Pub Date : 2024-08-30DOI: 10.1016/j.fbp.2024.08.016
Li Luo , Mingda Guo , Deyu Zhang , Yang Hu , Tianyou Cui , Mengqian Zhao , Jian Yin , Xuwei Long
Acid-induced precipitation (AIP) is the most efficient approach for isolation of rhamnolipids (RLs), while it does not work at certain cases. Therefore, for certain specific fermentation processes, efficient and low-cost separation of RLs remains a challenge. In this study, an advanced AIP process based on heat treatment was developed to efficiently isolate RLs from a fermentation broth where RLs were unable to precipitate. Over 97 % of RLs with purity of 90.8 % were recovered after treatment at 120 °C for 10 min at a pH below 4. The involved mechanism might be related to that heat treatment at pH below 4 results in the degradation of certain components in broth that interfere with the RLs precipitation, thus no longer affecting the precipitation performance of RLs at acidic conditions. Moreover, the obtained RLs manifested well-maintained surface and emulsification activities. It can reduce the surface tension of water to approximately 29 mN/m at concentration of 65 mg/L, and the emulsification index was 72–80 % against varied types of oil. The approach exhibited superior performance compared to regular AIP processes, demonstrating excellent universality in real applications. However, more systematic research needs to focus on clarifying the interfering component which should be the main limitation of the present study.
{"title":"Efficient isolation of rhamnolipids from fermentation broth via an advanced acid-induced precipitation process with heat treatment","authors":"Li Luo , Mingda Guo , Deyu Zhang , Yang Hu , Tianyou Cui , Mengqian Zhao , Jian Yin , Xuwei Long","doi":"10.1016/j.fbp.2024.08.016","DOIUrl":"10.1016/j.fbp.2024.08.016","url":null,"abstract":"<div><p>Acid-induced precipitation (AIP) is the most efficient approach for isolation of rhamnolipids (RLs), while it does not work at certain cases. Therefore, for certain specific fermentation processes, efficient and low-cost separation of RLs remains a challenge. In this study, an advanced AIP process based on heat treatment was developed to efficiently isolate RLs from a fermentation broth where RLs were unable to precipitate. Over 97 % of RLs with purity of 90.8 % were recovered after treatment at 120 °C for 10 min at a pH below 4. The involved mechanism might be related to that heat treatment at pH below 4 results in the degradation of certain components in broth that interfere with the RLs precipitation, thus no longer affecting the precipitation performance of RLs at acidic conditions. Moreover, the obtained RLs manifested well-maintained surface and emulsification activities. It can reduce the surface tension of water to approximately 29 mN/m at concentration of 65 mg/L, and the emulsification index was 72–80 % against varied types of oil. The approach exhibited superior performance compared to regular AIP processes, demonstrating excellent universality in real applications. However, more systematic research needs to focus on clarifying the interfering component which should be the main limitation of the present study.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 52-61"},"PeriodicalIF":3.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Food production is a major contributor to greenhouse gas emissions and biodiversity loss, highlighting the need for a comprehensive approach to identify and reduce emissions. Efficient energy use is critical, alongside the adoption of low-carbon technologies that help agriculture and food processing adapt to climate change. Carbon footprint (CF) analysis is a key tool for assessing the environmental impact of food production and distribution, requiring a thorough evaluation of each product's life cycle from production to consumption. This study focused on the sugar production CF in three Polish plants, examining technological processes and creating unit process diagrams of the production cycle. This analysis led to the development of a database to calculate the CF based on production volume. The determined CF was 0.14–0.27 kg CO2eq/kg, and the average CFav: for plant 1–0.18; for plant 2–0.19; for plant 3–0.19 kg CO2eq/kg. Continuous monitoring is essential, allowing production practices to adapt to changing conditions and ensuring quick responses to sustainability needs. Reducing the sugar production CF involves several strategies, including adopting sustainable cultivation practices, optimizing production processes, using renewable energy sources, improving transportation efficiency, and minimizing waste. Together, these measures promote more environmentally responsible sugar production. By prioritizing sustainability and embracing innovative solutions, the food industry can significantly reduce its environmental impact, meeting the challenges of climate change and biodiversity loss.
{"title":"Carbon footprint analysis of sugar production in Poland","authors":"Magdalena Wróbel-Jędrzejewska, Łukasz Przybysz, Ewelina Włodarczyk","doi":"10.1016/j.fbp.2024.08.014","DOIUrl":"10.1016/j.fbp.2024.08.014","url":null,"abstract":"<div><p>Food production is a major contributor to greenhouse gas emissions and biodiversity loss, highlighting the need for a comprehensive approach to identify and reduce emissions. Efficient energy use is critical, alongside the adoption of low-carbon technologies that help agriculture and food processing adapt to climate change. Carbon footprint (CF) analysis is a key tool for assessing the environmental impact of food production and distribution, requiring a thorough evaluation of each product's life cycle from production to consumption. This study focused on the sugar production CF in three Polish plants, examining technological processes and creating unit process diagrams of the production cycle. This analysis led to the development of a database to calculate the CF based on production volume. The determined CF was 0.14–0.27 kg CO<sub>2eq</sub>/kg, and the average CF<sub>av</sub>: for plant 1–0.18; for plant 2–0.19; for plant 3–0.19 kg CO<sub>2eq</sub>/kg. Continuous monitoring is essential, allowing production practices to adapt to changing conditions and ensuring quick responses to sustainability needs. Reducing the sugar production CF involves several strategies, including adopting sustainable cultivation practices, optimizing production processes, using renewable energy sources, improving transportation efficiency, and minimizing waste. Together, these measures promote more environmentally responsible sugar production. By prioritizing sustainability and embracing innovative solutions, the food industry can significantly reduce its environmental impact, meeting the challenges of climate change and biodiversity loss.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 88-94"},"PeriodicalIF":3.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960308524001627/pdfft?md5=d7b6b284a2cad99d54db987a97ae8071&pid=1-s2.0-S0960308524001627-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The escalating demand for economical and durable materials has propelled plastics into an indispensable facet of daily human life, dominating commercial and industrial sectors. The global plastic production of 1.1 billion tons by 2050 exacerbates concerns. The COVID-19 pandemic has further intensified the issue, reaching an alarming 0.3–0.4 billion tons annually. Urgent action is imperative to curtail the drastic environmental impact. Various strategies, particularly microbial involvement in plastic production and degradation, must be implemented to address this. Poly-3-Hydroxybutyrate (PHB) microbial polyesters present a promising alternative to conventional plastics because of their biodegradable nature, thus offering a sustainable solution to plastic pollution. PHBs are employed in divergent industries, including agriculture, medicine, nanotechnology, food, and tissue engineering. This comprehensive review addresses the gap in the literature by encompassing a wide range of topics related to PHBs, their associated enzymes, metabolic pathways, and applications. It also provides an in-depth analysis, highlighting the significance of diverse microbial communities in both the synthesis and degradation of biopolymers. Strategies for augmenting PHA production and leveraging waste products for circular economy initiatives are also discussed, emphasizing the need for innovative solutions to address the global plastic crisis.Top of Form This review highlights two critical strategies for tackling plastic pollution: introducing alternative materials like bioplastics and leveraging biological recycling with microbial assistance. Adopting bio-based circular economy strategies, implementing comprehensive 6 R waste management practices, strengthening plastic pollution regulations, and raising social awareness can significantly improve eco-friendly plastic waste management, diminish pollution, and enhance socio-economic conditions, thus benefiting economies worldwide.
