Pub Date : 2022-03-13DOI: 10.1007/s13225-022-00500-5
N. Wijayawardene, A. Phillips, D. S. Pereira, D. Dai, A. Aptroot, J. S. Monteiro, Irina S Druzhinina, F. Cai, X. Fan, L. Selbmann, Claudia Coleine, R. Castañeda-Ruiz, M. Kukwa, A. Flakus, P. O. Fiuza, P. Kirk, Kunhiraman C. Rajesh Kumar, Ilesha S. leperuma Arachchi, N. Suwannarach, Li-Zhou Tang, T. Boekhout, Chen Shuhui Tan, R. Jayasinghe, M. Thines
{"title":"Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota)","authors":"N. Wijayawardene, A. Phillips, D. S. Pereira, D. Dai, A. Aptroot, J. S. Monteiro, Irina S Druzhinina, F. Cai, X. Fan, L. Selbmann, Claudia Coleine, R. Castañeda-Ruiz, M. Kukwa, A. Flakus, P. O. Fiuza, P. Kirk, Kunhiraman C. Rajesh Kumar, Ilesha S. leperuma Arachchi, N. Suwannarach, Li-Zhou Tang, T. Boekhout, Chen Shuhui Tan, R. Jayasinghe, M. Thines","doi":"10.1007/s13225-022-00500-5","DOIUrl":"https://doi.org/10.1007/s13225-022-00500-5","url":null,"abstract":"","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"114 1","pages":"463 - 490"},"PeriodicalIF":20.3,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47803657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01DOI: 10.1007/s13225-022-00504-1
I. Senanayake, D. Pem, Achala R. Rathnayaka, S. Wijesinghe, S. Tibpromma, D. Wanasinghe, R. Phookamsak, Nuwan D. Kularathnage, D. Gomdola, D. Harishchandra, L. Dissanayake, M. Xiang, A. H. Ekanayaka, E. McKenzie, K. Hyde, Hao-xing Zhang, N. Xie
{"title":"Correction to: Predicting global numbers of teleomorphic ascomycetes","authors":"I. Senanayake, D. Pem, Achala R. Rathnayaka, S. Wijesinghe, S. Tibpromma, D. Wanasinghe, R. Phookamsak, Nuwan D. Kularathnage, D. Gomdola, D. Harishchandra, L. Dissanayake, M. Xiang, A. H. Ekanayaka, E. McKenzie, K. Hyde, Hao-xing Zhang, N. Xie","doi":"10.1007/s13225-022-00504-1","DOIUrl":"https://doi.org/10.1007/s13225-022-00504-1","url":null,"abstract":"","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"114 1","pages":"279 - 279"},"PeriodicalIF":20.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46848143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-23DOI: 10.1007/s13225-022-00499-9
Kare Liimatainen, Jan T. Kim, Lisa Pokorny, Paul M. Kirk, Bryn Dentinger, Tuula Niskanen
Family Cortinariaceae currently includes only one genus, Cortinarius, which is the largest Agaricales genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus Cortinarius contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide Cortinarius have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family Cortinariaceae into ten genera—Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius, and Austrocortinarius—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of Stephanopus in suborder Agaricineae remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.
