophobicity strongly correlates with fiber assembly and tensile strength, (ii) reversible unfolding–refolding of Ig domains enables efficient energy dissipation and self-recovery, and (iii) hydrogen-bonding networks within the amorphous matrix regulate humidity-induced weakening. Together, these findings establish Ig domains as a new class of PBMs combining advantageous mechanical and physical properties, offering a versatile platform for developing advanced materials with tunable performance.
动物肌肉是一种有趣的天然材料,其机械性能源于序列多样的蛋白质结构域,其中许多仍未被材料设计所探索。其中,免疫球蛋白样结构域(Ig)充当分子弹簧,可以在不失去功能的情况下重复展开和折叠,将机械能作为热量消散,使其成为下一代蛋白基材料(PBMs)的有希望的构建块。在这项研究中,我们通过利用微生物合成的各种肌肉蛋白的Ig结构域制造纤维,将这些分子特征转化为宏观尺度。其中,丝蛋白衍生的Ig纤维(MW = 123 kDa)具有高抗拉强度(412±22 MPa)、高韧性(120±17 MJ/m3)、在90%湿度下显著的机械稳定性(~ 89%)、高能量阻尼能力(~ 80%)和在重复加载-卸载循环中完全恢复形状(~ 100%)的独特组合。我们的研究结果进一步揭示了这些特性背后的分子机制:(i) Ig结构域的疏水性与纤维的组装和拉伸强度密切相关;(ii) Ig结构域的可逆展开-再折叠使有效的能量耗散和自我恢复成为可能;(iii)非晶基质内的氢键网络调节湿度诱导的弱化。总之,这些发现确立了Ig域作为一类新型PBMs,结合了有利的机械和物理性能,为开发具有可调性能的先进材料提供了一个通用平台。
{"title":"Muscle-Inspired Fibers from Immunoglobulin Domains Combine Superior Mechanical Performance, Energy Damping, and Shape Memory Properties","authors":"Shri Venkatesh Subramani, Qingyue Guo, Huamin Gao, Kok Zhi Lee, Tate Darin, Faramarz Joodaki, Sinan Keten, Fuzhong Zhang","doi":"10.1002/adfm.202529451","DOIUrl":"https://doi.org/10.1002/adfm.202529451","url":null,"abstract":"Animal muscle is an intriguing natural material whose mechanical properties arise from sequence-diverse protein domains, many of which remain unexplored for material design. Among them, Immunoglobulin-like (Ig) domains act as molecular springs that can unfold and refold repetitively without losing function, dissipating mechanical energy as heat, making them promising building blocks for next-generation protein-based materials (PBMs). In this study, we translate these molecular features to the macroscale by fabricating fibers from microbially-synthesized Ig domains of various muscle proteins. Among them, Filamin-derived Ig fibers (<i>M<sub>W</sub></i> = 123 kDa) exhibited a unique combination of high tensile strength (412 ± 22 MPa), high toughness (120 ± 17 MJ/m<sup>3</sup>), remarkable mechanical stability (∼89%) under 90% humidity, high energy damping capacity (∼80%), and complete shape recovery (∼100%) over repeated loading–unloading cycles. Our results further revealed molecular mechanisms underlying these properties: (i) Ig domain hydrophobicity strongly correlates with fiber assembly and tensile strength, (ii) reversible unfolding–refolding of Ig domains enables efficient energy dissipation and self-recovery, and (iii) hydrogen-bonding networks within the amorphous matrix regulate humidity-induced weakening. Together, these findings establish Ig domains as a new class of PBMs combining advantageous mechanical and physical properties, offering a versatile platform for developing advanced materials with tunable performance.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"301 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internal and External Cultivation: Unleashing the Potential of Carrier Kinetics to Boost Photocatalytic Water Purification 内部和外部培养:释放载体动力学的潜力以促进光催化水净化
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1002/adfm.202531555
Heng Zhou, Yan Zhang, Yuyue Zhou, Dalin Sun, Hao Wang, Deyu Wu, Song Yang, Tianyi Ma, Heng Zhang
