首页 > 最新文献

European Journal of Soil Biology最新文献

英文 中文
Carbon and energy utilization in microbial cell extracts from soil 土壤微生物细胞提取物的碳和能量利用
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2025-01-30 DOI: 10.1016/j.ejsobi.2025.103713
Milan Varsadiya , Fatemeh Dehghani , Shiyue Yang , Evgenia Blagodatskaya , Thomas Maskow , Dimitri V. Meier , Tillmann Lueders
Microbial carbon use efficiency (CUE), the ratio of carbon retained in biomass vs. total C uptake, is central to our understanding of organic C turnover in soil. A precise quantification of CUE in soils can be challenging, given the considerable analytical uncertainties of organic and inorganic C backgrounds. At the same time, CUE measured for model pure cultures will be distinct from a diverse microbiota in soil. As a proxy between laboratory cultures and complex soil microbiomes, we tested soil-free microbial cell extracts (SFCE) to unravel patterns of C utilization in soil-derived microbiomes of reduced complexity. For this, we have revisited and optimized established protocols to extract microbial cells from agricultural soil via Nycodenz density centrifugation. The total extracted cells were quantified, accounting for up to ∼3.5 × 107 cells g−1 soil and representing ∼12.5 % of the original soil microbiome. The diversity of microbes in SFCE, while consistently reduced compared to soil, still retained a surprisingly high proportion of the original soil microbiome, with ASVs recovered from 21 phyla. We then inferred CUE from calorespirometric measurements (metabolic heat flow and CO2 production) to compare values between SFCE and intact soil. Both were amended with substrates (glucose, glutamine, and glycerol) of different C and N content, and C oxidation state (NOSC). SFCE showed CUE values principally comparable to that of the intact soil, but with substrate-specific distinctions. Amplicon sequencing and qPCR-based quantification showed typical soil taxa like Pseudomonas, Pseudarthrobacter, and Bacteroidota to respond to substrate addition in soil and SFCE. Our results support the use of SFCE as a valuable and complementary approach toward elucidating microbial CUE and growth patterns for complex soil microbiota.
微生物碳利用效率(CUE),即生物量中保留的碳与总碳吸收的比率,是我们理解土壤有机碳周转的核心。考虑到有机和无机碳背景的分析不确定性,土壤中CUE的精确定量可能具有挑战性。同时,为模型纯培养物测量的CUE将与土壤中的多种微生物群不同。作为实验室培养和复杂土壤微生物组之间的代理,我们测试了无土壤微生物细胞提取物(SFCE),以揭示复杂性降低的土壤来源微生物组对C的利用模式。为此,我们重新审视并优化了通过Nycodenz密度离心从农业土壤中提取微生物细胞的既定方案。对提取的总细胞进行了定量,占到~ 3.5 × 107个细胞g−1土壤,占原始土壤微生物组的~ 12.5%。与土壤相比,SFCE中微生物的多样性不断减少,但仍然保留了原始土壤微生物组的高比例,其中有21个门恢复了asv。然后,我们从热肺测量(代谢热流和二氧化碳产生)中推断出CUE,以比较SFCE和完整土壤之间的值。两者都用不同C、N含量和C氧化态(NOSC)的底物(葡萄糖、谷氨酰胺和甘油)进行修饰。SFCE的CUE值与完整土壤基本相当,但存在基质特异性差异。扩增子测序和基于qpcr的定量分析显示,假单胞菌、假节杆菌和拟杆菌属等典型土壤分类群对土壤基质添加和SFCE有响应。我们的研究结果支持SFCE作为一种有价值的补充方法来阐明复杂土壤微生物群的微生物CUE和生长模式。
{"title":"Carbon and energy utilization in microbial cell extracts from soil","authors":"Milan Varsadiya ,&nbsp;Fatemeh Dehghani ,&nbsp;Shiyue Yang ,&nbsp;Evgenia Blagodatskaya ,&nbsp;Thomas Maskow ,&nbsp;Dimitri V. Meier ,&nbsp;Tillmann Lueders","doi":"10.1016/j.ejsobi.2025.103713","DOIUrl":"10.1016/j.ejsobi.2025.103713","url":null,"abstract":"<div><div>Microbial carbon use efficiency (CUE), the ratio of carbon retained in biomass vs. total C uptake, is central to our understanding of organic C turnover in soil. A precise quantification of CUE in soils can be challenging, given the considerable analytical uncertainties of organic and inorganic C backgrounds. At the same time, CUE measured for model pure cultures will be distinct from a diverse microbiota in soil. As a proxy between laboratory cultures and complex soil microbiomes, we tested soil-free microbial cell extracts (SFCE) to unravel patterns of C utilization in soil-derived microbiomes of reduced complexity. For this, we have revisited and optimized established protocols to extract microbial cells from agricultural soil via Nycodenz density centrifugation. The total extracted cells were quantified, accounting for up to ∼3.5 × 10<sup>7</sup> cells g<sup>−1</sup> soil and representing ∼12.5 % of the original soil microbiome. The diversity of microbes in SFCE, while consistently reduced compared to soil, still retained a surprisingly high proportion of the original soil microbiome, with ASVs recovered from 21 phyla. We then inferred CUE from calorespirometric measurements (metabolic heat flow and CO<sub>2</sub> production) to compare values between SFCE and intact soil. Both were amended with substrates (glucose, glutamine, and glycerol) of different C and N content, and C oxidation state (NOSC). SFCE showed CUE values principally comparable to that of the intact soil, but with substrate-specific distinctions. Amplicon sequencing and qPCR-based quantification showed typical soil taxa like <em>Pseudomonas</em>, <em>Pseudarthrobacter</em>, and <em>Bacteroidota</em> to respond to substrate addition in soil and SFCE. Our results support the use of SFCE as a valuable and complementary approach toward elucidating microbial CUE and growth patterns for complex soil microbiota.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103713"},"PeriodicalIF":3.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143152991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Earthworm burrows affect vertical distribution of springtails in soil 蚯蚓的地穴影响土壤中跳尾的垂直分布
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2025-01-30 DOI: 10.1016/j.ejsobi.2025.103710
A.F. Krediet , B.S. Mönnich , J. Ellers , M.P. Berg
Extreme climatic events, such as prolonged dry spells, are causing more intense soil droughts, which can be a major threat to soil life. Soil animals in general are rather sensitive to strong fluctuations in soil moisture content but may be able to escape from drought by moving deeper into the soil. Bioturbation, for example by burrowing activity of earthworms, may facilitate such vertical movement and hence moderate the consequences of drought for soil animals. Here, we investigated if earthworm burrows enable soil-dwelling Collembola to move deeper into the soil and escape drought conditions. We also tested if drought affects bioturbation activity of earthworms, and measured evaporation from soil under drought conditions. Using transparent 2D-terraria, we analyzed the effect of four burrow treatments (i.e. burrows from an anecic earthworm species, burrows from an endogeic earthworm species, artificially made burrows, no burrows), each subjected to either drought or normal soil moisture conditions. We added 40 euedaphic springtails (Folsomia candida) per terrarium. After two weeks, we recorded survival of the springtails and their vertical localization in the soil. We used computer vision to estimate the cover and average depth of bioturbated area from photographs of the 2D-terraria. We found that the presence of Aporrectodea caliginosa (endogeic) increased the survival of springtails. Under normal moisture conditions, springtails were found deeper in the soil in the presence of A. longa (anecic). Aporrectodea longa strongly increased evaporation under normal soil moisture conditions. Our experiment showed that earthworms may moderate the impact of drought on euedaphic springtails, which opens up the hypothesis that other soil fauna may benefit as well from earthworm burrowing activity.