{"title":"In search of poly-3-hydroxybutyrate (PHB): A comprehensive review unveiling applications and progress in fostering a sustainable bio-circular economy","authors":"Ishfaq Nabi Najar , Prayatna Sharma , Rohit Das , Krishnendu Mondal , Ashish Kumar Singh , Sonia Tamang , Palash Hazra , Nagendra Thakur , Rajendra Bhanwaria , Sumit G Gandhi , Vinod Kumar","doi":"10.1016/j.fbp.2024.08.011","DOIUrl":"10.1016/j.fbp.2024.08.011","url":null,"abstract":"<div><p>The escalating demand for economical and durable materials has propelled plastics into an indispensable facet of daily human life, dominating commercial and industrial sectors. The global plastic production of 1.1 billion tons by 2050 exacerbates concerns. The COVID-19 pandemic has further intensified the issue, reaching an alarming 0.3–0.4 billion tons annually. Urgent action is imperative to curtail the drastic environmental impact. Various strategies, particularly microbial involvement in plastic production and degradation, must be implemented to address this. Poly-3-Hydroxybutyrate (PHB) microbial polyesters present a promising alternative to conventional plastics because of their biodegradable nature, thus offering a sustainable solution to plastic pollution. PHBs are employed in divergent industries, including agriculture, medicine, nanotechnology, food, and tissue engineering. This comprehensive review addresses the gap in the literature by encompassing a wide range of topics related to PHBs, their associated enzymes, metabolic pathways, and applications. It also provides an in-depth analysis, highlighting the significance of diverse microbial communities in both the synthesis and degradation of biopolymers. Strategies for augmenting PHA production and leveraging waste products for circular economy initiatives are also discussed, emphasizing the need for innovative solutions to address the global plastic crisis.Top of Form This review highlights two critical strategies for tackling plastic pollution: introducing alternative materials like bioplastics and leveraging biological recycling with microbial assistance. Adopting bio-based circular economy strategies, implementing comprehensive 6 R waste management practices, strengthening plastic pollution regulations, and raising social awareness can significantly improve eco-friendly plastic waste management, diminish pollution, and enhance socio-economic conditions, thus benefiting economies worldwide.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 11-30"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.fbp.2024.08.013
Igor Severo Gonçalves , Telma Teixeira Franco , Marcus Bruno Soares Forte
Sugarcane straw is a residual which can be used to obtain bioproducts in a biorefinery. In this study, the pretreated biomass was used to produce both high added value products and bioenergy biomolecules from enzymatic hydrolysis by optimizing the operating conditions of the process. Cello-oligosaccharides (COS) release of 102.2 mg gbiomass−1 was obtained from 6 h of reaction, corresponding to a productivity of 16.6 mgCOS gbiomass−1 h−1 and a specific productivity of 3.3 mgCOS FPU−1 h−1 after pretreatment conditions optimization using mixture of ionic liquids (110 °C, 35 % w w−1 water content, and 15 % w w−1 [Mea][Hex]). This study also developed a one-step process integrating two important operations involved in the pretreatment of lignocellulosic biomasses named deacetylation and lignin removal. The method described can be used for fermentable sugars (cellulose digestibility of 88 %) and oligosaccharides production under optimized pretreatment conditions using a mixture of protic ionic liquids with gains in productivity, cost and sustainability.
{"title":"Cello-oligosaccharides and fermentable sugars production: An integrated deacetylation-delignification process to biomass pretreatment by using a mixture of protic ionic liquids","authors":"Igor Severo Gonçalves , Telma Teixeira Franco , Marcus Bruno Soares Forte","doi":"10.1016/j.fbp.2024.08.013","DOIUrl":"10.1016/j.fbp.2024.08.013","url":null,"abstract":"<div><p>Sugarcane straw is a residual which can be used to obtain bioproducts in a biorefinery. In this study, the pretreated biomass was used to produce both high added value products and bioenergy biomolecules from enzymatic hydrolysis by optimizing the operating conditions of the process. Cello-oligosaccharides (COS) release of 102.2 mg g<sub>biomass</sub><sup>−1</sup> was obtained from 6 h of reaction, corresponding to a productivity of 16.6 mgCOS g<sub>biomass</sub><sup>−1</sup> h<sup>−1</sup> and a specific productivity of 3.3 mgCOS FPU<sup>−1</sup> h<sup>−1</sup> after pretreatment conditions optimization using mixture of ionic liquids (110 °C, 35 % w w<sup>−1</sup> water content, and 15 % w w<sup>−1</sup> [Mea][Hex]). This study also developed a one-step process integrating two important operations involved in the pretreatment of lignocellulosic biomasses named deacetylation and lignin removal. The method described can be used for fermentable sugars (cellulose digestibility of 88 %) and oligosaccharides production under optimized pretreatment conditions using a mixture of protic ionic liquids with gains in productivity, cost and sustainability.