Precise regulation of carrier kinetics in heterogeneous photocatalytic materials to improve water purification is crucial for alleviating the global water crisis. Herein, we report the successful synthesis of a novel KBC/CeO2/Cd0.5Zn0.5S (KCCZS) S-scheme heterojunction with KOH-activated biochar (KBC) as an electron transport medium. A synergistic mechanism involving “surface active sites–internal electric field (IEF)–optimized carrier kinetics” is established, achieving rapid imidacloprid (IMI) removal. Comprehensive characterizations and DFT calculations validate the “internal and external cultivation” strategy, for which photogenerated carriers are efficiently separated spatially by IEF at the heterojunction interface. Concurrently, KBC functions as an “electron pump” to continuously supply electrons, further enhancing carrier generation and separation efficiency. Under visible light irradiation, 10%KCCZS exhibits exceptional IMI removal performance (99.4%, 30 min) with a rate constant of 0.1521 min−1, representing 23.0 times higher than CeO2 (0.0066 min−1) and surpassing most previous reports. Furthermore, the catalyst maintains excellent purification performance across a broad pH range (3–11), complex water matrices (interfering ions/organics), and various organic pollutants. Mechanistic investigations confirm effective utilization of photogenerated carriers and the dominant role of •O2. LC-MS analysis coupled with comprehensive toxicity assessment (computational toxicity and biological culture assays) elucidates the IMI degradation pathways and environmental safety. This “internal and external cultivation” strategy fundamentally improves carrier kinetics, not only providing innovative perspectives for future heterojunction design but also paving the way for green and sustainable water purification technologies.
在多相光催化材料中精确调节载体动力学以改善水的净化对于缓解全球水危机至关重要。本文报道了以koh活化的生物炭(KBC)作为电子传输介质,成功合成了一种新型的KBC/CeO2/Cd0.5Zn0.5S (KCCZS) S-scheme异质结。建立了“表面活性位点-内电场-优化载体动力学”的协同机制,实现了吡虫啉(IMI)的快速去除。综合表征和DFT计算验证了“内外培养”策略,该策略通过IEF在异质结界面上有效地分离光生载流子。同时,KBC作为“电子泵”,持续提供电子,进一步提高载流子生成和分离效率。在可见光照射下,10%KCCZS表现出优异的IMI去除性能(99.4%,30 min),速率常数为0.1521 min−1,比CeO2 (0.0066 min−1)高23.0倍,超过了大多数先前的报道。此外,该催化剂在广泛的pH范围(3-11)、复杂的水基质(干扰离子/有机物)和各种有机污染物中都保持着优异的净化性能。机理研究证实了光生载流子的有效利用和•O2−的主导作用。LC-MS分析结合综合毒性评估(计算毒性和生物培养分析)阐明了IMI的降解途径和环境安全性。这种“内外培养”策略从根本上改善了载体动力学,不仅为未来的异质结设计提供了创新的视角,也为绿色和可持续的水净化技术铺平了道路。
{"title":"Internal and External Cultivation: Unleashing the Potential of Carrier Kinetics to Boost Photocatalytic Water Purification","authors":"Heng Zhou, Yan Zhang, Yuyue Zhou, Dalin Sun, Hao Wang, Deyu Wu, Song Yang, Tianyi Ma, Heng Zhang","doi":"10.1002/adfm.202531555","DOIUrl":"https://doi.org/10.1002/adfm.202531555","url":null,"abstract":"Precise regulation of carrier kinetics in heterogeneous photocatalytic materials to improve water purification is crucial for alleviating the global water crisis. Herein, we report the successful synthesis of a novel KBC/CeO<sub>2</sub>/Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (KCCZS) S-scheme heterojunction with KOH-activated biochar (KBC) as an electron transport medium. A synergistic mechanism involving “surface active sites–internal electric field (IEF)–optimized carrier kinetics” is established, achieving rapid imidacloprid (IMI) removal. Comprehensive characterizations and DFT calculations validate the “internal and external cultivation” strategy, for which photogenerated carriers are efficiently separated spatially by IEF at the heterojunction interface. Concurrently, KBC functions as an “electron pump” to continuously supply electrons, further enhancing carrier generation and separation efficiency. Under visible light irradiation, 10%KCCZS exhibits exceptional IMI removal performance (99.4%, 30 min) with a rate constant of 0.1521 min<sup>−1</sup>, representing 23.0 times higher than CeO<sub>2</sub> (0.0066 min<sup>−1</sup>) and surpassing most previous reports. Furthermore, the catalyst maintains excellent purification performance across a broad pH range (3–11), complex water matrices (interfering ions/organics), and various organic pollutants. Mechanistic investigations