Pub Date : 2024-11-01DOI: 10.1016/j.eng.2024.05.004
Xiaoxuan Zhang , Hanxu Chen , Taiyu Song , Jinglin Wang , Yuanjin Zhao
Investigation of patient-derived primary tissues is of great importance in the biomedical field, but recent tissue slicing and cultivation techniques still have difficulties in satisfying clinical requirements. Here, we propose a controllable histotomy strategy that utilizes hierarchical magnetic microneedle array robots to tailor primary tissues and establish the desired high-throughput tissue-on-a-chip. This histotomy is performed using a three-dimensional printed, mortise-tenon-structured slicing device coupled with a magnetic-particle-loaded and pagoda-shaped microneedle array scaffold. Due to the multilayered structure of these microneedles, tissue specimens can be fixed onto the microneedle scaffold via mechanical interlocking, thereby effectively avoiding tissue slipping during the slicing process. Owing to the encapsulation of magnetic microneedle fragments, these tissue pieces can act as magnetically responsive biohybrid microrobots and can be easily manipulated by magnetic fields, facilitating their separation, transportation, and dynamic culture. Using this strategy, we demonstrate that primary pancreatic cancer tissues can be tailored into tiny pieces and cultured in multilayered microfluidic chips for efficient high-throughput drug screening, indicating the promising future of this technique’s application in clinical settings.
{"title":"Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots","authors":"Xiaoxuan Zhang , Hanxu Chen , Taiyu Song , Jinglin Wang , Yuanjin Zhao","doi":"10.1016/j.eng.2024.05.004","DOIUrl":"10.1016/j.eng.2024.05.004","url":null,"abstract":"<div><div>Investigation of patient-derived primary tissues is of great importance in the biomedical field, but recent tissue slicing and cultivation techniques still have difficulties in satisfying clinical requirements. Here, we propose a controllable histotomy strategy that utilizes hierarchical magnetic microneedle array robots to tailor primary tissues and establish the desired high-throughput tissue-on-a-chip. This histotomy is performed using a three-dimensional printed, mortise-tenon-structured slicing device coupled with a magnetic-particle-loaded and pagoda-shaped microneedle array scaffold. Due to the multilayered structure of these microneedles, tissue specimens can be fixed onto the microneedle scaffold via mechanical interlocking, thereby effectively avoiding tissue slipping during the slicing process. Owing to the encapsulation of magnetic microneedle fragments, these tissue pieces can act as magnetically responsive biohybrid microrobots and can be easily manipulated by magnetic fields, facilitating their separation, transportation, and dynamic culture. Using this strategy, we demonstrate that primary pancreatic cancer tissues can be tailored into tiny pieces and cultured in multilayered microfluidic chips for efficient high-throughput drug screening, indicating the promising future of this technique’s application in clinical settings.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 166-174"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.eng.2024.02.006
Qi Zhou , Shen Qu , Miaomiao Liu , Jianxun Yang , Jia Zhou , Yunlei She , Zhouyi Liu , Jun Bi
Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises. This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sustainability. The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks. It includes production, consumption, and transportation agents, attributing economic features to supply chain components and capturing their interactions. It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors. By coupling high spatial–temporal resolution firm-level data from 18 916 chemical enterprises, this study investigates the economic and environmental impacts of an environmental policy resulting in the closure of 1800 chemical enterprises over three years. The results revealed a significant economic loss of 25.8 billion USD, ranging from 23.8 billion to 31.8 billion USD. Notably, over 80% of this loss was attributed to supply chain propagation. Counterfactual analyses indicated that implementing a staggered shutdown strategy prevented 18.8% of supply chain losses, highlighting the importance of a gradual policy implementation to prevent abrupt supply chain disruptions. Furthermore, the study highlights the effectiveness of a multi-objective policy design in reducing economic losses (about 29%) and environmental risks (about 40%), substantially enhancing the efficiency of the environmental policy. The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.
