Biological soil crusts (BSCs) cover approximately 40 % of arid and semi-arid lands and are pivotal for terrestrial biogeochemical cycling. Bacteria and fungi constitute the main active constituents of BSC microbial communities, with abundant and rare taxa playing distinct roles. We investigated differences in assembly processes, adaptive strategies, and functional potential between abundant and rare bacterial and fungal taxa across BSC developments in two distinct habitats—the nutrient-poor Tengger Desert and the relatively fertile Loess Plateau. Our results reveal that stochastic dispersal limitation chiefly dominates abundant and permanently rare bacterial taxa in both habitats. In contrast, homogeneous selection dominated transiently and conditionally rare taxa, while deterministic selection pressure was more pronounced in the Tengger Desert owing to its lower nutrient availability. The successional development of BSCs drives a shift from r-to K-strategies in both habitats, with this transition being particularly pronounced in the Tengger Desert. Rare bacterial taxa harbor functional gene repertoires disproportionate to their low relative abundances and thus make outsized contributions to biogeochemical cycling; moreover, their functional potential increases progressively throughout BSC development. Functional connectivity between abundant and rare taxa was strengthened under nutrient-poor conditions. Variation in soil organic carbon content and pH emerged as primary drivers of the assembly and functional patterns. These findings indicate that nutrient-limited conditions differentially alter assembly processes and functional potential of rare and abundant taxa, and that ecological strategies shift with succession in both habitats. Our study reveals how contrasting nutrient availabilities in two arid habitats drive microbial assembly dynamics, adaptive strategies, and functional differentiation throughout BSC successional development, offering theoretical guidance for studying microbial communities and functions in arid ecosystems.
扫码关注我们
求助内容:
应助结果提醒方式:
