Pub Date : 2024-08-03DOI: 10.1016/j.earscirev.2024.104884
Jianchao Cai, Xinghe Jiao, Han Wang, Wu He, Yuxuan Xia
The complicated flow behaviors of multiphase fluids in shale reservoirs are significantly influenced by fluid-fluid and fluid-rock interactions due to the non-negligible intermolecular forces at the nanoscale, which is crucial for the effective development and efficient extraction of shale oil. The complexity of multiphase fluid distribution and flow behaviors in shale reservoirs is further increased by low porosity, low permeability, poor connectivity, high inhomogeneity, and multi-component minerals, making the development process more challenging. Molecular dynamics simulation is widely to precisely capture the intermolecular forces and effectively explain the complex distribution and flow behaviors of these fluids under fluid-fluid and fluid-rock interaction forces. In this review, the characteristics of mineral composition, pore structure, porosity, permeability, and fluid types are first elaborated to illustrate the particularity of shale reservoirs and fluids compared to conventional scale reservoirs. The results show that shale minerals are composed of inorganic and organic matter with extremely low porosity and permeability, and nanoscale pore size, in which the complicated oil-water-CO2 multiphase fluid types are caused by the primary underground water, fracturing water and injected CO2. The research progress of molecular simulation on the fluid-fluid and fluid-rock interaction mechanisms and on multiphase shale fluids flow behaviors are then reviewed in detail. The strong intermolecular interaction forces can result in the different occurrence states of fluids, the fluid-fluid interfacial slip, the fluid-rock boundary slip and heterogeneous fluid viscosity/density, significantly exacerbating the complexity of fluids flow. Meanwhile, the injected CO2 in the formation becomes a supercritical state with high diffusivity and strong solubility, and causes oil expansion, density and viscosity reduction, interfacial tension reduction, wettability alteration and molecular diffusion, which effectively replaces adsorbed hydrocarbon components by competitive adsorption behaviors, and promotes oil flow. The challenges and outlook of molecular simulation research and upscaling applications are finally discussed. This review aims to provide a microscopic understanding of the distribution characteristics and flow behaviors of multiphase shale fluids in nanoconfined space for both unconventional oil and gas researchers and industry professionals.
由于纳米尺度的分子间作用力不可忽略,页岩储层中多相流体的复杂流动行为受到流体-流体和流体-岩石相互作用的显著影响,这对页岩油的有效开发和高效开采至关重要。页岩储层中多相流体分布和流动行为的复杂性因低孔隙度、低渗透率、连通性差、高非均质性和多组分矿物而进一步增加,使开发过程更具挑战性。分子动力学模拟可以精确捕捉分子间作用力,有效解释这些流体在流体-流体和流体-岩石相互作用力下的复杂分布和流动行为。本综述首先阐述了页岩储层的矿物组成、孔隙结构、孔隙度、渗透率和流体类型等特征,以说明页岩储层和流体与常规规模储层相比的特殊性。结果表明,页岩矿物由无机物和有机物组成,孔隙度和渗透率极低,孔隙尺寸达到纳米级,其中复杂的油-水-CO2 多相流体类型是由原生地下水、压裂水和注入的 CO2 引起的。随后详细介绍了分子模拟在流体-流体、流体-岩石相互作用机理以及页岩流体多相流动行为方面的研究进展。强烈的分子间相互作用力会导致流体的不同发生状态、流体-流体界面滑移、流体-岩石边界滑移以及流体粘度/密度的异质性,大大加剧了流体流动的复杂性。同时,注入的二氧化碳在地层中成为高扩散性、强溶解性的超临界状态,引起油膨胀、密度和粘度降低、界面张力降低、润湿性改变和分子扩散,通过竞争吸附行为有效取代吸附的烃组分,促进油流动。最后讨论了分子模拟研究和升级应用所面临的挑战和前景。本综述旨在为非常规油气研究人员和业内专业人士提供一个从微观角度理解多相页岩流体在纳米封闭空间中的分布特征和流动行为的途径。
{"title":"Multiphase fluid-rock interactions and flow behaviors in shale nanopores: A comprehensive review","authors":"Jianchao Cai, Xinghe Jiao, Han Wang, Wu He, Yuxuan Xia","doi":"10.1016/j.earscirev.2024.104884","DOIUrl":"10.1016/j.earscirev.2024.104884","url":null,"abstract":"<div><p>The complicated flow behaviors of multiphase fluids in shale reservoirs are significantly influenced by fluid-fluid and fluid-rock interactions due to the non-negligible intermolecular forces at the nanoscale, which is crucial for the effective development and efficient extraction of shale oil. The complexity of multiphase fluid distribution and flow behaviors in shale reservoirs is further increased by low porosity, low permeability, poor connectivity, high inhomogeneity, and multi-component minerals, making the development process more challenging. Molecular dynamics simulation is widely to precisely capture the intermolecular forces and effectively explain the complex distribution and flow behaviors of these fluids under fluid-fluid and fluid-rock interaction forces. In this review, the characteristics of mineral composition, pore structure, porosity, permeability, and fluid types are first elaborated to illustrate the particularity of shale reservoirs and fluids compared to conventional scale reservoirs. The results show that shale minerals are composed of inorganic and organic matter with extremely low porosity and permeability, and nanoscale pore size, in which the complicated oil-water-CO<sub>2</sub> multiphase fluid types are caused by the primary underground water, fracturing water and injected CO<sub>2</sub>. The research progress of molecular simulation on the fluid-fluid and fluid-rock interaction mechanisms and on multiphase shale fluids flow behaviors are then reviewed in detail. The strong intermolecular interaction forces can result in the different occurrence states of fluids, the fluid-fluid interfacial slip, the fluid-rock boundary slip and heterogeneous fluid viscosity/density, significantly exacerbating the complexity of fluids flow. Meanwhile, the injected CO<sub>2</sub> in the formation becomes a supercritical state with high diffusivity and strong solubility, and causes oil expansion, density and viscosity reduction, interfacial tension reduction, wettability alteration and molecular diffusion, which effectively replaces adsorbed hydrocarbon components by competitive adsorption behaviors, and promotes oil flow. The challenges and outlook of molecular simulation research and upscaling applications are finally discussed. This review aims to provide a microscopic understanding of the distribution characteristics and flow behaviors of multiphase shale fluids in nanoconfined space for both unconventional oil and gas researchers and industry professionals.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"257 ","pages":"Article 104884"},"PeriodicalIF":10.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.earscirev.2024.104883
Meg M. Walker, Julien Louys