{"title":"Taming the beast: a revised classification of Cortinariaceae based on genomic data","authors":"Kare Liimatainen, Jan T. Kim, Lisa Pokorny, Paul M. Kirk, Bryn Dentinger, Tuula Niskanen","doi":"10.1007/s13225-022-00499-9","DOIUrl":"https://doi.org/10.1007/s13225-022-00499-9","url":null,"abstract":"<p>Family <i>Cortinariaceae</i> currently includes only one genus, <i>Cortinarius</i>, which is the largest <i>Agaricales</i> genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus <i>Cortinarius</i> contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide <i>Cortinarius</i> have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family <i>Cortinariaceae</i> into ten genera—<i>Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius,</i> and <i>Austrocortinarius</i>—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of <i>Stephanopus</i> in suborder <i>Agaricineae</i> remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"15 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-17DOI: 10.1007/s13225-022-00498-w
I. Senanayake, D. Pem, Achala R. Rathnayaka, S. Wijesinghe, S. Tibpromma, D. Wanasinghe, R. Phookamsak, Nuwan D. Kularathnage, D. Gomdola, D. Harishchandra, L. Dissanayake, M. Xiang, A. H. Ekanayaka, E. McKenzie, K. Hyde, Hao Zhang, N. Xie
{"title":"Predicting global numbers of teleomorphic ascomycetes","authors":"I. Senanayake, D. Pem, Achala R. Rathnayaka, S. Wijesinghe, S. Tibpromma, D. Wanasinghe, R. Phookamsak, Nuwan D. Kularathnage, D. Gomdola, D. Harishchandra, L. Dissanayake, M. Xiang, A. H. Ekanayaka, E. McKenzie, K. Hyde, Hao Zhang, N. Xie","doi":"10.1007/s13225-022-00498-w","DOIUrl":"https://doi.org/10.1007/s13225-022-00498-w","url":null,"abstract":"","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"114 1","pages":"237 - 278"},"PeriodicalIF":20.3,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41558501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-14DOI: 10.1007/s13225-021-00497-3
Mao-Qiang He, Rui-Lin Zhao, Dong-Mei Liu, Teodor T. Denchev, Dominik Begerow, Andrey Yurkov, Martin Kemler, Ana M. Millanes, Mats Wedin, A. R. McTaggart, Roger G. Shivas, Bart Buyck, Jie Chen, Alfredo Vizzini, Viktor Papp, Ivan V. Zmitrovich, Naveed Davoodian, Kevin D. Hyde
Fungi are eukaryotes that play essential roles in ecosystems. Among fungi, Basidiomycota is one of the major phyla with more than 40,000 described species. We review species diversity of Basidiomycota from five groups with different lifestyles or habitats: saprobic in grass/forest litter, wood-decaying, yeast-like, ectomycorrhizal, and plant parasitic. Case studies of Agaricus, Cantharellus, Ganoderma, Gyroporus, Russula, Tricholoma, and groups of lichenicolous yeast-like fungi, rust fungi, and smut fungi are used to determine trends in discovery of biodiversity. In each case study, the number of new species published during 2009–2020 is analysed to determine the rate of discovery. Publication rates differ between taxa and reflect different states of progress for species discovery in different genera. The results showed that lichenicolous yeast-like taxa had the highest publication rate for new species in the past two decades, and it is likely this trend will continue in the next decade. The species discovery rate of plant parasitic basidiomycetes was low in the past ten years, and remained constant in the past 50 years. We also found that the establishment of comprehensive and robust taxonomic systems based on a joint global initiative by mycologists could promote and standardize the recognition of taxa. We estimated that more than 54,000 species of Basidiomycota will be discovered by 2030, and estimate a total of 1.4–4.2 million species of Basidiomycota globally. These numbers illustrate a huge gap between the described and yet unknown diversity in Basidiomycota.