{"title":"Enhancing the Efficiency of Enterprise Shutdowns for Environmental Protection: An Agent-Based Modeling Approach with High Spatial–Temporal Resolution Data","authors":"Qi Zhou , Shen Qu , Miaomiao Liu , Jianxun Yang , Jia Zhou , Yunlei She , Zhouyi Liu , Jun Bi","doi":"10.1016/j.eng.2024.02.006","DOIUrl":"10.1016/j.eng.2024.02.006","url":null,"abstract":"<div><div>Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises. This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sustainability. The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks. It includes production, consumption, and transportation agents, attributing economic features to supply chain components and capturing their interactions. It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors. By coupling high spatial–temporal resolution firm-level data from 18 916 chemical enterprises, this study investigates the economic and environmental impacts of an environmental policy resulting in the closure of 1800 chemical enterprises over three years. The results revealed a significant economic loss of 25.8 billion USD, ranging from 23.8 billion to 31.8 billion USD. Notably, over 80% of this loss was attributed to supply chain propagation. Counterfactual analyses indicated that implementing a staggered shutdown strategy prevented 18.8% of supply chain losses, highlighting the importance of a gradual policy implementation to prevent abrupt supply chain disruptions. Furthermore, the study highlights the effectiveness of a multi-objective policy design in reducing economic losses (about 29%) and environmental risks (about 40%), substantially enhancing the efficiency of the environmental policy. The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 295-307"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.eng.2024.04.016
Tiejun Liu , Ming Zhang , Dujian Zou , Jiaping Liu , Jinping Ou
Concerns about the durability of transportation infrastructure due to freeze–thaw (F–T) cycles are particularly significant in the Chinese plateau region, where concrete aging and performance deterioration pose substantial challenges. The current national standards for the frost resistance design of concrete structures are based predominantly on the coldest monthly average temperature and do not adequately address the comprehensive effects of the spatiotemporal variance, amplitude, and frequency of F–T cycles. To address this issue, this study introduced a spatiotemporal distribution model to analyze the long-term impact of F–T action on concrete structures by employing statistical analysis and spatial interpolation techniques. Cluster analysis was applied to create a nationwide zonation of F–T action level from data on the freezing temperature, temperature difference, and the number of F–T cycles. Furthermore, this study explored the similarity between natural environmental conditions and laboratory-accelerated tests using hydraulic pressure and cumulative damage theories. A visualization platform that incorporates tools for meteorological data queries, environmental characteristic analyses, and F–T action similarity calculations was designed. This research lays theoretical groundwork and provides technical guidance for assessing service life and enhancing the quantitative durability design of concrete structures in the Chinese plateau region.
{"title":"Analysis and Zonation of Freeze–Thaw Action in the Chinese Plateau Region Considering Spatiotemporal Climate Characteristics","authors":"Tiejun Liu , Ming Zhang , Dujian Zou , Jiaping Liu , Jinping Ou","doi":"10.1016/j.eng.2024.04.016","DOIUrl":"10.1016/j.eng.2024.04.016","url":null,"abstract":"<div><div>Concerns about the durability of transportation infrastructure due to freeze–thaw (F–T) cycles are particularly significant in the Chinese plateau region, where concrete aging and performance deterioration pose substantial challenges. The current national standards for the frost resistance design of concrete structures are based predominantly on the coldest monthly average temperature and do not adequately address the comprehensive effects of the spatiotemporal variance, amplitude, and frequency of F–T cycles. To address this issue, this study introduced a spatiotemporal distribution model to analyze the long-term impact of F–T action on concrete structures by employing statistical analysis and spatial interpolation techniques. Cluster analysis was applied to create a nationwide zonation of F–T action level from data on the freezing temperature, temperature difference, and the number of F–T cycles. Furthermore, this study explored the similarity between natural environmental conditions and laboratory-accelerated tests using hydraulic pressure and cumulative damage theories. A visualization platform that incorporates tools for meteorological data queries, environmental characteristic analyses, and F–T action similarity calculations was designed. This research lays theoretical groundwork and provides technical guidance for assessing service life and enhancing the quantitative durability design of concrete structures in the Chinese plateau region.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 308-325"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.eng.2022.09.019
Shu Tian , Jinli Zhang , Shuan Liu , Jingyu Li , Jibin Pu , Yugang Hao , Guobing Ying , Qunji Xue , Guangming Lu
Marine corrosion and biofouling are challenges that affect marine industrial equipment, and protecting equipment with functional coatings is a simple and effective approach. However, it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating. In this work, we combine reduced graphene oxide (rGO)/silver nanoparticles (AgNPs) with a hydrophilic polymer in a bio-based silicone–epoxy resin to create a coating with both anti-fouling and anti-corrosion properties. The excellent anti-fouling performance of the coating results from a ternary synergistic mechanism involving fouling release, contact inhibition, and a hydration effect, while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating network (IPN) structure, a barrier effect, and passivation. The results show that the obtained coating possesses superior anti-fouling activity against protein, bacteria, algae, and other marine organisms, as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked network of rGO/AgNPs and the hydrophilic polymer. This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.