Palaeontological and zooarchaeological deposits have been recovered from underwater caves across the globe, but studies on site formation processes in these environments are scattered and have never been systematically examined. Flooded caves in the phreatic zone of karst systems include sinkholes and fensters (windows) that form a connection between the sub-aerial and sub-terranean landscapes, and conduits and chambers that establish underground networks of tunnels. Burial environments in these spaces are variable, and sedimentary, cave morphologic, and hydrologic variability within a single site can have profound impacts on taphonomic processes. The key determinant on long term preservation in these spaces is, however, the presence of water which dictates the nature of any habitation and by which species, and the process of decay. Water tables can fluctuate with long- and short-term sea level changes, with concomitant shifts in burial environments between flooded ‘wet’ or exposed ‘dry’ settings in near-shore cave systems. Distinguishing wet and dry burial conditions is necessary to reconstruct site formation processes in caves exhibiting evidence of changing or cyclical phreatic and vadose conditions. Signatures of aquatic deposition have been identified in underwater sites under marine, lacustrine and fluvial settings, but similar investigations are lacking for submerged cave landscapes. Water influences the decay process, alters bone surfaces, and modifies internal physical and chemical properties of bones. By exploring the environmental properties of flooded caves alongside known aquatic modifications, this review aims to build a framework for taphonomy of underwater cave palaeontological and archaeological sites. We detail biostratinomic and diagenesis processes that can be explored by actualistic, experimental, and observational studies. Future consideration could be given to the effects of human actions on the spatial distribution and modifications of bones in these spaces and the combined effects of environmental and anthropic agents.
{"title":"Site formation processes and the taphonomy of vertebrate remains in underwater caves","authors":"Meg M. Walker, Julien Louys","doi":"10.1016/j.earscirev.2024.104883","DOIUrl":"10.1016/j.earscirev.2024.104883","url":null,"abstract":"<div><p>Palaeontological and zooarchaeological deposits have been recovered from underwater caves across the globe, but studies on site formation processes in these environments are scattered and have never been systematically examined. Flooded caves in the phreatic zone of karst systems include sinkholes and fensters (windows) that form a connection between the sub-aerial and sub-terranean landscapes, and conduits and chambers that establish underground networks of tunnels. Burial environments in these spaces are variable, and sedimentary, cave morphologic, and hydrologic variability within a single site can have profound impacts on taphonomic processes. The key determinant on long term preservation in these spaces is, however, the presence of water which dictates the nature of any habitation and by which species, and the process of decay. Water tables can fluctuate with long- and short-term sea level changes, with concomitant shifts in burial environments between flooded ‘wet’ or exposed ‘dry’ settings in near-shore cave systems. Distinguishing wet and dry burial conditions is necessary to reconstruct site formation processes in caves exhibiting evidence of changing or cyclical phreatic and vadose conditions. Signatures of aquatic deposition have been identified in underwater sites under marine, lacustrine and fluvial settings, but similar investigations are lacking for submerged cave landscapes. Water influences the decay process, alters bone surfaces, and modifies internal physical and chemical properties of bones. By exploring the environmental properties of flooded caves alongside known aquatic modifications, this review aims to build a framework for taphonomy of underwater cave palaeontological and archaeological sites. We detail biostratinomic and diagenesis processes that can be explored by actualistic, experimental, and observational studies. Future consideration could be given to the effects of human actions on the spatial distribution and modifications of bones in these spaces and the combined effects of environmental and anthropic agents.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104883"},"PeriodicalIF":10.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012825224002101/pdfft?md5=4e9234545ee97d516085206ff059d305&pid=1-s2.0-S0012825224002101-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.earscirev.2024.104882
Xuefei Liu, Lihua Zhao, Qingfei Wang, Xuefei Sun, Lei Liu, Shujuan Yang, Jun Deng
<div><p>Since the Carboniferous, over 7.0 billion tons (Gt) of karstic bauxite deposits have formed in the North China Craton (NCC) and the South China Block (SCB), rendering them the largest karstic bauxite deposit resource bases globally. Karstic bauxite deposits in the NCC primarily occur in the Late Carboniferous (>5.0 Gt), and those in the SCB occur in the Early Carboniferous (∼0.2 Gt), Early Permian (∼0.3 Gt), Late Permian (>1.0 Gt), and the Cenozoic (∼0.5 Gt). >120 large karstic bauxite deposits have been found in China, among which several super-large karstic bauxite deposits (single deposit >0.1 Gt) formed during the Late Carboniferous of the NCC and the Late Permian of the SCB. Karstic bauxite deposits that formed during the five levels have different sources, controls, and ore-forming processes. However, the current provenances and processes of karstic bauxite deposits of all five levels, which are primarily based on detrital zircon and mercury isotope analyses, remain unclear. New detrital rutile U<img>Pb ages and geochemistry revealed intimate details of the thus-far poorly understood metamorphic source rocks. The predominance of 1950–1800 Ma rutile from karstic bauxite deposits throughout the NCC confirmed the contribution of 1950–1800 Ma metamorphic rocks, which further approved the presence of a string of the Paleoproterozoic paleo-massifs during the bauxitization period. The Al-rich rocks, primarily including the metamorphic rocks inside the NCC and the magmatic rocks in the continental arcs flanking the NCC, experienced strong weathering under the promotion of contemporaneous volcanism at the northern margin of the NCC and formed a series of large to super-large karstic bauxite deposits. In the SCB, the Early Carboniferous, Early Permian, and