{"title":"Species diversity of Basidiomycota","authors":"Mao-Qiang He, Rui-Lin Zhao, Dong-Mei Liu, Teodor T. Denchev, Dominik Begerow, Andrey Yurkov, Martin Kemler, Ana M. Millanes, Mats Wedin, A. R. McTaggart, Roger G. Shivas, Bart Buyck, Jie Chen, Alfredo Vizzini, Viktor Papp, Ivan V. Zmitrovich, Naveed Davoodian, Kevin D. Hyde","doi":"10.1007/s13225-021-00497-3","DOIUrl":"https://doi.org/10.1007/s13225-021-00497-3","url":null,"abstract":"<p>Fungi are eukaryotes that play essential roles in ecosystems. Among fungi, Basidiomycota is one of the major phyla with more than 40,000 described species. We review species diversity of Basidiomycota from five groups with different lifestyles or habitats: saprobic in grass/forest litter, wood-decaying, yeast-like, ectomycorrhizal, and plant parasitic. Case studies of <i>Agaricus</i>, <i>Cantharellus</i>, <i>Ganoderma</i>, <i>Gyroporus</i>, <i>Russula</i>, <i>Tricholoma</i>, and groups of lichenicolous yeast-like fungi, rust fungi, and smut fungi are used to determine trends in discovery of biodiversity. In each case study, the number of new species published during 2009–2020 is analysed to determine the rate of discovery. Publication rates differ between taxa and reflect different states of progress for species discovery in different genera. The results showed that lichenicolous yeast-like taxa had the highest publication rate for new species in the past two decades, and it is likely this trend will continue in the next decade. The species discovery rate of plant parasitic basidiomycetes was low in the past ten years, and remained constant in the past 50 years. We also found that the establishment of comprehensive and robust taxonomic systems based on a joint global initiative by mycologists could promote and standardize the recognition of taxa. We estimated that more than 54,000 species of Basidiomycota will be discovered by 2030, and estimate a total of 1.4–4.2 million species of Basidiomycota globally. These numbers illustrate a huge gap between the described and yet unknown diversity in Basidiomycota.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"127 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-09-15DOI: 10.1007/s13225-022-00510-3
Ausana Mapook, Kevin D Hyde, Khadija Hassan, Blondelle Matio Kemkuignou, Adéla Čmoková, Frank Surup, Eric Kuhnert, Pathompong Paomephan, Tian Cheng, Sybren de Hoog, Yinggai Song, Ruvishika S Jayawardena, Abdullah M S Al-Hatmi, Tokameh Mahmoudi, Nadia Ponts, Lena Studt-Reinhold, Florence Richard-Forget, K W Thilini Chethana, Dulanjalee L Harishchandra, Peter E Mortimer, Huili Li, Saisamorm Lumyong, Worawoot Aiduang, Jaturong Kumla, Nakarin Suwannarach, Chitrabhanu S Bhunjun, Feng-Ming Yu, Qi Zhao, Doug Schaefer, Marc Stadler
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
{"title":"Ten decadal advances in fungal biology leading towards human well-being.","authors":"Ausana Mapook, Kevin D Hyde, Khadija Hassan, Blondelle Matio Kemkuignou, Adéla Čmoková, Frank Surup, Eric Kuhnert, Pathompong Paomephan, Tian Cheng, Sybren de Hoog, Yinggai Song, Ruvishika S Jayawardena, Abdullah M S Al-Hatmi, Tokameh Mahmoudi, Nadia Ponts, Lena Studt-Reinhold, Florence Richard-Forget, K W Thilini Chethana, Dulanjalee L Harishchandra, Peter E Mortimer, Huili Li, Saisamorm Lumyong, Worawoot Aiduang, Jaturong Kumla, Nakarin Suwannarach, Chitrabhanu S Bhunjun, Feng-Ming Yu, Qi Zhao, Doug Schaefer, Marc Stadler","doi":"10.1007/s13225-022-00510-3","DOIUrl":"10.1007/s13225-022-00510-3","url":null,"abstract":"<p><p>Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"116 1","pages":"547-614"},"PeriodicalIF":24.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10276512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2023-02-23DOI: 10.1007/s13225-022-00513-0
Ruvishika S Jayawardena, Kevin D Hyde, Song Wang, Ya-Ru Sun, Nakarin Suwannarach, Phongeun Sysouphanthong, Mohamed A Abdel-Wahab, Faten A Abdel-Aziz, Pranami D Abeywickrama, Vanessa P Abreu, Alireza Armand, André Aptroot, Dan-Feng Bao, Dominik Begerow, Jean-Michel Bellanger, Jadson D P Bezerra, Digvijayini Bundhun, Mark S Calabon, Ting Cao, Taimy Cantillo, João L V R Carvalho, Napalai Chaiwan, Che-Chih Chen, Régis Courtecuisse, Bao-Kai Cui, Ulrike Damm, Cvetomir M Denchev, Teodor T Denchev, Chun Y Deng, Bandarupalli Devadatha, Nimali I de Silva, Lidiane A Dos Santos, Nawal K Dubey, Sylvain Dumez, Himashi S Ferdinandez, André L Firmino, Yusufjon Gafforov, Achala J Gajanayake, Deecksha Gomdola, Sugantha Gunaseelan, Shucheng-He, Zin H Htet, Malarvizhi Kaliyaperumal, Martin Kemler, Kezhocuyi Kezo, Nuwan D Kularathnage, Marco Leonardi, Ji-Peng Li, Chunfang Liao, Shun Liu, Michael Loizides, Thatsanee Luangharn, Jian Ma, Hugo Madrid, S Mahadevakumar, Sajeewa S N Maharachchikumbura, Dimuthu S Manamgoda, María P Martín, Niranjan Mekala, Pierre-Arthur Moreau, Yan-Hong Mu, Pasouvang Pahoua, Dhandevi Pem, Olinto L Pereira, Wiphawanee Phonrob, Chayanard Phukhamsakda, Mubashar Raza, Guang-Cong Ren, Andrea C Rinaldi, Walter Rossi, Binu C Samarakoon, Milan C Samarakoon, Vemuri V Sarma, Indunil C Senanayake, Archana Singh, Maria F Souza, Cristina M Souza-Motta, Adriano A Spielmann, Wenxin Su, Xia Tang, XingGuo Tian, Kasun M Thambugala, Naritsada Thongklang, Danushka S Tennakoon, Nopparat Wannathes, DingPeng Wei, Stéphane Welti, Subodini N Wijesinghe, Hongde Yang, Yunhui Yang, Hai-Sheng Yuan, Huang Zhang, Jingyi Zhang, Abhaya Balasuriya, Chitrabhanu S Bhunjun, Timur S Bulgakov, Lei Cai, Erio Camporesi, Putarak Chomnunti, Y S Deepika, Mingkwan Doilom, Wei-Jun Duan, Shi-Ling Han, Naruemon Huanraluek, E B Gareth Jones, N Lakshmidevi, Yu Li, Saisamorn Lumyong, Zong-Long Luo, Surapong Khuna, Jaturong Kumla, Ishara S Manawasinghe, Ausana Mapook, Wilawan Punyaboon, Saowaluck Tibpromma, Yong-Zhong Lu, JiYe Yan, Yong Wang
<p><p>This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise <i>Angustimassarina</i> <i>kunmingense</i>, <i>Asterina</i> <i>lopi</i>, <i>Asterina</i> <i>brigadeirensis</i>, <i>Bartalinia</i> <i>bidenticola</i>, <i>Bartalinia</i> <i>caryotae</i>, <i>Buellia</i> <i>pruinocalcarea</i>, <i>Coltricia</i> <i>insularis</i>, <i>Colletotrichum</i> <i>flexuosum</i>, <i>Colletotrichum</i> <i>thasutense</i>, <i>Coniochaeta</i> <i>caraganae</i>, <i>Coniothyrium</i> <i>yuccicola</i>, <i>Dematipyriforma</i> <i>aquatic</i>, <i>Dematipyriforma</i> <i>globispora</i>, <i>Dematipyriforma</i> <i>nilotica</i>, <i>Distoseptispora</i> <i>bambusicola</i>, <i>Fulvifomes</i> <i>jawadhuvensis</i>, <i>Fulvifomes</i> <i>malaiyanurensis</i>, <i>Fulvifomes</i> <i>thiruvannamalaiensis</i>, <i>Fusarium</i> <i>purpurea</i>, <i>Gerronema</i> <i>atrovirens</i>, <i>Gerronema</i> <i>flavum</i>, <i>Gerronema</i> <i>keralense</i>, <i>Gerronema</i> <i>kuruvense</i>, <i>Grammothele</i> <i>taiwanensis</i>, <i>Hongkongmyces</i> <i>changchunensis</i>, <i>Hypoxylon</i> <i>inaequale</i>, <i>Kirschsteiniothelia</i> <i>acutisporum</i>, <i>Kirschsteiniothelia</i> <i>crustaceum</i>, <i>Kirschsteiniothelia</i> <i>extensum</i>, <i>Kirschsteiniothelia</i> <i>septemseptatum</i>, <i>Kirschsteiniothelia</i> <i>spatiosum</i>, <i>Lecanora</i> <i>immersocalcarea</i>, <i>Lepiota</i> <i>subthailandica</i>, <i>Lindgomyces</i> <i>guizhouensis</i>, <i>Marthe</i> <i>asmius</i> <i>pallidoaurantiacus</i>, <i>Marasmius</i> <i>tangerinus</i>, <i>Neovaginatispora</i> <i>mangiferae</i>, <i>Pararamichloridium</i> <i>aquisubtropicum</i>, <i>Pestalotiopsis</i> <i>piraubensis</i>, <i>Phacidium</i> <i>chinaum</i>, <i>Phaeoisaria</i> <i>goiasensis</i>, <i>Phaeoseptum</i> <i>thailandicum</i>, <i>Pleurothecium</i> <i>aquisubtropicum</i>, <i>Pseudocercospora</i> <i>vernoniae</i>, <i>Pyrenophora</i> <i>verruculosa</i>, <i>Rhachomyces</i> <i>cruralis</i>, <i>Rhachomyces</i> <i>hyperommae</i>, <i>Rhachomyces</i> <i>magrinii</i>, <i>Rhachomyces</i> <i>platyprosophi</i>, <i>Rhizomarasmius</i> <i>cunninghamietorum</i>, <i>Skeletocutis</i> <i>cangshanensis</i>, <i>Skeletocutis</i> <i>subchrysella</i>, <i>Sporisorium</i> <i>anadelphiae-leptocomae</i>, <i>Tetraploa</i> <i>dashaoensis</i>, <i>Tomentella</i> <i>exiguelata</i>, <i>Tomentella</i> <i>fuscoaraneosa</i>, <i>Tricholomopsis</i> <i>lechatii</i>, <i>Vaginatispora</i> <i>flavispora</i> and <i>Wetmoreana</i> <i>blastidiocalcarea</i>. The new combination is <i>Torula</i> <i>sundara</i>. The 39 new records on hosts and geogr
{"title":"Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa.","authors":"Ruvishika S Jayawardena, Kevin D Hyde, Song Wang, Ya-Ru Sun, Nakarin Suwannarach, Phongeun Sysouphanthong, Mohamed A Abdel-Wahab, Faten A Abdel-Aziz, Pranami D Abeywickrama, Vanessa P Abreu, Alireza Armand, André Aptroot, Dan-Feng Bao, Dominik Begerow, Jean-Michel Bellanger, Jadson D P Bezerra, Digvijayini Bundhun, Mark S Calabon, Ting Cao, Taimy Cantillo, João L V R Carvalho, Napalai Chaiwan, Che-Chih Chen, Régis Courtecuisse, Bao-Kai Cui, Ulrike Damm, Cvetomir M Denchev, Teodor T Denchev, Chun Y Deng, Bandarupalli Devadatha, Nimali I de Silva, Lidiane A Dos Santos, Nawal K Dubey, Sylvain Dumez, Himashi S Ferdinandez, André L Firmino, Yusufjon Gafforov, Achala J Gajanayake, Deecksha Gomdola, Sugantha Gunaseelan, Shucheng-He, Zin H Htet, Malarvizhi Kaliyaperumal, Martin Kemler, Kezhocuyi Kezo, Nuwan D Kularathnage, Marco Leonardi, Ji-Peng Li, Chunfang Liao, Shun Liu, Michael Loizides, Thatsanee Luangharn, Jian Ma, Hugo Madrid, S Mahadevakumar, Sajeewa S N Maharachchikumbura, Dimuthu S Manamgoda, María P Martín, Niranjan Mekala, Pierre-Arthur Moreau, Yan-Hong Mu, Pasouvang Pahoua, Dhandevi Pem, Olinto L Pereira, Wiphawanee Phonrob, Chayanard Phukhamsakda, Mubashar Raza, Guang-Cong Ren, Andrea C Rinaldi, Walter Rossi, Binu C Samarakoon, Milan C Samarakoon, Vemuri V Sarma, Indunil C Senanayake, Archana Singh, Maria F