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 95-107"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are global concerns about the environmental, social, and economic consequences associated with the generation of food waste. To effectively address this challenge, and particularly to develop food waste valorisation approaches, it is necessary to acquire understanding of the physicochemical and biochemical characteristics of food waste. This study comprises a systematic overview and quantitative assessment of the characteristics of food waste biomass, and this was achieved through a comprehensive literature review. The resulting database encompasses the physicochemical, biochemical, and elemental composition of food waste. The study evaluates food waste variability, analyses correlations between components, and highlights patterns in composition. Overall, food waste is a rather variable material. Typology, collection source and geographical origin of food waste streams are the main contributing factors to variation in physicochemical, biochemical and elemental compositions of food waste, while collection season and storage temperature appear not to be contributing substantially to variation. A clear distinction between plant-based and animal-based food waste biomass can be observed with animal-matter enriched food waste having high contents of protein, lipid and ash, but a low starch content. On the other hand, plant-based food waste can be either high in lignin and low in starch or high in carbohydrates, starch and higher heating value. Fibre content appears an indicative parameter, distinguishing plant from animal enriched food waste, and correlating strongly with lignin-rich, starch-poor plant biomass. The heterogeneity of food waste biomass composition will create challenges in developing and scaling up appropriate food waste management. The current study shows that the analysis of specific food waste parameters, such as fibre content, can be used, to inform the choice of the most appropriate valorisation route.
{"title":"Food waste: analysis of the complex and variable composition of a promising feedstock for valorisation","authors":"T.A. Moonsamy , G. Rajauria , Anushree Priyadarshini , M.A.K. Jansen","doi":"10.1016/j.fbp.2024.08.012","DOIUrl":"10.1016/j.fbp.2024.08.012","url":null,"abstract":"<div><p>There are global concerns about the environmental, social, and economic consequences associated with the generation of food waste. To effectively address this challenge, and particularly to develop food waste valorisation approaches, it is necessary to acquire understanding of the physicochemical and biochemical characteristics of food waste. This study comprises a systematic overview and quantitative assessment of the characteristics of food waste biomass, and this was achieved through a comprehensive literature review. The resulting database encompasses the physicochemical, biochemical, and elemental composition of food waste. The study evaluates food waste variability, analyses correlations between components, and highlights patterns in composition. Overall, food waste is a rather variable material. Typology, collection source and geographical origin of food waste streams are the main contributing factors to variation in physicochemical, biochemical and elemental compositions of food waste, while collection season and storage temperature appear not to be contributing substantially to variation. A clear distinction between plant-based and animal-based food waste biomass can be observed with animal-matter enriched food waste having high contents of protein, lipid and ash, but a low starch content. On the other hand, plant-based food waste can be either high in lignin and low in starch or high in carbohydrates, starch and higher heating value. Fibre content appears an indicative parameter, distinguishing plant from animal enriched food waste, and correlating strongly with lignin-rich, starch-poor plant biomass. The heterogeneity of food waste biomass composition will create challenges in developing and scaling up appropriate food waste management. The current study shows that the analysis of specific food waste parameters, such as fibre content, can be used, to inform the choice of the most appropriate valorisation route.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 31-42"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960308524001597/pdfft?md5=0a50c6b9ef34d39a2aa4a7589a5b25a1&pid=1-s2.0-S0960308524001597-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.fbp.2024.08.007
Shimpy , Mahesh Kumar , Anil Kumar
Solar dryers present a clean and affordable solution to food wastage which is one of the biggest concerns of the world. The highest contribution of domestic sector to the global food waste and lack of researches on small-scale solar dryers have created a need to develop sustainable and low cost domestic solar dryers. The present research aims to develop and analyse the output behaviour of a beeswax-packed domestic solar dryer (BDSD) for intermittent bitter gourd drying. The drying kinetics of bitter gourd slices and thermal, economic, environmental and exergetic performances of the BDSD have been evaluated with varying sample masses for passive and active drying conditions. The average final moisture content of the bitter gourd slices for passive and active conditions were found to be 3.26 and 3.93 % (wb), respectively. Midilli-Kucuk model exhibited the strongest fit to the bitter gourd drying behaviour under both the drying conditions. The total moisture evaporation, heat transfer coefficients, thermal efficiency, specific moisture extraction rate, savings for dried bitter gourd slices drying, CO2 mitigation, carbon credit earned and exergy efficiency were found to increase while the drying rate, effective moisture diffusivity, specific energy consumption, costs for bitter gourd slices drying, payback period and energy payback time decreased as the sample mass increased under both drying conditions. The performance of the BDSD was found to be a linear function of sample mass under both drying conditions.
{"title":"Assessment of a beeswax-packed domestic solar dryer for sustainable bitter gourd drying: An experimental study","authors":"Shimpy , Mahesh Kumar , Anil Kumar","doi":"10.1016/j.fbp.2024.08.007","DOIUrl":"10.1016/j.fbp.2024.08.007","url":null,"abstract":"<div><p>Solar dryers present a clean and affordable solution to food wastage which is one of the biggest concerns of the world. The highest contribution of domestic sector to the global food waste and lack of researches on small-scale solar dryers have created a need to develop sustainable and low cost domestic solar dryers. The present research aims to develop and analyse the output behaviour of a beeswax-packed domestic solar dryer (BDSD) for intermittent bitter gourd drying. The drying kinetics of bitter gourd slices and thermal, economic, environmental and exergetic performances of the BDSD have been evaluated with varying sample masses for passive and active drying conditions. The average final moisture content of the bitter gourd slices for passive and active conditions were found to be 3.26 and 3.93 % (wb), respectively. Midilli-Kucuk model exhibited the strongest fit to the bitter gourd drying behaviour under both the drying conditions. The total moisture evaporation, heat transfer coefficients, thermal efficiency, specific moisture extraction rate, savings for dried bitter gourd slices drying, CO<sub>2</sub> mitigation, carbon credit earned and exergy efficiency were found to increase while the drying rate, effective moisture diffusivity, specific energy consumption, costs for bitter gourd slices drying, payback period and energy payback time decreased as the sample mass increased under both drying conditions. The performance of the BDSD was found to be a linear function of sample mass under both drying conditions.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 72-87"},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.fbp.2024.08.008
Filipe Maciel , Luís Machado , Joana Silva , Ricardo N. Pereira , António Vicente
Electric field technology has been highlighted as a promising strategy in the permeabilization of cell membranes and the corresponding bioactive release. In this work, aqueous and ethanolic suspensions of Pavlova gyrans were subjected to moderate electric fields (MEF) to promote rapid heating due to Ohmic Heating (OH) effect. Two approaches were tested: i) OH assisted extraction in a temperature range between 25 ºC and 85 ºC, and ii) OH pretreatment at 25 ºC and 55 ºC followed by solvent extraction. OH treatment at 55 ºC (performed in less than 10 s) in aqueous suspensions promoted a marked increase in the release of organic matter (2.1-fold), chlorophyll a (41.1-fold) and total carotenoids (56.6-fold) when compared to the freeze-thaw cycles (FTC ≈ 3 hours). OH-pretreated biomass subjected to a two-step passive extraction improved the release of proteins and chlorophylls over incubation (p < 0.05) when compared to untreated biomass. This procedure increased 2.2-, 3.9- and 31.9-fold the content of organic matter, protein and chlorophyll a, respectively, in comparison to the FTC procedure. This work presented the OH effect as a promising strategy for enhanced disruption and release of intracellular microalgae compounds.