Cenozoic karstic bauxite deposits contain abundant 650–500 Ma detrital rutile grains that were primarily formed during metamorphism along Gondwana margin and recycled into the regional Cambrian to Silurian strata. These Cambrian to Silurian strata, together with a small quantity of 900–700 Ma magmatic and metamorphic rocks in the Jiangnan Orogenic Belt, were subsequently exposed and weathered, forming the Early Carboniferous karstic bauxite deposits in central Guizhou and the Early Permian karstic bauxite deposits in the northern part of Guizhou and central Yunnan. Al-poor recycled clastic and carbonate rocks limited the substantial formation of the Carboniferous–Permian super-large karstic bauxite deposits. Rare detrital rutile was discovered in the Late Permian karstic bauxite deposits, affirming the opinion that their intensive formation was induced by volcanic eruptions related to the Emeishan mantle plume and Pacific Plate subduction. The study of detrital rutile and zircon from the Cenozoic low-quality karstic bauxite deposits in central Guangxi showed that the Al-poor sedimentary rocks and a small amount of magmatic rocks exposed around the karstic depression underwent lo
{"title":"Provenance and genesis of karstic bauxite deposits in China: Implications for the formation of super-large karstic bauxite deposits","authors":"Xuefei Liu, Lihua Zhao, Qingfei Wang, Xuefei Sun, Lei Liu, Shujuan Yang, Jun Deng","doi":"10.1016/j.earscirev.2024.104882","DOIUrl":"10.1016/j.earscirev.2024.104882","url":null,"abstract":"<div><p>Since the Carboniferous, over 7.0 billion tons (Gt) of karstic bauxite deposits have formed in the North China Craton (NCC) and the South China Block (SCB), rendering them the largest karstic bauxite deposit resource bases globally. Karstic bauxite deposits in the NCC primarily occur in the Late Carboniferous (>5.0 Gt), and those in the SCB occur in the Early Carboniferous (∼0.2 Gt), Early Permian (∼0.3 Gt), Late Permian (>1.0 Gt), and the Cenozoic (∼0.5 Gt). >120 large karstic bauxite deposits have been found in China, among which several super-large karstic bauxite deposits (single deposit >0.1 Gt) formed during the Late Carboniferous of the NCC and the Late Permian of the SCB. Karstic bauxite deposits that formed during the five levels have different sources, controls, and ore-forming processes. However, the current provenances and processes of karstic bauxite deposits of all five levels, which are primarily based on detrital zircon and mercury isotope analyses, remain unclear. New detrital rutile U<img>Pb ages and geochemistry revealed intimate details of the thus-far poorly understood metamorphic source rocks. The predominance of 1950–1800 Ma rutile from karstic bauxite deposits throughout the NCC confirmed the contribution of 1950–1800 Ma metamorphic rocks, which further approved the presence of a string of the Paleoproterozoic paleo-massifs during the bauxitization period. The Al-rich rocks, primarily including the metamorphic rocks inside the NCC and the magmatic rocks in the continental arcs flanking the NCC, experienced strong weathering under the promotion of contemporaneous volcanism at the northern margin of the NCC and formed a series of large to super-large karstic bauxite deposits. In the SCB, the Early Carboniferous, Early Permian, and Cenozoic karstic bauxite deposits contain abundant 650–500 Ma detrital rutile grains that were primarily formed during metamorphism along Gondwana margin and recycled into the regional Cambrian to Silurian strata. These Cambrian to Silurian strata, together with a small quantity of 900–700 Ma magmatic and metamorphic rocks in the Jiangnan Orogenic Belt, were subsequently exposed and weathered, forming the Early Carboniferous karstic bauxite deposits in central Guizhou and the Early Permian karstic bauxite deposits in the northern part of Guizhou and central Yunnan. Al-poor recycled clastic and carbonate rocks limited the substantial formation of the Carboniferous–Permian super-large karstic bauxite deposits. Rare detrital rutile was discovered in the Late Permian karstic bauxite deposits, affirming the opinion that their intensive formation was induced by volcanic eruptions related to the Emeishan mantle plume and Pacific Plate subduction. The study of detrital rutile and zircon from the Cenozoic low-quality karstic bauxite deposits in central Guangxi showed that the Al-poor sedimentary rocks and a small amount of magmatic rocks exposed around the karstic depression underwent lo","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"257 ","pages":"Article 104882"},"PeriodicalIF":10.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.earscirev.2024.104879
Ron Steel , Ariana Osman , Valentina M. Rossi , Jana Alabdullatif , Cornel Olariu , Yang Peng , Fernando Rey
<div><p>Delta bathymetry, seismic data and near-surface sediment sampling on modern deltas with significant wave, tidal or marine current influence betray a double clinoform architecture with a bridging subaqueous platform. Much of the muddy portion of river-sediment discharge that reaches the coastline bypasses the mouth bar/shoreline clinoform and is deposited, eroded, re-suspended and stored in the distant subaqueous portion of deltas. The sediment stored on the prograding slope of the subaqueous delta is predominantly muddy and heterolithic sediment gravity flows, a diagnostic feature of the prograding and rapidly accumulating subaqueous delta. The subaqueous delta sometimes becomes markedly skewed offshore to run parallel to the shoreline, a routing often aided by shelf currents. Early marine researchers tackled the problem of how sediment from the river reaches so far out (commonly 100 km) on the shelf; they showed that negatively and positively buoyant river plumes, and reworked delta front/shoreface sediments are dispersed out onto the subaqueous delta, greatly assisted by the action of waves, tides and especially friction-reducing fluid mud on the seabed of the subaqueous platform. Documentation of the growth of modern subaqueous deltas has contributed to recent progress in understanding mud dispersal on shelves. Equivalent understanding of ancient deltas, however, has lagged behind.