{"title":"An Integrated Anti-Fouling and Anti-Corrosion Coating Enabled by rGO/AgNPs and Amphiphilic Networks","authors":"Shu Tian , Jinli Zhang , Shuan Liu , Jingyu Li , Jibin Pu , Yugang Hao , Guobing Ying , Qunji Xue , Guangming Lu","doi":"10.1016/j.eng.2022.09.019","DOIUrl":"10.1016/j.eng.2022.09.019","url":null,"abstract":"<div><div>Marine corrosion and biofouling are challenges that affect marine industrial equipment, and protecting equipment with functional coatings is a simple and effective approach. However, it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating. In this work, we combine reduced graphene oxide (rGO)/silver nanoparticles (AgNPs) with a hydrophilic polymer in a bio-based silicone–epoxy resin to create a coating with both anti-fouling and anti-corrosion properties. The excellent anti-fouling performance of the coating results from a ternary synergistic mechanism involving fouling release, contact inhibition, and a hydration effect, while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating network (IPN) structure, a barrier effect, and passivation. The results show that the obtained coating possesses superior anti-fouling activity against protein, bacteria, algae, and other marine organisms, as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked network of rGO/AgNPs and the hydrophilic polymer. This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 223-234"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.eng.2024.08.008
Yingying Lin , Yao Lu , Yuqi Wang , Cong Lv , Juan Chen , Yongting Luo , Heng Quan , Weiru Yu , Lining Chen , Ziyu Huang , Yanling Hao , Qingyu Wang , Qingfeng Luo , Jingyu Yan , Yixuan Li , Wei Zhang , Min Du , Jian He , Fazheng Ren , Huiyuan Guo
Intestinal stem cells (ISCs) initiate intestinal epithelial regeneration and tumorigenesis, and they experience rapid refilling upon various injuries for epithelial repair as well as tumor reoccurrence. It is crucial to reveal the mechanism underlying such plasticity for intestinal health. Recent studies have found that metabolic pathways control stem cell fate in homeostasis, but the role of metabolism in the regeneration of ISCs after damage has not been clarified. Here, we find that in a human colorectal cancer dataset, miR-29a and b (miR-29a/b) are metabolic regulators highly associated with intestinal tumorigenesis and worse prognostic value of radiotherapy. We also show that these two microRNAs are required for intestinal stemness maintenance in mice, and their expression is induced in regenerated ISCs after irradiation injury, resulting in skewed ISC fate from differentiation towards self-renewal. This upregulation of miR-29a/b expression in ISCs leads to suppression of fatty acid oxidation (FAO) and depression of oxidative phosphorylation, which in turn controls the balance between self-renewal and differentiation of ISCs. Deletion of miR-29a/b prevents these effects and thus impairs ISC-mediated epithelial recovery. Finally, we filter the potential targets of miR-29a/b and identify Hnf4g, a transcription factor, that drives this metabolic reprogramming through regulating FAO-related enzymes. Our work discovers an important metabolic mechanism of ISC-mediated regeneration and potentially pave the way for more targeted and effective therapeutic strategies for intestinal repair as well as tumor treatment.