{"title":"Effect of ohmic heating on the extraction of biocompounds from aqueous and ethanolic suspensions of Pavlova gyrans","authors":"Filipe Maciel , Luís Machado , Joana Silva , Ricardo N. Pereira , António Vicente","doi":"10.1016/j.fbp.2024.08.008","DOIUrl":"10.1016/j.fbp.2024.08.008","url":null,"abstract":"<div><p>Electric field technology has been highlighted as a promising strategy in the permeabilization of cell membranes and the corresponding bioactive release. In this work, aqueous and ethanolic suspensions of <em>Pavlova gyrans</em> were subjected to moderate electric fields (MEF) to promote rapid heating due to Ohmic Heating (OH) effect. Two approaches were tested: i) OH assisted extraction in a temperature range between 25 ºC and 85 ºC, and ii) OH pretreatment at 25 ºC and 55 ºC followed by solvent extraction. OH treatment at 55 ºC (performed in less than 10 s) in aqueous suspensions promoted a marked increase in the release of organic matter (2.1-fold), chlorophyll <em>a</em> (41.1-fold) and total carotenoids (56.6-fold) when compared to the freeze-thaw cycles (FTC ≈ 3 hours). OH-pretreated biomass subjected to a two-step passive extraction improved the release of proteins and chlorophylls over incubation (<em>p</em> < 0.05) when compared to untreated biomass. This procedure increased 2.2-, 3.9- and 31.9-fold the content of organic matter, protein and chlorophyll <em>a,</em> respectively, in comparison to the FTC procedure. This work presented the OH effect as a promising strategy for enhanced disruption and release of intracellular microalgae compounds.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 43-51"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960308524001561/pdfft?md5=45ba1c479d55a564cf26b65e23e7d5f7&pid=1-s2.0-S0960308524001561-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.fbp.2024.08.009
Sajad Karami , Mohammed A. AlRuzzi , Chandler D. Stafford , Sulaiman K. Matarneh , Luis J. Bastarrachea
This study compared beef jerky produced by conventional cooking and UV-A light dehydration. The analyses included the isopiestic method, colorimetric analysis, electron microscopy, infrared spectroscopy, and microbial inactivation studies. The primary criterion was a water activity (aw) value of < 0.85 to optimize UV-A dehydration time, taking 4.5 h to achieve this level. UV-A light dehydration resulted in significantly less browning compared to conventional cooking, yielding a duller, less red product (P < 0.05). Electron microscopy showed that UV-A light dehydration maintained a more uniform microstructure, while conventional cooking caused more structural deffects. Microbial inactivation studies demonstrated the antimicrobial effect of UV-A light by reducing accessible water (aw < 0.85). The hygroscopicity of UV-A light dehydrated jerky was similar to conventionally cooked jerky. Overall, UV-A light-dehydrated beef jerky had similar characteristics to conventionally cooked jerky but with notable differences that could appeal to specific consumer preferences.
{"title":"Conventionally cooked and UV-A light dehydrated beef jerky: Effects on physicochemical properties","authors":"Sajad Karami , Mohammed A. AlRuzzi , Chandler D. Stafford , Sulaiman K. Matarneh , Luis J. Bastarrachea","doi":"10.1016/j.fbp.2024.08.009","DOIUrl":"10.1016/j.fbp.2024.08.009","url":null,"abstract":"<div><p>This study compared beef jerky produced by conventional cooking and UV-A light dehydration. The analyses included the isopiestic method, colorimetric analysis, electron microscopy, infrared spectroscopy, and microbial inactivation studies. The primary criterion was a water activity (<em>a</em><sub><em>w</em></sub>) value of < 0.85 to optimize UV-A dehydration time, taking 4.5 h to achieve this level. UV-A light dehydration resulted in significantly less browning compared to conventional cooking, yielding a duller, less red product (<em>P</em> < 0.05). Electron microscopy showed that UV-A light dehydration maintained a more uniform microstructure, while conventional cooking caused more structural deffects. Microbial inactivation studies demonstrated the antimicrobial effect of UV-A light by reducing accessible water (<em>a</em><sub><em>w</em></sub> < 0.85). The hygroscopicity of UV-A light dehydrated jerky was similar to conventionally cooked jerky. Overall, UV-A light-dehydrated beef jerky had similar characteristics to conventionally cooked jerky but with notable differences that could appeal to specific consumer preferences.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"147 ","pages":"Pages 518-527"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.fbp.2024.08.006