</p><p>A limited dataset of ancient, double-clinoform deltas has nevertheless strengthened our understanding of how lithology and facies change across the subaqueous deltas. The ancient examples, particularly in well-resolved seismic data as on the Indus Delta and New Jersey shelf, show that the subaqueous delta clinoforms can be distinguished clearly from the mouth bar/delta front or shoreline clinoforms. However, architectural reconstruction from outcrop or well-log data is less simple. The diagnostic two-tier architecture of ancient double-clinoform successions (often eye-catching where the upper sandy shoreline deposits sit abruptly atop the underlying muddy subaqueous delta deposits) is frequently delineated by a continuous or discontinuous erosion surface that vertically separates the two tiers. This is the subaqueous platform surface of sediment bypass onto the subaqueous delta clinoform. Most bypassed sediment accumulates on the gentle foreset and flattening bottomset of the subaqueous delta to produce a 10s of m-thick, upward-coarsening muddy to heterolithic succession with tell-tale thin interbeds of rippled, graded and wavy-laminated tempestite and gravity-flow ‘event’ beds. The subaqueous platform is composed of variably thick mudstone and sandstone beds. The upper tier (ca. 5-15 m-thick) above the subaqueous platform is commonly sand-prone, but may also be muddy, and represents the delta-plain to shoreline clinoform. Additional features that help identify the compound delta are (1) rapid termination of the shoreline deposits, then fronted only by
{"title":"Subaqueous deltas in the stratigraphic record: Catching up with the marine geologists","authors":"Ron Steel , Ariana Osman , Valentina M. Rossi , Jana Alabdullatif , Cornel Olariu , Yang Peng , Fernando Rey","doi":"10.1016/j.earscirev.2024.104879","DOIUrl":"10.1016/j.earscirev.2024.104879","url":null,"abstract":"<div><p>Delta bathymetry, seismic data and near-surface sediment sampling on modern deltas with significant wave, tidal or marine current influence betray a double clinoform architecture with a bridging subaqueous platform. Much of the muddy portion of river-sediment discharge that reaches the coastline bypasses the mouth bar/shoreline clinoform and is deposited, eroded, re-suspended and stored in the distant subaqueous portion of deltas. The sediment stored on the prograding slope of the subaqueous delta is predominantly muddy and heterolithic sediment gravity flows, a diagnostic feature of the prograding and rapidly accumulating subaqueous delta. The subaqueous delta sometimes becomes markedly skewed offshore to run parallel to the shoreline, a routing often aided by shelf currents. Early marine researchers tackled the problem of how sediment from the river reaches so far out (commonly 100 km) on the shelf; they showed that negatively and positively buoyant river plumes, and reworked delta front/shoreface sediments are dispersed out onto the subaqueous delta, greatly assisted by the action of waves, tides and especially friction-reducing fluid mud on the seabed of the subaqueous platform. Documentation of the growth of modern subaqueous deltas has contributed to recent progress in understanding mud dispersal on shelves. Equivalent understanding of ancient deltas, however, has lagged behind.</p><p>A limited dataset of ancient, double-clinoform deltas has nevertheless strengthened our understanding of how lithology and facies change across the subaqueous deltas. The ancient examples, particularly in well-resolved seismic data as on the Indus Delta and New Jersey shelf, show that the subaqueous delta clinoforms can be distinguished clearly from the mouth bar/delta front or shoreline clinoforms. However, architectural reconstruction from outcrop or well-log data is less simple. The diagnostic two-tier architecture of ancient double-clinoform successions (often eye-catching where the upper sandy shoreline deposits sit abruptly atop the underlying muddy subaqueous delta deposits) is frequently delineated by a continuous or discontinuous erosion surface that vertically separates the two tiers. This is the subaqueous platform surface of sediment bypass onto the subaqueous delta clinoform. Most bypassed sediment accumulates on the gentle foreset and flattening bottomset of the subaqueous delta to produce a 10s of m-thick, upward-coarsening muddy to heterolithic succession with tell-tale thin interbeds of rippled, graded and wavy-laminated tempestite and gravity-flow ‘event’ beds. The subaqueous platform is composed of variably thick mudstone and sandstone beds. The upper tier (ca. 5-15 m-thick) above the subaqueous platform is commonly sand-prone, but may also be muddy, and represents the delta-plain to shoreline clinoform. Additional features that help identify the compound delta are (1) rapid termination of the shoreline deposits, then fronted only by","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104879"},"PeriodicalIF":10.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.earscirev.2024.104880
B. Campo , C. Pellegrini , I. Sammartino , F. Trincardi , A. Amorosi
<div><p>Sequence stratigraphic concepts have a variety of applications well beyond hydrocarbon exploration. Through coastal plain-to-shelf stratigraphic correlation of Last Glacial Maximum deposits from the Central Adriatic area, we tested a source-to-sink approach for exploring offshore groundwater reserves stored within the lowstand systems tract. Above an erosional unconformity (sequence boundary) formed at the Marine Isotope Stage 3–2 transition in response to sea-level fall, lowstand fluvial gravel-sand bodies, up to 20 m thick, can be tracked continuously downstream, from the coastal-plain paleovalleys to the shelf, 30 km away from the modern shoreline. The LST is overlain by a mud-dominated wedge (TST + HST) made up of alluvial, estuarine and delta plain deposits in lateral transition to thick shallow-marine and prodelta clay successions.</p><p>Using three catchment-to-shelf transects, 35–70 km long, we document the separation between potential reservoir/aquifer units (LST), primarily made of coarse-grained (porous) deposits, and the overlying, laterally continuous seal (TST + HST), which mainly includes fine-grained (low permeability) estuarine to marine sediments. Thickness maps of reservoir/aquifer and seal units provide a three-dimensional view of the stratigraphic architecture and of accumulation patterns at the systems tract scale. Lowstand fluvial deposits spread across a 5600 km<sup>2</sup> wide area of the western Central Adriatic shelf, with average thickness of about 10 m. North of the Meso-Adriatic Deep (MAD), two major depocenters, up to 60 m thick, reflect the local highest fluvial sediment load that correlates, further offshore, to the lowstand Po Delta. West of the MAD, LST deposits, up to 25 m thick, were nourished by Apennine rivers. In the southern area, lowstand deposits are <10 m thick. The LST is overlain across the entire western Central Adriatic shelf by an up to 80 m-thick succession of TST + HST fine-grained deposits.