{"title":"The Regeneration of Intestinal Stem Cells Is Driven by miR-29-Induced Metabolic Reprogramming","authors":"Yingying Lin , Yao Lu , Yuqi Wang , Cong Lv , Juan Chen , Yongting Luo , Heng Quan , Weiru Yu , Lining Chen , Ziyu Huang , Yanling Hao , Qingyu Wang , Qingfeng Luo , Jingyu Yan , Yixuan Li , Wei Zhang , Min Du , Jian He , Fazheng Ren , Huiyuan Guo","doi":"10.1016/j.eng.2024.08.008","DOIUrl":"10.1016/j.eng.2024.08.008","url":null,"abstract":"<div><div>Intestinal stem cells (ISCs) initiate intestinal epithelial regeneration and tumorigenesis, and they experience rapid refilling upon various injuries for epithelial repair as well as tumor reoccurrence. It is crucial to reveal the mechanism underlying such plasticity for intestinal health. Recent studies have found that metabolic pathways control stem cell fate in homeostasis, but the role of metabolism in the regeneration of ISCs after damage has not been clarified. Here, we find that in a human colorectal cancer dataset, miR-29a and b (miR-29a/b) are metabolic regulators highly associated with intestinal tumorigenesis and worse prognostic value of radiotherapy. We also show that these two microRNAs are required for intestinal stemness maintenance in mice, and their expression is induced in regenerated ISCs after irradiation injury, resulting in skewed ISC fate from differentiation towards self-renewal. This upregulation of miR-29a/b expression in ISCs leads to suppression of fatty acid oxidation (FAO) and depression of oxidative phosphorylation, which in turn controls the balance between self-renewal and differentiation of ISCs. Deletion of miR-29a/b prevents these effects and thus impairs ISC-mediated epithelial recovery. Finally, we filter the potential targets of miR-29a/b and identify <em>Hnf4g</em>, a transcription factor, that drives this metabolic reprogramming through regulating FAO-related enzymes. Our work discovers an important metabolic mechanism of ISC-mediated regeneration and potentially pave the way for more targeted and effective therapeutic strategies for intestinal repair as well as tumor treatment.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 39-58"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.eng.2024.03.021
Huaiyu Wu , Jinwook Kim , Bohua Zhang , Gabe Owens , Greyson Stocker , Mengyue Chen , Benjamin C. Kreager , Ashley Cornett , Kathlyne Bautista , Tarana Kaovasia , Paul A. Dayton , Zhen Xu , Xiaoning Jiang
Thromboembolism in blood vessels poses a serious risk of stroke, heart attack, and even sudden death if not properly managed. Sonothrombolysis combined with ultrasound contrast agents has emerged as a promising approach for the effective treatment of thromboembolism. Recent reports have highlighted the potential of intravascular sonothrombolysis as a safe and effective treatment modality for deep vein thrombosis (DVT). However, its efficiency has not been validated through in vivo testing of retracted clots. This study aimed to develop a miniaturized multidirectional transducer featuring two 4-layer lead zirconate titanate (PZT-5A) stacks with an aperture size of 1.4 mm × 1.4 mm, enabling both forward- and side-looking treatment. Integrated into a custom two-lumen 10-French (Fr) catheter, the capability of this device for intravascular sonothrombolysis was validated both in vitro and in vivo. With low-dose tissue plasminogen activators and nanodroplets, the rotational multidirectional transducer reduced the retracted clot mass (800 mg) by an average of 52% within 30 min during in vitro testing. The lysis rate was significantly higher by 37% than that in a forward-viewing transducer without rotation. This improvement was particularly noteworthy in the treatment of retracted clots. Notably, a long-retracted clot (> 10 cm) was successfully treated within 40 min in vivo by creating a flow channel with a diameter > 4 mm in a porcine DVT model. In conclusion, these findings strongly suggest the potential of this technique for clinical applications in sonothrombolysis, offering a feasible solution for effectively treating thromboembolism, particularly in challenging cases involving retracted clots.