confirm effective utilization of photogenerated carriers and the dominant role of •O<sub>2</sub><sup>−</sup>. LC-MS analysis coupled with comprehensive toxicity assessment (computational toxicity and biological culture assays) elucidates the IMI degradation pathways and environmental safety. This “internal and external cultivation” strategy fundamentally improves carrier kinetics, not only providing innovative perspectives for future heterojunction design but also paving the way for green and sustainable water purification technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Entropy Modified Spinel-Type Co3O4 Nanowires Enhance Activity and Stability for Water Oxidation 高熵改性尖晶石型Co3O4纳米线提高水氧化活性和稳定性
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1002/adfm.202530208
Tianpeng Zhang, Fangqing Wang, Peng Fu, Zhiyu Li, Lingxiao Li, Zhijie Cao, Liyao Tang, Daixing Wei, Hailin Cong
Co3O4 is considered a promising oxygen evolution reaction catalyst, but its performance is constrained by insufficient active site exposure, inefficient electron transfer, and poor stability. To address these issues, we designed a high-entropy Co3O4 (Co1.4(MnFeNiCu)1.6O4). This material exhibits a low Tafel slope of 39.49 mV dec−1. Notably, the Pt/C||Co1.4(MnFeNiCu)1.6O4 electrode pair operated continuously for 2400 h at a high current density of 500 mA cm−2 under industrial conditions (30 wt.% KOH, 60 °C) in an anion-exchange membrane electrolyzer. Advanced in situ spectroscopic techniques combined with density functional theory calculations confirm that the high activity of Co1.4(MnFeNiCu)1.6O4 originates from enhanced participation of the lattice oxygen oxidation pathway. Furthermore, the high-entropy effect stabilizes the oxidation state of Co and strengthens the metal-oxygen bond, ensuring high stability. This study provides a strategy for designing high-performance Co3O4, which will facilitate the development of industrial-scale hydrogen production technologies.
Co3O4被认为是一种很有前途的析氧反应催化剂,但其性能受到活性位点暴露不足、电子转移效率低、稳定性差的限制。为了解决这些问题,我们设计了高熵的Co3O4 (Co1.4(mnnfenicu) 1.60 o4)。该材料的塔菲尔斜率为39.49 mV dec−1。值得注意的是,Pt/C||Co1.4(mnfeenicu) 1.60 o4电极对在工业条件下(30 wt.% KOH, 60°C)阴离子交换膜电解槽中以500 mA cm−2的高电流密度连续工作2400 h。先进的原位光谱技术结合密度泛函理论计算证实,Co1.4(mnfeenicu) 1.60 o4的高活性源于晶格氧氧化途径的增强参与。此外,高熵效应稳定了Co的氧化态,加强了金属-氧键,确保了高稳定性。本研究为设计高性能Co3O4提供了一种策略,这将促进工业规模制氢技术的发展。
{"title":"High-Entropy Modified Spinel-Type Co3O4 Nanowires Enhance Activity and Stability for Water Oxidation","authors":"Tianpeng Zhang, Fangqing Wang, Peng Fu, Zhiyu Li, Lingxiao Li, Zhijie Cao, Liyao Tang, Daixing Wei, Hailin Cong","doi":"10.1002/adfm.202530208","DOIUrl":"https://doi.org/10.1002/adfm.202530208","url":null,"abstract":"Co<sub>3</sub>O<sub>4</sub> is considered a promising oxygen evolution reaction catalyst, but its performance is constrained by insufficient active site exposure, inefficient electron transfer, and poor stability. To address these issues, we designed a high-entropy Co<sub>3</sub>O<sub>4</sub> (Co<sub>1.4</sub>(MnFeNiCu)<sub>1.6</sub>O<sub>4</sub>). This material exhibits a low Tafel slope of 39.49 mV dec<sup>−1</sup>. Notably, the Pt/C||Co<sub>1.4</sub>(MnFeNiCu)<sub>1.6</sub>O<sub>4</sub> electrode pair operated continuously for 2400 h at a high current density of 500 mA cm<sup>−2</sup> under industrial conditions (30 wt.% KOH, 60 °C) in an anion-exchange membrane electrolyzer. Advanced in situ spectroscopic techniques combined with density functional theory calculations confirm that the high activity of Co<sub>1.4</sub>(MnFeNiCu)<sub>1.6</sub>O<sub>4</sub> originates from enhanced participation of the lattice oxygen oxidation pathway. Furthermore, the high-entropy effect stabilizes the oxidation state of Co and strengthens the metal-oxygen bond, ensuring high stability. This study provides a strategy for designing high-performance Co<sub>3</sub>O<sub>4</sub>, which will facilitate the development of industrial-scale hydrogen production technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"46 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired Confined Anisotropic Thermally Conductive MXene Film for Efficient Thermal Management 高效热管理的生物启发受限各向异性导热MXene薄膜
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1002/adfm.202529268
Lei Li, Ruohan Xu, Jia Yan, Yanlei Wang, Junfeng Lu, Zejun Zhang, Wei Li, Wangwei Lian, Jie Sun, Baohua Jia, Qunfeng Cheng
Anisotropic thermally conductive films (TCFs) capable of achieving efficient intra-plane heat dissipation while suppressing inter-plane thermal transfer have become essential components for next-generation electronics thermal management. Inspired by nacre, we demonstrated an ultrahigh anisotropic thermally conductive MXene (Ti3C2Tx) films through a bioinspired confined strategy. The layer-by-layer blade coating is applied to prepare confined highly oriented layered structure of MXene and montmorillonite (MMT) nanosheets by interfacial bridging. The resultant MXene films exhibit exceptional intra-plane thermal conductivity (63.4 W m−1 K−1) while creating substantial phonon scattering interfaces to minimize inter-plane thermal conductivity (0.09 W m−1 K−1), thereby providing a thermal anisotropy factor that reaches 707. The resultant MXene films have superior cooling efficiency compared to commercial TCFs as thermal spreaders for next-generation electronics. Our strategy provides an avenue for assembling other two-dimensional (2D) nanosheets into high-performance functional film.
各向异性导热膜(tcf)能够实现有效的平面内散热,同时抑制平面间的热传递,已成为下一代电子热管理的重要组成部分。受珍珠质启发,我们通过生物激发受限策略展示了超高各向异性导热MXene (Ti3C2Tx)薄膜。采用逐层叶片涂层的方法,通过界面桥接制备了MXene和蒙脱土(MMT)纳米片的受限高取向层状结构。所得到的MXene薄膜具有出色的面内导热系数(63.4 W m−1 K−1),同时产生大量声子散射界面以最小化面间导热系数(0.09 W m−1 K−1),从而提供了热各向异性因子达到707。作为下一代电子产品的散热材料,与商用tcf相比,合成的MXene薄膜具有优越的冷却效率。我们的策略为将其他二维(2D)纳米片组装成高性能功能薄膜提供了一条途径。
{"title":"Bioinspired Confined Anisotropic Thermally Conductive MXene Film for Efficient Thermal Management","authors":"Lei Li, Ruohan Xu, Jia Yan, Yanlei Wang, Junfeng Lu, Zejun Zhang, Wei Li, Wangwei Lian, Jie Sun, Baohua Jia, Qunfeng Cheng","doi":"10.1002/adfm.202529268","DOIUrl":"https://doi.org/10.1002/adfm.202529268","url":null,"abstract":"Anisotropic thermally conductive films (TCFs) capable of achieving efficient intra-plane heat dissipation while suppressing inter-plane thermal transfer have become essential components for next-generation electronics thermal management. Inspired by nacre, we demonstrated an ultrahigh anisotropic thermally conductive MXene (Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i>) films through a bioinspired confined strategy. The layer-by-layer blade coating is applied to prepare confined highly oriented layered structure of MXene and montmorillonite (MMT) nanosheets by interfacial bridging. The resultant MXene films exhibit exceptional intra-plane thermal conductivity (63.4 W m<sup>−1</sup> K<sup>−1</sup>) while creating substantial phonon scattering interfaces to minimize inter-plane thermal conductivity (0.09 W m<sup>−1</sup> K<sup>−1</sup>), thereby providing a thermal anisotropy factor that reaches 707. The resultant MXene films have superior cooling efficiency compared to commercial TCFs as thermal spreaders for next-generation electronics. Our strategy provides an avenue for assembling other two-dimensional (2D) nanosheets into high-performance functional film.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"19 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Functional Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1