</p><p>A first assessment of sediment volumes provides a value of 130 km<sup>3</sup> for TST + HST and 57.2 km<sup>3</sup> for LST. Sediment provenance analysis delineates the contribution to the shelf of individual detrital sources (Apennine rivers from the west, Po River from the north), offering a powerful tool in quantifying sediment fluxes (about 52 km<sup>3</sup> from the Apennines catchments and 5 km<sup>3</sup> from the lowstand Po system).</p><p>As a whole, the application of sequence stratigraphic concepts led, for the first time, to the identification of a potential groundwater reservoir stored beneath the western Central Adriatic shelf. This LST aquifer possibly contains about 13.85 km<sup>3</sup> of groundwater (the salinity of which is unknown), and is vertically confined by a thick, low-permeability unit (i.e., TST + HST) that might have prevented salt-water intrusion into the underlying aquifer. The documented stratigraphic continuity likely makes this offshore aquifer an actively r
{"title":"New perspectives on offshore groundwater exploration through integrated sequence-stratigraphy and source-to-sink analysis: Insights from the late Quaternary succession of the western Central Adriatic system, Italy","authors":"B. Campo , C. Pellegrini , I. Sammartino , F. Trincardi , A. Amorosi","doi":"10.1016/j.earscirev.2024.104880","DOIUrl":"10.1016/j.earscirev.2024.104880","url":null,"abstract":"<div><p>Sequence stratigraphic concepts have a variety of applications well beyond hydrocarbon exploration. Through coastal plain-to-shelf stratigraphic correlation of Last Glacial Maximum deposits from the Central Adriatic area, we tested a source-to-sink approach for exploring offshore groundwater reserves stored within the lowstand systems tract. Above an erosional unconformity (sequence boundary) formed at the Marine Isotope Stage 3–2 transition in response to sea-level fall, lowstand fluvial gravel-sand bodies, up to 20 m thick, can be tracked continuously downstream, from the coastal-plain paleovalleys to the shelf, 30 km away from the modern shoreline. The LST is overlain by a mud-dominated wedge (TST + HST) made up of alluvial, estuarine and delta plain deposits in lateral transition to thick shallow-marine and prodelta clay successions.</p><p>Using three catchment-to-shelf transects, 35–70 km long, we document the separation between potential reservoir/aquifer units (LST), primarily made of coarse-grained (porous) deposits, and the overlying, laterally continuous seal (TST + HST), which mainly includes fine-grained (low permeability) estuarine to marine sediments. Thickness maps of reservoir/aquifer and seal units provide a three-dimensional view of the stratigraphic architecture and of accumulation patterns at the systems tract scale. Lowstand fluvial deposits spread across a 5600 km<sup>2</sup> wide area of the western Central Adriatic shelf, with average thickness of about 10 m. North of the Meso-Adriatic Deep (MAD), two major depocenters, up to 60 m thick, reflect the local highest fluvial sediment load that correlates, further offshore, to the lowstand Po Delta. West of the MAD, LST deposits, up to 25 m thick, were nourished by Apennine rivers. In the southern area, lowstand deposits are <10 m thick. The LST is overlain across the entire western Central Adriatic shelf by an up to 80 m-thick succession of TST + HST fine-grained deposits.</p><p>A first assessment of sediment volumes provides a value of 130 km<sup>3</sup> for TST + HST and 57.2 km<sup>3</sup> for LST. Sediment provenance analysis delineates the contribution to the shelf of individual detrital sources (Apennine rivers from the west, Po River from the north), offering a powerful tool in quantifying sediment fluxes (about 52 km<sup>3</sup> from the Apennines catchments and 5 km<sup>3</sup> from the lowstand Po system).</p><p>As a whole, the application of sequence stratigraphic concepts led, for the first time, to the identification of a potential groundwater reservoir stored beneath the western Central Adriatic shelf. This LST aquifer possibly contains about 13.85 km<sup>3</sup> of groundwater (the salinity of which is unknown), and is vertically confined by a thick, low-permeability unit (i.e., TST + HST) that might have prevented salt-water intrusion into the underlying aquifer. The documented stratigraphic continuity likely makes this offshore aquifer an actively r","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104880"},"PeriodicalIF":10.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012825224002071/pdfft?md5=d57b5de2d8ba229dc9ae200fd0c5c890&pid=1-s2.0-S0012825224002071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.earscirev.2024.104881
Dejan Prelević , Michael W. Förster , Stephan Buhre , Fatma Gülmez , Tobias Grützner , Yu Wang , Stephen F. Foley
<div><p>Mantle-derived magmas are traditionally assumed to originate by melting of an upper mantle consisting of uniform spinel- or garnet peridotite dominated by olivine. However, extensive studies of mantle-derived basalts suggest that the mantle is more mineralogically heterogeneous, so that the genesis of even the most common magmas requires consideration of mixed source regions within the mantle involving pyroxenites and hydrous minerals. We refer to these with the group term metasomes. However, most experimental studies on mantle melting have assumed a homogeneous source composition, presenting a challenge in quantifying the impact of these heterogeneities.</p><p>This paper provides a comprehensive review of recent advances in reaction experiments that depart from traditional approaches assuming a homogeneous mantle. We begin by assembling evidence for the existence of metasomes, discussing their formation and integration into basaltic melts.