{"title":"Rotational Intravascular Multidirectional Ultrasound Catheter for Sonothrombolysis of Retracted Clots: An in Vitro and in Vivo Study","authors":"Huaiyu Wu , Jinwook Kim , Bohua Zhang , Gabe Owens , Greyson Stocker , Mengyue Chen , Benjamin C. Kreager , Ashley Cornett , Kathlyne Bautista , Tarana Kaovasia , Paul A. Dayton , Zhen Xu , Xiaoning Jiang","doi":"10.1016/j.eng.2024.03.021","DOIUrl":"10.1016/j.eng.2024.03.021","url":null,"abstract":"<div><div>Thromboembolism in blood vessels poses a serious risk of stroke, heart attack, and even sudden death if not properly managed. Sonothrombolysis combined with ultrasound contrast agents has emerged as a promising approach for the effective treatment of thromboembolism. Recent reports have highlighted the potential of intravascular sonothrombolysis as a safe and effective treatment modality for deep vein thrombosis (DVT). However, its efficiency has not been validated through <em>in vivo</em> testing of retracted clots. This study aimed to develop a miniaturized multidirectional transducer featuring two 4-layer lead zirconate titanate (PZT-5A) stacks with an aperture size of 1.4 mm × 1.4 mm, enabling both forward- and side-looking treatment. Integrated into a custom two-lumen 10-French (Fr) catheter, the capability of this device for intravascular sonothrombolysis was validated both <em>in vitro</em> and <em>in vivo</em>. With low-dose tissue plasminogen activators and nanodroplets, the rotational multidirectional transducer reduced the retracted clot mass (800 mg) by an average of 52% within 30 min during <em>in vitro</em> testing. The lysis rate was significantly higher by 37% than that in a forward-viewing transducer without rotation. This improvement was particularly noteworthy in the treatment of retracted clots. Notably, a long-retracted clot (> 10 cm) was successfully treated within 40 min <em>in vivo</em> by creating a flow channel with a diameter > 4 mm in a porcine DVT model. In conclusion, these findings strongly suggest the potential of this technique for clinical applications in sonothrombolysis, offering a feasible solution for effectively treating thromboembolism, particularly in challenging cases involving retracted clots.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 235-243"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.eng.2024.07.001
Shihao Xiao , Limin Zhang , Te Xiao , Ruochen Jiang , Dalei Peng , Wenjun Lu , Xin He
The 2280 km long Jinsha River has been blocked at least four times in the past 30 years. A landslide damming hazard chain can endanger communities and infrastructures hundreds of kilometers downstream from the damming site in alpine gorges. Past damming events have resulted in severe consequences, demanding a thorough assessment of damming threats along the entire Jinsha River. This study digitizes the Jinsha River and visualizes its topographic, tectonic, hydrologic, and climate characteristics in detail. A two-stage full-probability method is proposed for assessing the damming threats along this river, making it possible to identify potential damming hotspots and high-priority zones for hazard mitigation. It is found that the upper reach of the Jinsha River poses the greatest damming threat, and the threat level gradually decreases downstream. Approximately 33.4%, 36.7%, 20.5%, and 9.4% of the entire length of the Jinsha River are classified as low, moderate, high, and very high threat levels, respectively. Compared with existing hydropower projects, future projects in the upper reach are more likely to be exposed to landslide damming. We highlight the value of basin-scale spatial threat analysis and envisage that our findings will promote more targeted local-scale risk assessments for potential damming hotspots. These outcomes provide the basis for managing the risks of river damming and hydropower infrastructure along the Jinsha River.