极端气候事件,如长期干旱,正在造成更严重的土壤干旱,这可能对土壤生命构成重大威胁。一般来说,土壤动物对土壤含水量的剧烈波动相当敏感,但它们可能通过向土壤深处移动来躲避干旱。生物扰动,例如蚯蚓的挖洞活动,可能促进这种垂直运动,从而减轻干旱对土壤动物的影响。在这里,我们研究了蚯蚓的洞穴是否能使居住在土壤中的弹线虫向土壤深处移动并逃避干旱条件。我们还测试了干旱是否影响蚯蚓的生物扰动活动,并测量了干旱条件下土壤的蒸发。利用透明的2d terraria,我们分析了四种洞穴处理的效果(即来自奇源蚯蚓的洞穴,来自内源蚯蚓的洞穴,人工制造的洞穴,没有洞穴),每种洞穴都受到干旱或正常土壤湿度条件的影响。我们在每个玻璃容器中添加了40只原生弹尾(Folsomia candida)。两周后,我们记录了弹尾虫的存活情况和它们在土壤中的垂直位置。我们使用计算机视觉从二维terraria的照片中估计生物扰动区域的覆盖范围和平均深度。我们发现,Aporrectodea caliginosa(内源性)的存在增加了弹尾虫的存活率。在正常的湿度条件下,弹尾虫被发现存在于土壤深处的A. longa (anecic)。在正常土壤水分条件下,长尾连翘显著增加了蒸发量。我们的实验表明,蚯蚓可能会缓和干旱对原生跳尾的影响,这开启了其他土壤动物也可能从蚯蚓的挖洞活动中受益的假设。
{"title":"Earthworm burrows affect vertical distribution of springtails in soil","authors":"A.F. Krediet ,&nbsp;B.S. Mönnich ,&nbsp;J. Ellers ,&nbsp;M.P. Berg","doi":"10.1016/j.ejsobi.2025.103710","DOIUrl":"10.1016/j.ejsobi.2025.103710","url":null,"abstract":"<div><div>Extreme climatic events, such as prolonged dry spells, are causing more intense soil droughts, which can be a major threat to soil life. Soil animals in general are rather sensitive to strong fluctuations in soil moisture content but may be able to escape from drought by moving deeper into the soil. Bioturbation, for example by burrowing activity of earthworms, may facilitate such vertical movement and hence moderate the consequences of drought for soil animals. Here, we investigated if earthworm burrows enable soil-dwelling Collembola to move deeper into the soil and escape drought conditions. We also tested if drought affects bioturbation activity of earthworms, and measured evaporation from soil under drought conditions. Using transparent 2D-terraria, we analyzed the effect of four burrow treatments (i.e. burrows from an anecic earthworm species, burrows from an endogeic earthworm species, artificially made burrows, no burrows), each subjected to either drought or normal soil moisture conditions. We added 40 euedaphic springtails (<em>Folsomia candida</em>) per terrarium. After two weeks, we recorded survival of the springtails and their vertical localization in the soil. We used computer vision to estimate the cover and average depth of bioturbated area from photographs of the 2D-terraria. We found that the presence of <em>Aporrectodea caliginosa</em> (endogeic) increased the survival of springtails. Under normal moisture conditions, springtails were found deeper in the soil in the presence of <em>A. longa</em> (anecic). <em>Aporrectodea longa</em> strongly increased evaporation under normal soil moisture conditions. Our experiment showed that earthworms may moderate the impact of drought on euedaphic springtails, which opens up the hypothesis that other soil fauna may benefit as well from earthworm burrowing activity.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103710"},"PeriodicalIF":3.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143152990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of long-term sugarcane-soybean intercropping coupled with varying levels of nitrogen input on soil legacies: A field experimental study 长期甘蔗-大豆间作配施不同氮素水平对土壤遗传的影响:田间试验研究
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2025-01-30 DOI: 10.1016/j.ejsobi.2025.103711
Shiqiang Ge , Muhammad Shoaib Rana , Zixuan Li , Yongjian Chen , Zixuan Wang , Chang Shen , Tantan Zhang , Yinghua Shu , Jianwu Wang
Long-term agricultural management practices alter the biochemical properties of soil, leading to the formation of distinct soil legacies. Sugarcane-soybean intercropping is recognized as a sustainable and stable agricultural practice, while the application of nitrogen (N) fertilizer is essential for enhancing crop yields. However, research on the effects of long-term sugarcane-soybean intercropping coupled with varying N levels on soil legacies remains limited. Therefore, we selected four treatments in a long-term field experiment: sugarcane monoculture with reduced N application (MSN1), sugarcane monoculture with conventional N application (MSN2), sugarcane-soybean intercropping with reduced N application (SB2N1), and sugarcane-soybean intercropping with conventional N application (SB2N2). The study aims to investigate the effects of soybean intercropping coupled with varying N application levels on soil abiotic (chemical properties) and biotic (microbial communities) legacies. The results showed that under conventional N application (525 kg ha−1), intercropping, compared to monoculture, significantly increased the contents of total potassium (TK), nitrate nitrogen (NO3), available zinc (AZn) and the network complexity of the arbuscular mycorrhizal fungi (AMF) community. Under intercropping conditions, reduced N application (300 kg ha⁻1), compared to conventional N application, significantly increased the content of exchangeable calcium (ECa), pH, as well as the alpha diversity and network complexity of the bacterial community. Under monocropping conditions, conventional N application significantly increased the complexity of the bacterial community network. Stochastic processes dominated the assembly of bacterial and AMF communities, but under the same cropping pattern, deterministic processes in fungal communities increased with N application. Soil pH, N nutrients, and trace metal elements are key factors affecting the diversity and composition of soil microbial communities. These findings highlight the significant impact of intercropped soybean on soil legacies, whereas the N level of application plays a key role in regulating the effectiveness of biotic and abiotic soil legacies. This study provides valuable insights into managing soil legacies and provides a theoretical basis for the development of sustainable agriculture.
长期的农业管理实践改变了土壤的生化特性,从而形成了独特的土壤遗产。甘蔗-大豆间作是公认的可持续稳定的农业生产方式,而氮肥的施用是提高作物产量的关键。然而,长期甘蔗-大豆间作配施不同氮水平对土壤遗传影响的研究仍然有限。因此,本研究选择甘蔗单作减氮(MSN1)、甘蔗单作常规施氮(MSN2)、甘蔗-大豆间作减氮(SB2N1)和甘蔗-大豆间作常规施氮(SB2N2) 4个处理进行长期田间试验。本研究旨在探讨大豆间作配施不同施氮量对土壤非生物(化学性质)和生物(微生物群落)遗传的影响。结果表明,在常规施氮(525 kg ha−1)条件下,套作与单作相比,显著提高了丛枝菌根真菌(AMF)群落的总钾(TK)、硝态氮(NO3−)、有效锌(AZn)含量和网络复杂性。间作条件下,与常规施氮相比,减少施氮量(300 kg ha - 1)显著提高了土壤中交换性钙(ECa)含量、pH值以及细菌群落的α多样性和网络复杂性。在单作条件下,常规施氮显著增加了细菌群落网络的复杂性。细菌和AMF群落的聚集以随机过程为主,但在相同种植模式下,真菌群落的聚集随施氮量的增加而增加。土壤pH、N养分和微量金属元素是影响土壤微生物群落多样性和组成的关键因素。这些结果表明间作大豆对土壤遗传的影响显著,而施氮水平在调节生物和非生物土壤遗传的有效性中起关键作用。该研究为土壤遗产管理提供了有价值的见解,并为可持续农业的发展提供了理论依据。
{"title":"Effects of long-term sugarcane-soybean intercropping coupled with varying levels of nitrogen input on soil legacies: A field experimental study","authors":"Shiqiang Ge ,&nbsp;Muhammad Shoaib Rana ,&nbsp;Zixuan Li ,&nbsp;Yongjian Chen ,&nbsp;Zixuan Wang ,&nbsp;Chang Shen ,&nbsp;Tantan Zhang ,&nbsp;Yinghua Shu ,&nbsp;Jianwu Wang","doi":"10.1016/j.ejsobi.2025.103711","DOIUrl":"10.1016/j.ejsobi.2025.103711","url":null,"abstract":"<div><div>Long-term agricultural management practices alter the biochemical properties of soil, leading to the formation of distinct soil legacies. Sugarcane-soybean intercropping is recognized as a sustainable and stable agricultural practice, while the application of nitrogen (N) fertilizer is essential for enhancing crop yields. However, research on the effects of long-term sugarcane-soybean intercropping coupled with varying N levels on soil legacies remains limited. Therefore, we selected four treatments in a long-term field experiment: sugarcane monoculture with reduced N application (MSN1), sugarcane monoculture with conventional N application (MSN2), sugarcane-soybean intercropping with reduced N application (SB2N1), and sugarcane-soybean intercropping with conventional N application (SB2N2). The study aims to investigate the effects of soybean intercropping coupled with varying N application levels on soil abiotic (chemical properties) and biotic (microbial communities) legacies. The results showed that under conventional N application (525 kg ha<sup>−1</sup>), intercropping, compared to monoculture, significantly increased the contents of total potassium (TK), nitrate nitrogen (NO<sub>3</sub><sup>−</sup>), available zinc (AZn) and the network complexity of the arbuscular mycorrhizal fungi (AMF) community. Under intercropping conditions, reduced N application (300 kg ha⁻<sup>1</sup>), compared to conventional N application, significantly increased the content of exchangeable calcium (ECa), pH, as well as the alpha diversity and network complexity of the bacterial community. Under monocropping conditions, conventional N application significantly increased the complexity of the bacterial community network. Stochastic processes dominated the assembly of bacterial and AMF communities, but under the same cropping pattern, deterministic processes in fungal communities increased with N application. Soil pH, N nutrients, and trace metal elements are key factors affecting the diversity and composition of soil microbial communities. These findings highlight the significant impact of intercropped soybean on soil legacies, whereas the N level of application plays a key role in regulating the effectiveness of biotic and abiotic soil legacies. This study provides valuable insights into managing soil legacies and provides a theoretical basis for the development of sustainable agriculture.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103711"},"PeriodicalIF":3.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil phosphorus dynamics and its correlation with ectomycorrhizal fungi following forest conversion in subtropical conifer (Picea asperata) forests 亚热带针叶林森林转换后土壤磷动态及其与外生菌根真菌的关系
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2025-01-27 DOI: 10.1016/j.ejsobi.2025.103712
Lixia Wang , Shiyu Song , Huichao Li , Yang Liu , Lin Xu , Han Li , Chengming You , Sining Liu , Hongwei Xu , Bo Tan , Zhenfeng Xu , Li Zhang , Hans Lambers , Douglas Godbold
Ectomycorrhizal (ECM) fungi or their associated microbes play key roles in mobilizing phosphorus (P) from soil organic matter. Forest conversion often alters soil P availability. However, the correlation between P dynamics caused by forest conversion and changes in ECM fungi is not clear. To dress this issue, we create ECM-reduction (trenched) and ECM-intact (untrenched) conditions in the natural forest and plantation. We then measured soil microbial properties, fungal communities, and P fractions. Our results showed that the natural forest exhibited a higher proportion of inorganic phosphorus (Pi) and a lower proportion of organic phosphorus (Po) compared to the plantation, indicating that forest conversion resulted in a decrease in P mineralization. Under ECM-reduction conditions, resin-Pi contents increased in both forest types. ECM-reduction led to an increase in NaOH-Pi and a decrease in NaOH-Po in both forest types. However, ECM-reduction decreased the 1 M HCl-Pi content in the natural forest while increasing it in the plantation. Structural equation modeling revealed that in the natural forest, trenching directly affected the reads number of ECM fungi, which subsequently influenced 1 M HCl-Pi and resin-Pi contents. In the plantation, trenching impacted NaOH-Po and ECM reads number, which were associated with changes in residual-P and resin-Pi contents. These findings highlight that ECM fungi differ in their utilization of resin-Pi and their ability to mobilize primary mineral Pi (1 M HCl-Pi) and poorly-available P, depending on the soil quality of natural forests and plantations.
外生菌根真菌(ECM)及其伴生微生物在从土壤有机质中调动磷(P)中起着关键作用。森林转化经常改变土壤磷的有效性。然而,森林转换引起的磷动态与ECM真菌变化之间的相关性尚不清楚。为了解决这个问题,我们在天然林和人工林中创造了ecm减少(沟槽)和ecm完整(未沟槽)的条件。然后我们测量了土壤微生物特性、真菌群落和磷组分。结果表明,与人工林相比,天然林土壤中无机磷(Pi)含量较高,有机磷(Po)含量较低,表明森林转化导致土壤中磷矿化程度降低。在ecm减少条件下,两种林型的树脂- pi含量均增加。ecm减少导致两种林型NaOH-Pi增加,NaOH-Po减少。ecm的减少使天然林的HCl-Pi含量降低了1 M,而人工林的HCl-Pi含量则增加了1 M。结构方程模型表明,在天然林中,挖沟直接影响ECM真菌的reads数,进而影响1 M HCl-Pi和resin-Pi的含量。在人工林中,沟槽对NaOH-Po和ECM读数有影响,其变化与剩余磷和树脂pi含量的变化有关。这些发现突出表明,ECM真菌对树脂-磷的利用以及动员初级矿物磷(1 M HCl-Pi)和缺乏有效磷的能力因天然林和人工林的土壤质量而异。
{"title":"Soil phosphorus dynamics and its correlation with ectomycorrhizal fungi following forest conversion in subtropical conifer (Picea asperata) forests","authors":"Lixia Wang ,&nbsp;Shiyu Song ,&nbsp;Huichao Li ,&nbsp;Yang Liu ,&nbsp;Lin Xu ,&nbsp;Han Li ,&nbsp;Chengming You ,&nbsp;Sining Liu ,&nbsp;Hongwei Xu ,&nbsp;Bo Tan ,&nbsp;Zhenfeng Xu ,&nbsp;Li Zhang ,&nbsp;Hans Lambers ,&nbsp;Douglas Godbold","doi":"10.1016/j.ejsobi.2025.103712","DOIUrl":"10.1016/j.ejsobi.2025.103712","url":null,"abstract":"<div><div>Ectomycorrhizal (ECM) fungi or their associated microbes play key roles in mobilizing phosphorus (P) from soil organic matter. Forest conversion often alters soil P availability. However, the correlation between P dynamics caused by forest conversion and changes in ECM fungi is not clear. To dress this issue, we create ECM-reduction (trenched) and ECM-intact (untrenched) conditions in the natural forest and plantation. We then measured soil microbial properties, fungal communities, and P fractions. Our results showed that the natural forest exhibited a higher proportion of inorganic phosphorus (Pi) and a lower proportion of organic phosphorus (Po) compared to the plantation, indicating that forest conversion resulted in a decrease in P mineralization. Under ECM-reduction conditions, resin-Pi contents increased in both forest types. ECM-reduction led to an increase in NaOH-Pi and a decrease in NaOH-Po in both forest types. However, ECM-reduction decreased the 1 M HCl-Pi content in the natural forest while increasing it in the plantation. Structural equation modeling revealed that in the natural forest, trenching directly affected the reads number of ECM fungi, which subsequently influenced 1 M HCl-Pi and resin-Pi contents. In the plantation, trenching impacted NaOH-Po and ECM reads number, which were associated with changes in residual-P and resin-Pi contents. These findings highlight that ECM fungi differ in their utilization of resin-Pi and their ability to mobilize primary mineral Pi (1 M HCl-Pi) and poorly-available P, depending on the soil quality of natural forests and plantations.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103712"},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosolids blended with edaphic supports mimic structural and biochemical features of natural soils and foster plant biomass growth 生物固体与土壤支撑物混合,模拟天然土壤的结构和生化特征,促进植物生物量的生长
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2025-01-24 DOI: 10.1016/j.ejsobi.2025.103709
Filipe Behrends Kraemer , Diana P. Wehrendt , Anabella Tobler , Daiana Sainz , Lucas Barbieri Oliveri , Linda Jungwirth , Paula Fontana , Cristian Weigandt , Patricia L. Fernández , Melisa Altina , Leandro D. Guerrero , Rodrigo Pontiggia , Leonardo Erijman
Biosolids can be blended with edaphic components to formulate customized soil mixes (Technosols), where specific nutrient levels, moisture content, and other factors are tailored to support plant growth. The aim of this work was to evaluate constructed Technosols regarding specific physical, rheological, and biochemical characteristics, as well as for their ability to meet the growth requirements of rye grass. Soil horizons A and C, and quarry waste, were examined both individually as controls and in binary combinations with biosolids, maintaining a ratio of 70:30 in a replicated pot experiment. After 35 days, half of the pots were seeded with ryegrass (Lolium perenne ssp). After 3,5 months, the following physical, chemical, and rheological properties were measured: bulk density; plastic limit; liquid limit; saturated hydraulic conductivity; aggregate stability, organic matter and total Kjeldahl nitrogen. Enzyme activities were determined using fluorogenic substrates, whereas total bacterial and fungal composition was assessed through qPCR and amplicon sequencing using respectively 16S rRNA gene and ITS gene primers. Biosolids-based Technosols exhibited soil-like behavior across various examined variables, such as aggregate stability, microbial community composition and the yield of harvested plant biomass. Changes in the physical and chemical characteristics of mixtures containing biosolids were accompanied by corresponding changes in enzyme activities, as well as by shifts in absolute bacterial and fungal abundance. Biosolid-based Technosols possess the capability to establish sustainable and effective aggregation conditions, maintaining satisfactory water retention levels, and fostering favorable microbiological and biochemical conditions to fulfill essential soil functions, including biomass production.
生物固体可以与土壤成分混合,形成定制的土壤混合物(Technosols),其中特定的营养水平、水分含量和其他因素是量身定制的,以支持植物生长。本工作的目的是评价构建的技术溶胶在特定的物理、流变学和生化特性,以及它们满足黑麦草生长要求的能力。土壤层A和层C以及采石场废物分别作为对照和与生物固体的二元组合进行了研究,在重复盆栽试验中保持70:30的比例。35天后,一半的盆栽播种黑麦草(Lolium perenne ssp)。3、5个月后,测量以下物理、化学和流变性能:堆积密度;塑性极限;液限;饱和水力导率;团聚体稳定性、有机质和总凯氏定氮。使用荧光底物测定酶活性,而通过qPCR和扩增子测序分别使用16S rRNA基因和ITS基因引物评估细菌和真菌的总组成。基于生物固体的技术溶胶在各种检测变量中表现出类似土壤的行为,如团聚体稳定性、微生物群落组成和收获的植物生物量的产量。含有生物固体的混合物的物理和化学特性的变化伴随着相应的酶活性的变化,以及绝对细菌和真菌丰度的变化。基于生物固体的技术溶胶能够建立可持续和有效的聚集条件,保持令人满意的保水水平,并培养有利的微生物和生化条件,以实现基本的土壤功能,包括生物质生产。
{"title":"Biosolids blended with edaphic supports mimic structural and biochemical features of natural soils and foster plant biomass growth","authors":"Filipe Behrends Kraemer ,&nbsp;Diana P. Wehrendt ,&nbsp;Anabella Tobler ,&nbsp;Daiana Sainz ,&nbsp;Lucas Barbieri Oliveri ,&nbsp;Linda Jungwirth ,&nbsp;Paula Fontana ,&nbsp;Cristian Weigandt ,&nbsp;Patricia L. Fernández ,&nbsp;Melisa Altina ,&nbsp;Leandro D. Guerrero ,&nbsp;Rodrigo Pontiggia ,&nbsp;Leonardo Erijman","doi":"10.1016/j.ejsobi.2025.103709","DOIUrl":"10.1016/j.ejsobi.2025.103709","url":null,"abstract":"<div><div>Biosolids can be blended with edaphic components to formulate customized soil mixes (Technosols), where specific nutrient levels, moisture content, and other factors are tailored to support plant growth. The aim of this work was to evaluate constructed Technosols regarding specific physical, rheological, and biochemical characteristics, as well as for their ability to meet the growth requirements of rye grass. Soil horizons A and C, and quarry waste, were examined both individually as controls and in binary combinations with biosolids, maintaining a ratio of 70:30 in a replicated pot experiment. After 35 days, half of the pots were seeded with ryegrass (<em>Lolium perenne</em> ssp). After 3,5 months, the following physical, chemical, and rheological properties were measured: bulk density; plastic limit; liquid limit; saturated hydraulic conductivity; aggregate stability, organic matter and total Kjeldahl nitrogen. Enzyme activities were determined using fluorogenic substrates, whereas total bacterial and fungal composition was assessed through qPCR and amplicon sequencing using respectively 16S rRNA gene and ITS gene primers. Biosolids-based Technosols exhibited soil-like behavior across various examined variables, such as aggregate stability, microbial community composition and the yield of harvested plant biomass. Changes in the physical and chemical characteristics of mixtures containing biosolids were accompanied by corresponding changes in enzyme activities, as well as by shifts in absolute bacterial and fungal abundance. Biosolid-based Technosols possess the capability to establish sustainable and effective aggregation conditions, maintaining satisfactory water retention levels, and fostering favorable microbiological and biochemical conditions to fulfill essential soil functions, including biomass production.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103709"},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire and clipping drive microbial fixation pathways in soil phosphorus and sulfur cycling in China's key karst region 中国喀斯特重点地区土壤磷硫循环的微生物固定途径