</p><p>Further, we introduce the reaction experiments combining peridotite with hydrous assemblages, such as phlogopite, amphiboles, and apatite, leading to more accurate simulations of natural magmatic processes. These experiments reveal that the melting of hydrous metasomes and subsequent melt-peridotite interactions are key to producing the high alkali contents observed in natural lavas. The melting of hydrous metasomes occurs at lower temperatures than peridotite, resulting in diverse melt compositions. The interaction between metasome-derived melts and peridotite further modifies these melts, influenced by the pressure-dependent melting behaviors of minerals like orthopyroxene and olivine. This dynamic process leads to the generation of K- and Na-alkaline melts with varying silica and alkali contents, reflecting the complex interplay of melting and reaction mechanisms in the mantle.</p><p>Formation of hydrous metasomes have also been studied by reaction experiments. Experimental studies have predominantly focused on potassium-rich systems due to the geochemical signatures of potassic igneous rocks suggesting sedimentary rock contributions to their sources. These studies simulate interactions between melts and mantle peridotite, particularly in sub-arc regions, leading to potassium-rich metasomes. More experimental studies are needed on sodium-rich alkaline systems to understand the formation of amphibole-rich metasomes and bridge knowledge gaps.</p><p>Future studies should emphasize the detailed compositional variability of melts from metasomes, their reactions with peridotites, and comparisons with surface lavas. Understanding the kinetics of these reactions and the melting mechanisms of metasome-derived melts is essential. However, the considerable mineralogical diversity of hydrous metasomes poses a primary challenge facing experimental studies. It underscores the need for more experiments on additional melt source rocks and their reaction with peridotites, as the story about the reaction of mel
{"title":"Recent advances made by reaction experiments on melting of heavily metasomatized hydrous mantle","authors":"Dejan Prelević , Michael W. Förster , Stephan Buhre , Fatma Gülmez , Tobias Grützner , Yu Wang , Stephen F. Foley","doi":"10.1016/j.earscirev.2024.104881","DOIUrl":"10.1016/j.earscirev.2024.104881","url":null,"abstract":"<div><p>Mantle-derived magmas are traditionally assumed to originate by melting of an upper mantle consisting of uniform spinel- or garnet peridotite dominated by olivine. However, extensive studies of mantle-derived basalts suggest that the mantle is more mineralogically heterogeneous, so that the genesis of even the most common magmas requires consideration of mixed source regions within the mantle involving pyroxenites and hydrous minerals. We refer to these with the group term metasomes. However, most experimental studies on mantle melting have assumed a homogeneous source composition, presenting a challenge in quantifying the impact of these heterogeneities.</p><p>This paper provides a comprehensive review of recent advances in reaction experiments that depart from traditional approaches assuming a homogeneous mantle. We begin by assembling evidence for the existence of metasomes, discussing their formation and integration into basaltic melts.</p><p>Further, we introduce the reaction experiments combining peridotite with hydrous assemblages, such as phlogopite, amphiboles, and apatite, leading to more accurate simulations of natural magmatic processes. These experiments reveal that the melting of hydrous metasomes and subsequent melt-peridotite interactions are key to producing the high alkali contents observed in natural lavas. The melting of hydrous metasomes occurs at lower temperatures than peridotite, resulting in diverse melt compositions. The interaction between metasome-derived melts and peridotite further modifies these melts, influenced by the pressure-dependent melting behaviors of minerals like orthopyroxene and olivine. This dynamic process leads to the generation of K- and Na-alkaline melts with varying silica and alkali contents, reflecting the complex interplay of melting and reaction mechanisms in the mantle.</p><p>Formation of hydrous metasomes have also been studied by reaction experiments. Experimental studies have predominantly focused on potassium-rich systems due to the geochemical signatures of potassic igneous rocks suggesting sedimentary rock contributions to their sources. These studies simulate interactions between melts and mantle peridotite, particularly in sub-arc regions, leading to potassium-rich metasomes. More experimental studies are needed on sodium-rich alkaline systems to understand the formation of amphibole-rich metasomes and bridge knowledge gaps.</p><p>Future studies should emphasize the detailed compositional variability of melts from metasomes, their reactions with peridotites, and comparisons with surface lavas. Understanding the kinetics of these reactions and the melting mechanisms of metasome-derived melts is essential. However, the considerable mineralogical diversity of hydrous metasomes poses a primary challenge facing experimental studies. It underscores the need for more experiments on additional melt source rocks and their reaction with peridotites, as the story about the reaction of mel","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104881"},"PeriodicalIF":10.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.earscirev.2024.104870
Ali Saeibehrouzi , Soroush Abolfathi , Petr Denissenko , Ran Holtzman
Solute transport in partially-saturated porous media plays a key role in multiple applications across scales, from the migration of nutrients and contaminants in soils to geological energy storage and recovery. Our understanding of transport in unsaturated porous media remains limited compared to the well-studied saturated case. The focus of this review is the non-reactive transport driven by the displacement of immiscible fluids, where the fluid-fluid interface acts as a barrier that limits the solute to a single fluid phase. State-of-the-art pore-scale models are described, with a critical analysis of the gaps and challenges. A numerical example is provided to demonstrate the acute sensitivity of solute transport prediction to minute, inevitable uncertainties in the spatial distribution of the fluids' velocities and interface configuration associated with the multiphase flow modeling.