Meltem Türkyılmaz , Fatmagül Hamzaoğlu , Mehmet Özkan
Effects of clarification with “tannase,” “tannase+lactonase,” “papain,” “aspartic protease” and “tannase+lactonase+papain” on defects (turbidity, sediment and color loss) and important constituents (phenolics, anthocyanins, proteins and amino acids) of pomegranate juice (PJ) were investigated. Lactonase [human-derived (H-PON-1 and H-PON-2) and rabbit-derived (R-PON-1, R-PON-2 and R-PON-3)] was used during juice clarification for the first time. Phenolics and amino acids were quantified by HPLC-DAD-MS and HPLC. After clarifications with “tannase (1 g/L)+R-PON-1 (0.33 mg/L)” and “tannase (1 g/L)+R-PON-1 (0.33 mg/L)+papain (10 mg/L)” at 30℃ for 90 min, sediment was completely eliminated during storage at 20℃ for a month. Among these treatments, “tannase+R-PON-1” provided the lowest turbidity formation rate. The most effective parameter to prevent sediment was the ratio of “prolamin to trigalloyl-HHDP-glucose-isomer-2” that should be ≥205.4 (r=–1.000). Moreover, “tannase+R-PON-1” caused 4.3 times lower turbidity than control group after storage. To retain low turbidity (≤10 NTU) during storage, galloyl-glucose-isomer and HHDP-galloyl-hexoside-3 should completely be removed from PJ and, punigluconin and trigalloyl-HHDP-glucose-isomer-2 contents should be ≤0.19 and ≤0.04 mg/L, respectively. Furthermore, “tannase+R-PON-1” provided a significant contribution to anthocyanin copigmentation. The most effective copigments in PJ were HHDP-galloyl-glucuronide, punigluconin, punicalagin-2, punicalagin-3, aspartic acid, glutamic acid and alanine. “Tannase+R-PON-1” is recommended to produce a high-quality PJ.
{"title":"A new enzymatic clarification method for pomegranate juice: Removal of defects and improvement of quality by tannase, lactonase and papain","authors":"Meltem Türkyılmaz , Fatmagül Hamzaoğlu , Mehmet Özkan","doi":"10.1016/j.fbp.2024.08.006","DOIUrl":"10.1016/j.fbp.2024.08.006","url":null,"abstract":"<div><p>Effects of clarification with “tannase,” “tannase+lactonase,” “papain,” “aspartic protease” and “tannase+lactonase+papain” on defects (turbidity, sediment and color loss) and important constituents (phenolics, anthocyanins, proteins and amino acids) of pomegranate juice (PJ) were investigated. Lactonase [human-derived (H-PON-1 and H-PON-2) and rabbit-derived (R-PON-1, R-PON-2 and R-PON-3)] was used during juice clarification for the first time. Phenolics and amino acids were quantified by HPLC-DAD-MS and HPLC. After clarifications with “tannase (1 g/L)+R-PON-1 (0.33 mg/L)” and “tannase (1 g/L)+R-PON-1 (0.33 mg/L)+papain (10 mg/L)” at 30℃ for 90 min, sediment was completely eliminated during storage at 20℃ for a month. Among these treatments, “tannase+R-PON-1” provided the lowest turbidity formation rate. The most effective parameter to prevent sediment was the ratio of “prolamin to trigalloyl-HHDP-glucose-isomer-2” that should be ≥205.4 (<em>r</em>=–1.000). Moreover, “tannase+R-PON-1” caused 4.3 times lower turbidity than control group after storage. To retain low turbidity (≤10 NTU) during storage, galloyl-glucose-isomer and HHDP-galloyl-hexoside-3 should completely be removed from PJ and, punigluconin and trigalloyl-HHDP-glucose-isomer-2 contents should be ≤0.19 and ≤0.04 mg/L, respectively. Furthermore, “tannase+R-PON-1” provided a significant contribution to anthocyanin copigmentation. The most effective copigments in PJ were HHDP-galloyl-glucuronide, punigluconin, punicalagin-2, punicalagin-3, aspartic acid, glutamic acid and alanine. “Tannase+R-PON-1” is recommended to produce a high-quality PJ.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"147 ","pages":"Pages 528-543"},"PeriodicalIF":3.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.fbp.2024.08.001
Kaiyue Wang, Yifan Wang, Xiumei Xi, Jinhang Lu, Yirong Wang, Peixin Zhao, Meng Cheng, Xiangyou Wang, Juan Wang