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2025-01-04 DOI: 10.1016/j.ejsobi.2024.103707
Ansa Rebi , Guan Wang , Irsa Ejaz , Trevan Flynn , Jasper Kanomanyanga , Tao Yang , Adnan Mustafa , Jinxing Zhou
Despite growing interest in nutrient cycling genes, the influence of fire and clipping on soil microbes, phosphorus (P) and sulfur (S) cycling genes in Karst landscape remain unclear yet are critical for soil fertility in vegetation restoration landscape. Microorganisms have developed various adaptive mechanisms to improve nutrient availability in the soil in response to various landscape disturbances. In this study, we analyzed soil microbial communities and their role in mediating 90 P and 46 S genes under five fire and clipping management practices including: high-intensity fire (HIF), low-intensity fire (LIF), clipping and fire (CF), clipping (CP), and undisturbed control (CK) in Jianshui research station, Yunan province, China. The results indicated no significant (p < 0.05) differences in the predominant bacterial and fungal genera among the treatments. For bacterial compositions such as Sphingomonas, the relative abundance was highest (0.069 %) in LIF. In contrast, the relative abundance of Micromonospora was lowest (0.012 %) in LIF compared to CK. In the case of the fungal genus, Rhizophagus and Trichophyton were highest (0.187, 0.128 %) in CP and LIF respectively compared to control. Bacterial diversity was highest in CF (4.69) following the CK (4.71) while Fungal diversity was highest in CP (3.33) following the CK. P cycling genes increased in LIF, particularly those related to organic phosphoester hydrolysis and transporters, while the other treatments showed no considerable changes. S cycling genes related to S mineralization and assimilation increased in HIF and LIF, respectively, with CF showing a higher presence of sulfide cycling genes. Network analysis of P and S cycling genes indicated that S interactions formed tighter clusters under fire and clipping treatments, while P interactions had more extensive connectivity among genes. These findings underscore the distinct roles and network behaviours of P and S and provide valuable insights into the microbial mechanisms that regulate P availability and S cycling in Karst soils treated with fire and clipping. This also sheds light on the taxonomy of the microbes involved in informed decision-making in karst landscape management.
尽管人们对养分循环基因的研究越来越感兴趣,但火灾和修剪对喀斯特景观土壤微生物、磷(P)和硫(S)循环基因的影响尚不清楚,但它们对植被恢复景观中土壤肥力的影响至关重要。微生物已经发展出各种适应机制来改善土壤中的养分有效性,以应对各种景观干扰。本研究以云南建水研究站为研究对象,分析了在高强度火灾(HIF)、低强度火灾(LIF)、刈割和火灾(CF)、刈割(CP)和无干扰对照(CK) 5种管理方式下,土壤微生物群落及其对90个P和46个S基因的调控作用。结果显示无显著差异(p <;不同处理间优势菌属和真菌属的差异(0.05)。对鞘氨单胞菌等细菌组成,LIF中相对丰度最高(0.069%)。而小单孢子菌的相对丰度在中试中最低(0.012%)。真菌属中,根食菌和毛食菌的CP和LIF分别高于对照(0.187、0.128%)。细菌多样性在对照处理后的CF组最高(4.69),真菌多样性在对照处理后的CP组最高(3.33)。P循环基因在LIF中增加,特别是与有机磷酸酯水解和转运体相关的基因,而其他处理没有明显变化。与硫矿化和同化相关的硫循环基因在HIF和LIF中分别增加,CF中硫循环基因的存在更高。P和S循环基因的网络分析表明,在火烧和剪枝处理下,S互作形成了更紧密的簇,而P互作在基因间具有更广泛的连接。这些发现强调了磷和硫的不同作用和网络行为,并为研究火剪喀斯特土壤中调控磷有效性和硫循环的微生物机制提供了有价值的见解。这也揭示了喀斯特景观管理中参与明智决策的微生物分类学。
{"title":"Fire and clipping drive microbial fixation pathways in soil phosphorus and sulfur cycling in China's key karst region","authors":"Ansa Rebi ,&nbsp;Guan Wang ,&nbsp;Irsa Ejaz ,&nbsp;Trevan Flynn ,&nbsp;Jasper Kanomanyanga ,&nbsp;Tao Yang ,&nbsp;Adnan Mustafa ,&nbsp;Jinxing Zhou","doi":"10.1016/j.ejsobi.2024.103707","DOIUrl":"10.1016/j.ejsobi.2024.103707","url":null,"abstract":"<div><div>Despite growing interest in nutrient cycling genes, the influence of fire and clipping on soil microbes, phosphorus (P) and sulfur (S) cycling genes in Karst landscape remain unclear yet are critical for soil fertility in vegetation restoration landscape. Microorganisms have developed various adaptive mechanisms to improve nutrient availability in the soil in response to various landscape disturbances. In this study, we analyzed soil microbial communities and their role in mediating 90 P and 46 S genes under five fire and clipping management practices including: high-intensity fire (HIF), low-intensity fire (LIF), clipping and fire (CF), clipping (CP), and undisturbed control (CK) in Jianshui research station, Yunan province, China. The results indicated no significant (p &lt; 0.05) differences in the predominant bacterial and fungal genera among the treatments. For bacterial compositions such as Sphingomonas, the relative abundance was highest (0.069 %) in LIF. In contrast, the relative abundance of Micromonospora was lowest (0.012 %) in LIF compared to CK. In the case of the fungal genus, Rhizophagus and Trichophyton were highest (0.187, 0.128 %) in CP and LIF respectively compared to control. Bacterial diversity was highest in CF (4.69) following the CK (4.71) while Fungal diversity was highest in CP (3.33) following the CK. P cycling genes increased in LIF, particularly those related to organic phosphoester hydrolysis and transporters, while the other treatments showed no considerable changes. S cycling genes related to S mineralization and assimilation increased in HIF and LIF, respectively, with CF showing a higher presence of sulfide cycling genes. Network analysis of P and S cycling genes indicated that S interactions formed tighter clusters under fire and clipping treatments, while P interactions had more extensive connectivity among genes. These findings underscore the distinct roles and network behaviours of P and S and provide valuable insights into the microbial mechanisms that regulate P availability and S cycling in Karst soils treated with fire and clipping. This also sheds light on the taxonomy of the microbes involved in informed decision-making in karst landscape management.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103707"},"PeriodicalIF":3.7,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143152989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warmer summers have the potential to affect food security by increasing the prevalence and activity of Actinobacteria 温暖的夏季有可能通过增加放线菌的流行和活性来影响粮食安全
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2024-12-31 DOI: 10.1016/j.ejsobi.2024.103708
Yuanyuan Bao , Jan Dolfing , Zhiying Guo , Jie Liu , Xianzhang Pan , Xiaodan Cui , Yuanyuan Wang , Yang Jin , Lixia Zhang , Ruirui Chen , Xin Li , Youzhi Feng
Climate warming impacts agricultural ecosystems in an unpredictable manner. Below-ground microbes are pivotal for aboveground productivity, but their influences on crop productivity in a warming climate are unknown. We conducted a regional-scale field survey in 253 rice‒wheat rotation systems using bacterial 16S amplicon sequencing and satellite-derived crop net primary productivity (NPP) data to investigate the relationships between soil bacteria and crop NPP under different temperatures. Actinobacteria were identified as the main driver of crop NPP, accounting for 4.2 % of the variation, with summer warming accounting for 11.9 % of the increase in their relative abundance. Summer warming resulted in an increase in antibiotic production genes within Actinobacteria, potentially reducing crop productivity by inhibiting seed germination and root elongation and by suppressing plant growth-promoting microorganisms. Taken together, our study indicates that warmer summers are expected to increase the relative abundance of soil Actinobacteria in rice-wheat rotation systems, which will negatively impact crop NPP due to their production of antibiotics that suppress beneficial plant microbes and/or inhibit crop seed germination and root elongation.