{"title":"Landslide Damming Threats Along the Jinsha River, China","authors":"Shihao Xiao , Limin Zhang , Te Xiao , Ruochen Jiang , Dalei Peng , Wenjun Lu , Xin He","doi":"10.1016/j.eng.2024.07.001","DOIUrl":"10.1016/j.eng.2024.07.001","url":null,"abstract":"<div><div>The 2280 km long Jinsha River has been blocked at least four times in the past 30 years. A landslide damming hazard chain can endanger communities and infrastructures hundreds of kilometers downstream from the damming site in alpine gorges. Past damming events have resulted in severe consequences, demanding a thorough assessment of damming threats along the entire Jinsha River. This study digitizes the Jinsha River and visualizes its topographic, tectonic, hydrologic, and climate characteristics in detail. A two-stage full-probability method is proposed for assessing the damming threats along this river, making it possible to identify potential damming hotspots and high-priority zones for hazard mitigation. It is found that the upper reach of the Jinsha River poses the greatest damming threat, and the threat level gradually decreases downstream. Approximately 33.4%, 36.7%, 20.5%, and 9.4% of the entire length of the Jinsha River are classified as low, moderate, high, and very high threat levels, respectively. Compared with existing hydropower projects, future projects in the upper reach are more likely to be exposed to landslide damming. We highlight the value of basin-scale spatial threat analysis and envisage that our findings will promote more targeted local-scale risk assessments for potential damming hotspots. These outcomes provide the basis for managing the risks of river damming and hydropower infrastructure along the Jinsha River.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 326-339"},"PeriodicalIF":10.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.eng.2024.03.009
Microwave absorption (MA) materials are essential for protecting against harmful electromagnetic radiation. In this study, highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide (GO) reduction, deposition of TiO2 nanoparticles, and subsequent coating of a mixture of polydimethylsiloxane (PDMS) and octadecylamine (ODA) on polyester fabrics. Owing to the presence of hierarchically structured surfaces and low-surface-energy materials, the resultant reduced GO (rGO)/TiO2-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159° and sliding angle of 5°. Under the synergistic effects of conduction loss, interface polarization loss, and surface roughness topography, the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss (RLmin) of −47.4 dB and a maximum effective absorption bandwidth (EABmax) of 7.7 GHz at a small rGO loading of 6.9 wt%. In addition, the rGO/TiO2-ODA/PDMS coating was robust, and the coated fabrics could withstand repeated washing, soiling, long-term ultraviolet irradiation, and chemical attacks without losing their superhydrophobicity and MA properties. Moreover, the coating imparts self-healing properties to the fabrics. This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.
{"title":"Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption","authors":"","doi":"10.1016/j.eng.2024.03.009","DOIUrl":"10.1016/j.eng.2024.03.009","url":null,"abstract":"<div><div>Microwave absorption (MA) materials are essential for protecting against harmful electromagnetic radiation. In this study, highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving <em>in situ</em> graphene oxide (GO) reduction, deposition of TiO<sub>2</sub> nanoparticles, and subsequent coating of a mixture of polydimethylsiloxane (PDMS) and octadecylamine (ODA) on polyester fabrics. Owing to the presence of hierarchically structured surfaces and low-surface-energy materials, the resultant reduced GO (rGO)/TiO<sub>2</sub>-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159° and sliding angle of 5°. Under the synergistic effects of conduction loss, interface polarization loss, and surface roughness topography, the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss (RL<sub>min</sub>) of −47.4 dB and a maximum effective absorption bandwidth (EAB<sub>max</sub>) of 7.7 GHz at a small rGO loading of 6.9 wt%. In addition, the rGO/TiO<sub>2</sub>-ODA/PDMS coating was robust, and the coated fabrics could withstand repeated washing, soiling, long-term ultraviolet irradiation, and chemical attacks without losing their superhydrophobicity and MA properties. Moreover, the coating imparts self-healing properties to the fabrics. This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 161-171"},"PeriodicalIF":10.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140788958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.eng.2024.04.020
Accurate origin–destination (OD) demand prediction is crucial for the efficient operation and management of urban rail transit (URT) systems, particularly during a pandemic. However, this task faces several limitations, including real-time availability, sparsity, and high-dimensionality issues, and the impact of the pandemic. Consequently, this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network (PAG-STAN) for metro OD demand prediction under pandemic conditions. Specifically, PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices. Subsequently, a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices. Thereafter, PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic. Finally, a masked physics-guided loss function (MPG-loss function) incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability. PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios, highlighting its robustness and sensitivity for metro OD demand prediction. A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.