{"title":"Pore-scale modeling of solute transport in partially-saturated porous media","authors":"Ali Saeibehrouzi , Soroush Abolfathi , Petr Denissenko , Ran Holtzman","doi":"10.1016/j.earscirev.2024.104870","DOIUrl":"10.1016/j.earscirev.2024.104870","url":null,"abstract":"<div><p>Solute transport in partially-saturated porous media plays a key role in multiple applications across scales, from the migration of nutrients and contaminants in soils to geological energy storage and recovery. Our understanding of transport in unsaturated porous media remains limited compared to the well-studied saturated case. The focus of this review is the non-reactive transport driven by the displacement of immiscible fluids, where the fluid-fluid interface acts as a barrier that limits the solute to a single fluid phase. State-of-the-art pore-scale models are described, with a critical analysis of the gaps and challenges. A numerical example is provided to demonstrate the acute sensitivity of solute transport prediction to minute, inevitable uncertainties in the spatial distribution of the fluids' velocities and interface configuration associated with the multiphase flow modeling.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104870"},"PeriodicalIF":10.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012825224001971/pdfft?md5=d09e58786152113a0b536da7e46e9bac&pid=1-s2.0-S0012825224001971-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.earscirev.2024.104869
Yihao Zheng , Mingzhe Yang , Haijiang Liu
Groundwater dynamics in the coastal unconfined aquifer is one of the most important physical factors in the coastal zone since it greatly influences the nearshore hydrodynamics and beach morphodynamics, as well as interactions between oceanic and inland water systems. A solid understanding of the groundwater behavior in the coastal area is necessary for maintaining efficient coastal water management and supporting sustainable social-ecological development. Coastal unconfined aquifers are complicated while active systems in response to multiple oceanic forces such as tides and waves in various spatiotemporal scales, which have been evaluated and investigated over the last few decades. The present paper provides a comprehensive review of current understandings and advances in groundwater dynamics in coastal unconfined aquifers with respect to water table fluctuations and groundwater flow patterns, with a particular focus on wave-induced groundwater hydrodynamics. Existing analytical approaches for predicting the groundwater response to oceanic forces are summarized and evaluated to reveal their pros and cons. Although great advances have been achieved, some knowledge gaps still remain. While the influences of tide forces on coastal groundwater dynamics are generally well understood and tide-induced groundwater dynamics could be appropriately reproduced by various existing analytical or numerical models, groundwater dynamics in response to wave forces are relatively poorly understood. Accordingly, research needs with respect to groundwater dynamics are discussed and identified in this review. Many studies evaluate the wave-induced groundwater hydrodynamics based on experimental or field observations, while sophisticated theoretical approaches are still lacking to quantify the influence of various complex physical factors during wave swash events, such as capillary truncations, seepage face dynamics, and wetting front evolutions. Such knowledge gaps need to be filled in order to further advance our understanding of the coastal groundwater dynamics and, furthermore, to conduct effective and sustainable coastal water management and protection.
{"title":"Coastal groundwater dynamics with a focus on wave effects","authors":"Yihao Zheng , Mingzhe Yang , Haijiang Liu","doi":"10.1016/j.earscirev.2024.104869","DOIUrl":"10.1016/j.earscirev.2024.104869","url":null,"abstract":"<div><p>Groundwater dynamics in the coastal unconfined aquifer is one of the most important physical factors in the coastal zone since it greatly influences the nearshore hydrodynamics and beach morphodynamics, as well as interactions between oceanic and inland water systems. A solid understanding of the groundwater behavior in the coastal area is necessary for maintaining efficient coastal water management and supporting sustainable social-ecological development. Coastal unconfined aquifers are complicated while active systems in response to multiple oceanic forces such as tides and waves in various spatiotemporal scales, which have been evaluated and investigated over the last few decades. The present paper provides a comprehensive review of current understandings and advances in groundwater dynamics in coastal unconfined aquifers with respect to water table fluctuations and groundwater flow patterns, with a particular focus on wave-induced groundwater hydrodynamics. Existing analytical approaches for predicting the groundwater response to oceanic forces are summarized and evaluated to reveal their pros and cons. Although great advances have been achieved, some knowledge gaps still remain. While the influences of tide forces on coastal groundwater dynamics are generally well understood and tide-induced groundwater dynamics could be appropriately reproduced by various existing analytical or numerical models, groundwater dynamics in response to wave forces are relatively poorly understood. Accordingly, research needs with respect to groundwater dynamics are discussed and identified in this review. Many studies evaluate the wave-induced groundwater hydrodynamics based on experimental or field observations, while sophisticated theoretical approaches are still lacking to quantify the influence of various complex physical factors during wave swash events, such as capillary truncations, seepage face dynamics, and wetting front evolutions. Such knowledge gaps need to be filled in order to further advance our understanding of the coastal groundwater dynamics and, furthermore, to conduct effective and sustainable coastal water management and protection.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104869"},"PeriodicalIF":10.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.earscirev.2024.104863