气候变暖以不可预测的方式影响农业生态系统。地下微生物对地上生产力至关重要,但它们在气候变暖的情况下对作物生产力的影响尚不清楚。利用细菌16S扩增子测序和卫星获取的作物净初级生产力(NPP)数据,对253个水稻-小麦轮作系统进行了区域尺度的实地调查,探讨了不同温度下土壤细菌与作物净初级生产力(NPP)的关系。放线菌是作物NPP的主要驱动因子,占变化量的4.2%,其中夏季变暖占放线菌相对丰度增加的11.9%。夏季变暖导致放线菌内抗生素生产基因的增加,可能通过抑制种子发芽和根伸长以及抑制植物生长促进微生物来降低作物产量。综上所述,我们的研究表明,温暖的夏季预计会增加稻麦轮作系统中土壤放线菌的相对丰度,这将对作物NPP产生负面影响,因为它们产生的抗生素会抑制有益植物微生物和/或抑制作物种子发芽和根系伸长。
{"title":"Warmer summers have the potential to affect food security by increasing the prevalence and activity of Actinobacteria","authors":"Yuanyuan Bao ,&nbsp;Jan Dolfing ,&nbsp;Zhiying Guo ,&nbsp;Jie Liu ,&nbsp;Xianzhang Pan ,&nbsp;Xiaodan Cui ,&nbsp;Yuanyuan Wang ,&nbsp;Yang Jin ,&nbsp;Lixia Zhang ,&nbsp;Ruirui Chen ,&nbsp;Xin Li ,&nbsp;Youzhi Feng","doi":"10.1016/j.ejsobi.2024.103708","DOIUrl":"10.1016/j.ejsobi.2024.103708","url":null,"abstract":"<div><div>Climate warming impacts agricultural ecosystems in an unpredictable manner. Below-ground microbes are pivotal for aboveground productivity, but their influences on crop productivity in a warming climate are unknown. We conducted a regional-scale field survey in 253 rice‒wheat rotation systems using bacterial 16S amplicon sequencing and satellite-derived crop net primary productivity (NPP) data to investigate the relationships between soil bacteria and crop NPP under different temperatures. <em>Actinobacteria</em> were identified as the main driver of crop NPP, accounting for 4.2 % of the variation, with summer warming accounting for 11.9 % of the increase in their relative abundance. Summer warming resulted in an increase in antibiotic production genes within <em>Actinobacteria</em>, potentially reducing crop productivity by inhibiting seed germination and root elongation and by suppressing plant growth-promoting microorganisms. Taken together, our study indicates that warmer summers are expected to increase the relative abundance of soil <em>Actinobacteria</em> in rice-wheat rotation systems, which will negatively impact crop NPP due to their production of antibiotics that suppress beneficial plant microbes and/or inhibit crop seed germination and root elongation.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103708"},"PeriodicalIF":3.7,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collembola–Myxomycetes relationships: Spore feeding and coexistence on dead trees 线虫与黏菌的关系:孢子取食及在死树上的共存
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2024-12-28 DOI: 10.1016/j.ejsobi.2024.103705
Michiko Yano , Taizo Nakamori
Dead trees in forests are home to several organisms interacting with each other. However, research on the interactions between Myxomycetes and other organisms has not progressed. This study investigated the interactions between Myxomycetes, which depends on dead trees in forests, and Collembola, which visits their fruiting bodies. It was hypothesized that Collembola may have viable myxomycetes spores inside and outside their bodies and experiments were conducted to determine whether these spores would germinate. The Myxomycetes families Cribrariaceae and Trichiaceae were collected from the study site and Collembola (Isotomidae) were extracted from the fruiting bodies. We waited for the Collembola to excrete and molt, cultured their feces and exuviae separately, observed germination from the spores, and calculated the percentage germination. Myxomycete spores were found in both feces and exuviae. This result suggests an interaction in which Myxomycetes provides fruiting bodies and spores as food for Collembola, and Collembola not only feed on them but also play a role in their dispersal. This study is significant considering it clarifies part of the interaction between Collembola and Myxomycetes. This study applied a novel approach, using a culture method with double-sided tape and slide glass for the long-term culture of feces and exuviae. This study demonstrated the potential for Myxomycetes to disperse spores by utilizing the endozoochory and epizoochory of Collembola. This study discusses the effectiveness of the spore dispersal of Myxomycetes via Collembola.