准确的始发站(OD)需求预测对于城市轨道交通(URT)系统的高效运营和管理至关重要,尤其是在大流行病期间。然而,这项任务面临着一些限制,包括实时性、稀疏性和高维性问题,以及大流行病的影响。因此,本研究提出了一个统一的框架,称为物理引导的自适应图时空注意力网络(PAG-STAN),用于大流行病条件下的地铁外径需求预测。具体来说,PAG-STAN 引入了一个实时 OD 估算模块,用于实时估算完整的 OD 需求矩阵。随后,提出了一个新颖的动态 OD 需求矩阵压缩模块,以生成密集的实时 OD 需求矩阵。之后,PAG-STAN 利用各种异构数据了解大流行期间未来 OD 乘客量的演变趋势。最后,一个掩蔽物理引导损失函数(MPG-loss function)将外包需求和入境流量之间的物理量信息纳入损失函数,以增强模型的可解释性。PAG-STAN 在大流行和传统情景下的两个真实世界地铁外径需求数据集上表现出良好的性能,突出了其在地铁外径需求预测方面的稳健性和灵敏度。为验证 PAG-STAN 中每个模块的不可或缺性,还进行了一系列消融研究。
{"title":"Physics Guided Deep Learning-Based Model for Short-Term Origin–Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic","authors":"","doi":"10.1016/j.eng.2024.04.020","DOIUrl":"10.1016/j.eng.2024.04.020","url":null,"abstract":"<div><div>Accurate origin–destination (OD) demand prediction is crucial for the efficient operation and management of urban rail transit (URT) systems, particularly during a pandemic. However, this task faces several limitations, including real-time availability, sparsity, and high-dimensionality issues, and the impact of the pandemic. Consequently, this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network (PAG-STAN) for metro OD demand prediction under pandemic conditions. Specifically, PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices. Subsequently, a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices. Thereafter, PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic. Finally, a masked physics-guided loss function (MPG-loss function) incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability. PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios, highlighting its robustness and sensitivity for metro OD demand prediction. A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 276-296"},"PeriodicalIF":10.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141130833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.eng.2024.05.005
Nonalcoholic steatohepatitis (NASH) may soon become the leading cause of end-stage liver disease worldwide with limited treatment options. Liver fibrosis, which is driven by chronic inflammation and hepatic stellate cell (HSC) activation, critically determines morbidity and mortality in patients with NASH. Pyruvate kinase M2 (PKM2) is involved in immune activation and inflammatory liver diseases; however, its role and therapeutic potential in NASH-related fibrosis remain largely unexplored. Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells (NPCs), especially macrophages, in the livers of patients with fibrotic NASH. Macrophage-specific PKM2 knockout (PKM2FL/FLLysM-Cre) significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine- and choline-deficient (MCD) diet, a high-fat high-cholesterol (HFHC) diet, and a western diet plus weekly carbon tetrachloride injection (WD/CCl4). Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6Chigh macrophage infiltration. Mechanistically, PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3 (NLRP3) activation in proinflammatory macrophages, which induced HSC activation and fibrogenesis. A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo. Translationally, ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides, a novel oligonucleotide drug that preferentially accumulates in the liver, dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity. The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis. Thus, therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.
{"title":"Therapeutic Targeting of PKM2 Ameliorates NASH Fibrosis Progression in a Macrophage-Specific and Liver-Specific Manner","authors":"","doi":"10.1016/j.eng.2024.05.005","DOIUrl":"10.1016/j.eng.2024.05.005","url":null,"abstract":"<div><div>Nonalcoholic steatohepatitis (NASH) may soon become the leading cause of end-stage liver disease worldwide with limited treatment options. Liver fibrosis, which is driven by chronic inflammation and hepatic stellate cell (HSC) activation, critically determines morbidity and mortality in patients with NASH. Pyruvate kinase M2 (PKM2) is involved in immune activation and inflammatory liver diseases; however, its role and therapeutic potential in NASH-related fibrosis remain largely unexplored. Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells (NPCs), especially macrophages, in the livers of patients with fibrotic NASH. Macrophage-specific PKM2 knockout (<em>PKM2<sup>FL/FL</sup>LysM-Cre</em>) significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine- and choline-deficient (MCD) diet, a high-fat high-cholesterol (HFHC) diet, and a western diet plus weekly carbon tetrachloride injection (WD/CCl<sub>4</sub>). Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6C<sup>high</sup> macrophage infiltration. Mechanistically, PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3 (NLRP3) activation in proinflammatory macrophages, which induced HSC activation and fibrogenesis. A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs <em>in vitro</em> and <em>in vivo</em>. Translationally, ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides, a novel oligonucleotide drug that preferentially accumulates in the liver, dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity. The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis. Thus, therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 189-203"},"PeriodicalIF":10.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141130875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}