Complex cohesions were formed through electrostatic interactions between gelatin (GE) and gum arabic, sodium carboxymethyl cellulose, pectin, and sodium alginate (SA). Of them, GE and SA served as an ideal wall material for encapsulating oregano essential oil (OEO). Applying the composite coalescence method, we here generated unique encapsulated OEO microcapsules (EOMs) by using GE–SA as the microcapsule wall material and OEO as the core material. At a concentration of 1 % (w/v), a core-to-wall ratio of 1:2, a recoalescence reaction temperature of 45 °C, and an emulsifier concentration of 5 % (w/w), EOMs exhibited excellent performance. Under the optimal conditions, the prepared EOMs (average particle size: 78.389 μm) had a homogeneous and complete spherical structure. Freeze-dried EOMs had a high encapsulation efficiency (71.20 %) and payload (56.08 %). Fourier transform infrared spectroscopy unveiled the presence of electrostatic interactions between GE and SA. The OEO in the EOMs had higher thermal stability and more stable antioxidant properties than the free OEO. Furthermore, in aqueous, acidic, oily, and alcoholic environments, EOMs exhibited some degree of slow-release ability. Additionally, EOMs exhibited strong antibacterial properties, with effective inhibition of Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Curvularia lunata (C. lunata). Among them, the strongest inhibitory effect was on C. lunata. In summary, microcapsules prepared using GE–SA as a wall material had effectively improved OEO degradation-protecting, which enhanced the stability of OEO and controlled its antioxidant properties. Meanwhile, the microcapsules exhibited excellent antibacterial properties. This system exerted considerable potential in protecting the stability of essential oils and realizing slow release.
{"title":"Preparation and characterization of oregano essential oil microcapsules by gelatin/polysaccharide composite coagulation method","authors":"Kaiyue Wang, Yifan Wang, Xiumei Xi, Jinhang Lu, Yirong Wang, Peixin Zhao, Meng Cheng, Xiangyou Wang, Juan Wang","doi":"10.1016/j.fbp.2024.08.001","DOIUrl":"10.1016/j.fbp.2024.08.001","url":null,"abstract":"<div><p>Complex cohesions were formed through electrostatic interactions between gelatin (GE) and gum arabic, sodium carboxymethyl cellulose, pectin, and sodium alginate (SA). Of them, GE and SA served as an ideal wall material for encapsulating oregano essential oil (OEO). Applying the composite coalescence method, we here generated unique encapsulated OEO microcapsules (EOMs) by using GE–SA as the microcapsule wall material and OEO as the core material. At a concentration of 1 % (w/v), a core-to-wall ratio of 1:2, a recoalescence reaction temperature of 45 °C, and an emulsifier concentration of 5 % (w/w), EOMs exhibited excellent performance. Under the optimal conditions, the prepared EOMs (average particle size: 78.389 μm) had a homogeneous and complete spherical structure. Freeze-dried EOMs had a high encapsulation efficiency (71.20 %) and payload (56.08 %). Fourier transform infrared spectroscopy unveiled the presence of electrostatic interactions between GE and SA. The OEO in the EOMs had higher thermal stability and more stable antioxidant properties than the free OEO. Furthermore, in aqueous, acidic, oily, and alcoholic environments, EOMs exhibited some degree of slow-release ability. Additionally, EOMs exhibited strong antibacterial properties, with effective inhibition of <em>Escherichia coli</em> (<em>E. coil</em>), <em>Staphylococcus aureus</em> (<em>S. aureus</em>)<em>, and Curvularia lunata</em> (<em>C. lunata</em>)<em>.</em> Among them, the strongest inhibitory effect was on <em>C. lunata</em>. In summary, microcapsules prepared using GE–SA as a wall material had effectively improved OEO degradation-protecting, which enhanced the stability of OEO and controlled its antioxidant properties. Meanwhile, the microcapsules exhibited excellent antibacterial properties. This system exerted considerable potential in protecting the stability of essential oils and realizing slow release.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"147 ","pages":"Pages 495-506"},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}