森林里的枯树是几种相互作用的生物的家园。然而,黏菌与其他生物相互作用的研究尚未取得进展。本研究调查了黏菌与线虫之间的相互作用,黏菌依赖于森林中的死树,线虫会访问它们的子实体。据推测,弹珠虫体内和体外可能有活的黏菌孢子,并进行了实验以确定这些孢子是否会发芽。从研究地点收集到黏菌科Cribrariaceae和Trichiaceae,并从子实体中提取了Collembola (Isotomidae)。等待弹虫排泄和蜕皮,分别培养其粪便和蜕皮,观察孢子萌发,计算萌发率。在粪便和汗液中均发现黏菌孢子。这表明黏菌之间存在着相互作用,黏菌为弹线虫提供子实体和孢子作为食物,弹线虫不仅以黏菌为食,而且在黏菌的传播中起着一定的作用。该研究阐明了弹线虫与黏菌之间的部分相互作用,具有重要意义。本研究采用了一种新颖的方法,采用双面胶带和玻片的培养方法对粪便和渗出液进行长期培养。本研究证明了黏菌利用线虫的内窥镜和外窥镜传播孢子的潜力。本研究探讨了黏菌通过弹体传播孢子的有效性。
{"title":"Collembola–Myxomycetes relationships: Spore feeding and coexistence on dead trees","authors":"Michiko Yano ,&nbsp;Taizo Nakamori","doi":"10.1016/j.ejsobi.2024.103705","DOIUrl":"10.1016/j.ejsobi.2024.103705","url":null,"abstract":"<div><div>Dead trees in forests are home to several organisms interacting with each other. However, research on the interactions between Myxomycetes and other organisms has not progressed. This study investigated the interactions between Myxomycetes, which depends on dead trees in forests, and Collembola, which visits their fruiting bodies. It was hypothesized that Collembola may have viable myxomycetes spores inside and outside their bodies and experiments were conducted to determine whether these spores would germinate. The Myxomycetes families Cribrariaceae and Trichiaceae were collected from the study site and Collembola (Isotomidae) were extracted from the fruiting bodies. We waited for the Collembola to excrete and molt, cultured their feces and exuviae separately, observed germination from the spores, and calculated the percentage germination. Myxomycete spores were found in both feces and exuviae. This result suggests an interaction in which Myxomycetes provides fruiting bodies and spores as food for Collembola, and Collembola not only feed on them but also play a role in their dispersal. This study is significant considering it clarifies part of the interaction between Collembola and Myxomycetes. This study applied a novel approach, using a culture method with double-sided tape and slide glass for the long-term culture of feces and exuviae. This study demonstrated the potential for Myxomycetes to disperse spores by utilizing the endozoochory and epizoochory of Collembola. This study discusses the effectiveness of the spore dispersal of Myxomycetes via Collembola.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103705"},"PeriodicalIF":3.7,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of heavy metal pollution on soil microorganisms: Influence of soil physicochemical properties. A systematic review 重金属污染对土壤微生物的影响:土壤理化性质的影响系统回顾
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2024-12-25 DOI: 10.1016/j.ejsobi.2024.103706
Claudia Campillo-Cora , Andrés Rodríguez-Seijo , Paula Pérez-Rodríguez , David Fernández-Calviño , Vanesa Santás-Miguel
This review examines the complex interaction between heavy metals and soil microorganisms, focusing on five common heavy metals (HM) (chromium -Cr-, copper -Cu-, nickel -Ni-, lead -Pb-, and zinc -Zn-) in polluted areas worldwide. The systematic review was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The literature selection procedure involved searching four databases (Web of Science, Scopus, Google Scholar, and PubMed) with a variety of search queries and inclusion and exclusion criteria. As a result of the review, 106 scientific articles that addressed Cr, Cu, Ni, Pb and/or Zn effect on soil microorganisms between 2018 and 2022 were identified. Soil microorganisms, crucial for soil functions/functioning, are impacted by heavy metal pollution, affecting essential functions such as nutrient cycling, organic matter cycling, and carbon sequestration. Various microbial properties (microbial activity -including enzymatic activity-, microbial community composition/diversity, microbial biomass/abundance), reflecting heavy metal effects, show diverse microbial responses influenced by both heavy metal pollution and soil properties (soil pH, organic matter content, texture). Although extensive research has been conducted in this field, further studies are needed to better understand the intricate relationship between heavy metal (HM) pollution, soil microbial responses, and soil properties influence. This review explores the most common methodologies and their main challenges and underscores the need for methodologies to specifically assess HM toxicity. Understanding these details is essential for developing effective strategies to mitigate the adverse effects of HM pollution on soil ecosystems.
本文综述了重金属与土壤微生物之间的复杂相互作用,重点介绍了世界范围内污染地区常见的五种重金属(铬- cr -、铜- cu -、镍- ni -、铅- pb -和锌- zn -)。系统评价按照PRISMA(系统评价和荟萃分析首选报告项目)指南进行。文献选择过程包括搜索四个数据库(Web of Science、Scopus、b谷歌Scholar和PubMed),并提供各种搜索查询和纳入和排除标准。结果,在2018年至2022年期间,确定了106篇关于Cr、Cu、Ni、Pb和/或Zn对土壤微生物影响的科学文章。土壤微生物是土壤功能的重要组成部分,重金属污染对土壤的养分循环、有机质循环、固碳等重要功能产生影响。反映重金属效应的各种微生物特性(微生物活性-包括酶活性-、微生物群落组成/多样性、微生物生物量/丰度)在重金属污染和土壤特性(土壤pH、有机质含量、质地)的影响下表现出不同的微生物响应。虽然在这一领域已经进行了广泛的研究,但需要进一步的研究来更好地了解重金属污染、土壤微生物反应和土壤性质影响之间的复杂关系。本综述探讨了最常见的方法及其主要挑战,并强调需要专门评估HM毒性的方法。了解这些细节对于制定有效的策略以减轻HM污染对土壤生态系统的不利影响至关重要。
{"title":"Effect of heavy metal pollution on soil microorganisms: Influence of soil physicochemical properties. A systematic review","authors":"Claudia Campillo-Cora ,&nbsp;Andrés Rodríguez-Seijo ,&nbsp;Paula Pérez-Rodríguez ,&nbsp;David Fernández-Calviño ,&nbsp;Vanesa Santás-Miguel","doi":"10.1016/j.ejsobi.2024.103706","DOIUrl":"10.1016/j.ejsobi.2024.103706","url":null,"abstract":"<div><div>This review examines the complex interaction between heavy metals and soil microorganisms, focusing on five common heavy metals (HM) (chromium -Cr-, copper -Cu-, nickel -Ni-, lead -Pb-, and zinc -Zn-) in polluted areas worldwide. The systematic review was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The literature selection procedure involved searching four databases (Web of Science, Scopus, Google Scholar, and PubMed) with a variety of search queries and inclusion and exclusion criteria. As a result of the review, 106 scientific articles that addressed Cr, Cu, Ni, Pb and/or Zn effect on soil microorganisms between 2018 and 2022 were identified. Soil microorganisms, crucial for soil functions/functioning, are impacted by heavy metal pollution, affecting essential functions such as nutrient cycling, organic matter cycling, and carbon sequestration. Various microbial properties (microbial activity -including enzymatic activity-, microbial community composition/diversity, microbial biomass/abundance), reflecting heavy metal effects, show diverse microbial responses influenced by both heavy metal pollution and soil properties (soil pH, organic matter content, texture). Although extensive research has been conducted in this field, further studies are needed to better understand the intricate relationship between heavy metal (HM) pollution, soil microbial responses, and soil properties influence. This review explores the most common methodologies and their main challenges and underscores the need for methodologies to specifically assess HM toxicity. Understanding these details is essential for developing effective strategies to mitigate the adverse effects of HM pollution on soil ecosystems.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103706"},"PeriodicalIF":3.7,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Legacy effects of grazing and nitrogen fertilization on soil carbon, nitrogen and phosphorus in an alpine meadow on the Qinghai-Tibetan Plateau 放牧与施氮对青藏高原高寒草甸土壤碳、氮、磷的影响
IF 3.7 2区 农林科学 Q1 ECOLOGY Pub Date : 2024-12-10 DOI: 10.1016/j.ejsobi.2024.103704
Lan Li , Xiong Zhao He , Yi Sun , Tianhao Xiao , Yang Liu , Fujiang Hou
Increasing soil carbon (C) and nitrogen (N) storage can help mitigate climate change and sustain soil fertility. Changes in herbivore and anthropogenic nutrient enrichment intensities can lead to dramatic shifts in the plant and microbial communities, soil organic carbon (SOC) and nutrient dynamics. However, the legacy effects of grazing and N enrichment on the biogeochemical processes remain unclear. Here, we conducted a 6-year rotational grazing (Stocking rates: 0, 8 and 16 sheep ha−1) and 4-year N-addition (N addition levels: 0, 50, 100 and 200 kg N ha−1 yr−1) experiment to investigate how soil C, N and phosphorus (P) components respond to the legacy effects of grazing and N fertilization after a 3-year cessation of grazing and N addition treatments in an alpine meadow on the Qinghai-Tibetan Plateau (QTP). We show that previous grazing significantly increased soil total nitrogen (STN), slightly increased SOC and decreased soil total phosphorus (STP); while previous N fertilization significantly decreased SOC, but it did not significantly alter STN and STP. Previous grazing at low stocking rates (≤ 8 sheep ha−1) might amplify the negative legacy effects of N fertilization on SOC, while a higher stocking rate would weaken the negative impacts of previous N fertilization on SOC. The interactive and synergistic impacts of historical grazing and N fertilization induced a significantly negative effect on STP. Previous N fertilization decreased soil microbial carbon (MBC) and increased soil available N:P, resulting in the reduction of SOC. The increase in plant diversity caused by previous grazing increased SOC, which counteracted the negative effects of increasing bacterial diversity. Previous grazing-induced decreasing bacterial community heterogeneity may lead to increased STN. Although previous grazing-induced increases in soil moisture and soil nutrient availability may have positive effects on STP, previous grazing-induced negative effects on STP may exceed those positive effects. Therefore, the legacy effects of grazing could be beneficial for improving soil C and N, but may increase the risk of soil P loss in the short term, while residual exogenous N could pose a detrimental effect on C storage over time. Reintroducing grazing and/or P addition may be an appropriate choice to offset the adverse consequence of N deposition in the context of global change. Our findings suggest that the stocking rate at about 8 sheep ha−1 could be a suitable grassland management technique for soil fertility sequestration and mitigating the negative influences of residual exogenous N in the QTP.
增加土壤碳(C)和氮(N)储量有助于减缓气候变化和维持土壤肥力。草食和人为养分富集强度的变化会导致植物和微生物群落、土壤有机碳(SOC)和养分动态的剧烈变化。然而,放牧和氮富集对生物地球化学过程的遗留效应尚不清楚。本研究以青藏高原高寒草甸为研究对象,进行了6年轮牧(放养率分别为0、8和16羊)和4年N添加(N添加水平分别为0、50、100和200 kg N ha−1年−1)试验,研究停牧3年后土壤C、N和磷(P)组分对放牧和N施肥遗留效应的响应。结果表明:以往的放牧显著提高了土壤全氮(STN),略微提高了土壤有机碳(SOC),降低了土壤全磷(STP);前施氮肥显著降低了土壤有机碳含量,但对STN和STP的影响不显著。以往低载畜率(≤8羊/ ha - 1)放牧可能会放大氮肥对有机碳的负遗留效应,而较高的载畜率则会减弱以往氮肥对有机碳的负遗留效应。历史放牧和氮肥的交互和协同效应对植物STP产生了显著的负向影响。前施氮肥降低了土壤微生物碳(MBC),增加了土壤有效氮磷,导致土壤有机碳(SOC)减少。以往放牧引起的植物多样性增加增加了土壤有机碳,抵消了细菌多样性增加的负面影响。先前放牧导致的细菌群落异质性降低可能导致STN增加。虽然以往放牧引起的土壤水分和土壤养分有效性的增加可能对STP有积极影响,但以往放牧引起的STP的负面影响可能超过这些积极影响。因此,放牧的遗留效应可能有利于改善土壤C和N,但可能在短期内增加土壤P损失的风险,而外源残余N可能对长期的C储存造成不利影响。在全球变化的背景下,重新引入放牧和/或磷添加可能是抵消氮沉降不利影响的适当选择。研究结果表明,8羊/ ha - 1左右的放养率可能是土壤肥力封存和减轻QTP中外源残余氮负面影响的合适草地管理技术。
{"title":"Legacy effects of grazing and nitrogen fertilization on soil carbon, nitrogen and phosphorus in an alpine meadow on the Qinghai-Tibetan Plateau","authors":"Lan Li ,&nbsp;Xiong Zhao He ,&nbsp;Yi Sun ,&nbsp;Tianhao Xiao ,&nbsp;Yang Liu ,&nbsp;Fujiang Hou","doi":"10.1016/j.ejsobi.2024.103704","DOIUrl":"10.1016/j.ejsobi.2024.103704","url":null,"abstract":"<div><div>Increasing soil carbon (C) and nitrogen (N) storage can help mitigate climate change and sustain soil fertility. Changes in herbivore and anthropogenic nutrient enrichment intensities can lead to dramatic shifts in the plant and microbial communities, soil organic carbon (SOC) and nutrient dynamics. However, the legacy effects of grazing and N enrichment on the biogeochemical processes remain unclear. Here, we conducted a 6-year rotational grazing (Stocking rates: 0, 8 and 16 sheep ha<sup>−1</sup>) and 4-year N-addition (N addition levels: 0, 50, 100 and 200 kg N ha<sup>−1</sup> yr<sup>−1</sup>) experiment to investigate how soil C, N and phosphorus (P) components respond to the legacy effects of grazing and N fertilization after a 3-year cessation of grazing and N addition treatments in an alpine meadow on the Qinghai-Tibetan Plateau (QTP). We show that previous grazing significantly increased soil total nitrogen (STN), slightly increased SOC and decreased soil total phosphorus (STP); while previous N fertilization significantly decreased SOC, but it did not significantly alter STN and STP. Previous grazing at low stocking rates (≤ 8 sheep ha<sup>−1</sup>) might amplify the negative legacy effects of N fertilization on SOC, while a higher stocking rate would weaken the negative impacts of previous N fertilization on SOC. The interactive and synergistic impacts of historical grazing and N fertilization induced a significantly negative effect on STP. Previous N fertilization decreased soil microbial carbon (MBC) and increased soil available N:P, resulting in the reduction of SOC. The increase in plant diversity caused by previous grazing increased SOC, which counteracted the negative effects of increasing bacterial diversity. Previous grazing-induced decreasing bacterial community heterogeneity may lead to increased STN. Although previous grazing-induced increases in soil moisture and soil nutrient availability may have positive effects on STP, previous grazing-induced negative effects on STP may exceed those positive effects. Therefore, the legacy effects of grazing could be beneficial for improving soil C and N, but may increase the risk of soil P loss in the short term, while residual exogenous N could pose a detrimental effect on C storage over time. Reintroducing grazing and/or P addition may be an appropriate choice to offset the adverse consequence of N deposition in the context of global change. Our findings suggest that the stocking rate at about 8 sheep ha<sup>−1</sup> could be a suitable grassland management technique for soil fertility sequestration and mitigating the negative influences of residual exogenous N in the QTP.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103704"},"PeriodicalIF":3.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Soil Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1