Ahmed Mansour , Jian Wang , Xiugen Fu , Sameh S. Tahoun , Wolfgang Ruebsam
Major sea-level cycles occurred in the Cenomanian-early Turonian greenhouse world and impacted depositional conditions and ecosystems across the paleo-shelf seas. These sea-level cycles have been interpreted from various paleogeographic settings around the globe, such as the Western Interior Seaway (North America), the Proto-North Atlantic, Western Europe, and eastern Tethys (SE India). However, their drivers remain poorly understood and may include glacio-, aquifer-, thermo-, and/or tectono-eustasy. Uncertainties also persist regarding the timing, synchronicity, and magnitude of Cenomanian-early Turonian eustatic cycles. By combining palynological data from northern Africa (Gindi Basin, Egypt) with data available in the literature, a detailed synthesis of Cenomanian palynostratigraphy and sea-level dynamics is presented. Age-diagnostic spores, pollen, and organic walled dinoflagellate cysts (dinocysts) are correlated to global marine biozonation schemes, which provide a comprehensive biostratigraphic framework for the Cenomanian-early Turonian. Additionally, palynological data enable the identification of an early late Cenomanian Dinopterygium bio-event marked by the highest abundances of dinocysts. This bio-event can be correlated to the Neolobites ammonite bio-event and the Jukes-Browne Carbon Isotope Event. The bio-events stratigraphically constrain with a major transgression, which occurred in the early late Cenomanian, slightly preceding Oceanic Anoxic Event 2 (OAE2). Another major transgression spans the late Cenomanian-early Turonian, referred to the Plenus transgression bio-event, and consistent with the onset of the OAE2. Regional to global correlations indicate that these transgressive events reflect eustatic sea-level rises that can be recognized throughout the Tethys, Proto-North Atlantic, Europe, Western Interior Seaway, and India. These transgressions occurred within <1.0 Myr with modest magnitudes of 10–60 m. Rates of sea-level change has commonly been attributed to glacio-eustasy, which is however difficult to reconcile with a probably ice-free Cenomanian-early Turonian greenhouse world. Both transgressions coincide with phases of rising temperatures, whereby warming was most pronounced during the early late Cenomanian transgression. However, we can only speculate whether rising temperatures indicate the demise of polar glaciations. Eustatic processes, including tectono-eustasy, and to some extent aquifer- and thermo-eustasy, likely played a role in the sea-level rise during the early late Cenomanian and early Turonian. Environmental changes associated with the early late Cenomanian transgression may have triggered the onset of OAE2 possibly exacerbated by sluggish ocean circulation in a warming greenhouse world where sea ice formation was limited.
{"title":"Regional to global correlation of Cenomanian-early Turonian sea-level evolution and related dynamics: New perspectives","authors":"Ahmed Mansour , Jian Wang , Xiugen Fu , Sameh S. Tahoun , Wolfgang Ruebsam","doi":"10.1016/j.earscirev.2024.104863","DOIUrl":"10.1016/j.earscirev.2024.104863","url":null,"abstract":"<div><p>Major sea-level cycles occurred in the Cenomanian-early Turonian greenhouse world and impacted depositional conditions and ecosystems across the paleo-shelf seas. These sea-level cycles have been interpreted from various paleogeographic settings around the globe, such as the Western Interior Seaway (North America), the Proto-North Atlantic, Western Europe, and eastern Tethys (SE India). However, their drivers remain poorly understood and may include glacio-, aquifer-, thermo-, and/or tectono-eustasy. Uncertainties also persist regarding the timing, synchronicity, and magnitude of Cenomanian-early Turonian eustatic cycles. By combining palynological data from northern Africa (Gindi Basin, Egypt) with data available in the literature, a detailed synthesis of Cenomanian palynostratigraphy and sea-level dynamics is presented. Age-diagnostic spores, pollen, and organic walled dinoflagellate cysts (dinocysts) are correlated to global marine biozonation schemes, which provide a comprehensive biostratigraphic framework for the Cenomanian-early Turonian. Additionally, palynological data enable the identification of an early late Cenomanian <em>Dinopterygium</em> bio-event marked by the highest abundances of dinocysts. This bio-event can be correlated to the <em>Neolobites</em> ammonite bio-event and the Jukes-Browne Carbon Isotope Event. The bio-events stratigraphically constrain with a major transgression, which occurred in the early late Cenomanian, slightly preceding Oceanic Anoxic Event 2 (OAE2). Another major transgression spans the late Cenomanian-early Turonian, referred to the Plenus transgression bio-event, and consistent with the onset of the OAE2. Regional to global correlations indicate that these transgressive events reflect eustatic sea-level rises that can be recognized throughout the Tethys, Proto-North Atlantic, Europe, Western Interior Seaway, and India. These transgressions occurred within <1.0 Myr with modest magnitudes of 10–60 m. Rates of sea-level change has commonly been attributed to glacio-eustasy, which is however difficult to reconcile with a probably ice-free Cenomanian-early Turonian greenhouse world. Both transgressions coincide with phases of rising temperatures, whereby warming was most pronounced during the early late Cenomanian transgression. However, we can only speculate whether rising temperatures indicate the demise of polar glaciations. Eustatic processes, including tectono-eustasy, and to some extent aquifer- and thermo-eustasy, likely played a role in the sea-level rise during the early late Cenomanian and early Turonian. Environmental changes associated with the early late Cenomanian transgression may have triggered the onset of OAE2 possibly exacerbated by sluggish ocean circulation in a warming greenhouse world where sea ice formation was limited.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"256 ","pages":"Article 104863"},"PeriodicalIF":10.8,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141697190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}