Souza, Cristina M Souza-Motta, Adriano A Spielmann, Wenxin Su, Xia Tang, XingGuo Tian, Kasun M Thambugala, Naritsada Thongklang, Danushka S Tennakoon, Nopparat Wannathes, DingPeng Wei, Stéphane Welti, Subodini N Wijesinghe, Hongde Yang, Yunhui Yang, Hai-Sheng Yuan, Huang Zhang, Jingyi Zhang, Abhaya Balasuriya, Chitrabhanu S Bhunjun, Timur S Bulgakov, Lei Cai, Erio Camporesi, Putarak Chomnunti, Y S Deepika, Mingkwan Doilom, Wei-Jun Duan, Shi-Ling Han, Naruemon Huanraluek, E B Gareth Jones, N Lakshmidevi, Yu Li, Saisamorn Lumyong, Zong-Long Luo, Surapong Khuna, Jaturong Kumla, Ishara S Manawasinghe, Ausana Mapook, Wilawan Punyaboon, Saowaluck Tibpromma, Yong-Zhong Lu, JiYe Yan, Yong Wang","doi":"10.1007/s13225-022-00513-0","DOIUrl":"10.1007/s13225-022-00513-0","url":null,"abstract":"<p><p>This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise <i>Angustimassarina</i> <i>kunmingense</i>, <i>Asterina</i> <i>lopi</i>, <i>Asterina</i> <i>brigadeirensis</i>, <i>Bartalinia</i> <i>bidenticola</i>, <i>Bartalinia</i> <i>caryotae</i>, <i>Buellia</i> <i>pruinocalcarea</i>, <i>Coltricia</i> <i>insularis</i>, <i>Colletotrichum</i> <i>flexuosum</i>, <i>Colletotrichum</i> <i>thasutense</i>, <i>Coniochaeta</i> <i>caraganae</i>, <i>Coniothyrium</i> <i>yuccicola</i>, <i>Dematipyriforma</i> <i>aquatic</i>, <i>Dematipyriforma</i> <i>globispora</i>, <i>Dematipyriforma</i> <i>nilotica</i>, <i>Distoseptispora</i> <i>bambusicola</i>, <i>Fulvifomes</i> <i>jawadhuvensis</i>, <i>Fulvifomes</i> <i>malaiyanurensis</i>, <i>Fulvifomes</i> <i>thiruvannamalaiensis</i>, <i>Fusarium</i> <i>purpurea</i>, <i>Gerronema</i> <i>atrovirens</i>, <i>Gerronema</i> <i>flavum</i>, <i>Gerronema</i> <i>keralense</i>, <i>Gerronema</i> <i>kuruvense</i>, <i>Grammothele</i> <i>taiwanensis</i>, <i>Hongkongmyces</i> <i>changchunensis</i>, <i>Hypoxylon</i> <i>inaequale</i>, <i>Kirschsteiniothelia</i> <i>acutisporum</i>, <i>Kirschsteiniothelia</i> <i>crustaceum</i>, <i>Kirschsteiniothelia</i> <i>extensum</i>, <i>Kirschsteiniothelia</i> <i>septemseptatum</i>, <i>Kirschsteiniothelia</i> <i>spatiosum</i>, <i>Lecanora</i> <i>immersocalcarea</i>, <i>Lepiota</i> <i>subthailandica</i>, <i>Lindgomyces</i> <i>guizhouensis</i>, <i>Marthe</i> <i>asmius</i> <i>pallidoaurantiacus</i>, <i>Marasmius</i> <i>tangerinus</i>, <i>Neovaginatispora</i> <i>mangiferae</i>, <i>Pararamichloridium</i> <i>aquisubtropicum</i>, <i>Pestalotiopsis</i> <i>piraubensis</i>, <i>Phacidium</i> <i>chinaum</i>, <i>Phaeoisaria</i> <i>goiasensis</i>, <i>Phaeoseptum</i> <i>thailandicum</i>, <i>Pleurothecium</i> <i>aquisubtropicum</i>, <i>Pseudocercospora</i> <i>vernoniae</i>, <i>Pyrenophora</i> <i>verruculosa</i>, <i>Rhachomyces</i> <i>cruralis</i>, <i>Rhachomyces</i> <i>hyperommae</i>, <i>Rhachomyces</i> <i>magrinii</i>, <i>Rhachomyces</i> <i>platyprosophi</i>, <i>Rhizomarasmius</i> <i>cunninghamietorum</i>, <i>Skeletocutis</i> <i>cangshanensis</i>, <i>Skeletocutis</i> <i>subchrysella</i>, <i>Sporisorium</i> <i>anadelphiae-leptocomae</i>, <i>Tetraploa</i> <i>dashaoensis</i>, <i>Tomentella</i> <i>exiguelata</i>, <i>Tomentella</i> <i>fuscoaraneosa</i>, <i>Tricholomopsis</i> <i>lechatii</i>, <i>Vaginatispora</i> <i>flavispora</i> and <i>Wetmoreana</i> <i>blastidiocalcarea</i>. The new combination is <i>Torula</i> <i>sundara</i>. The 39 new records on hosts and geogr","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"117 1","pages":"1-272"},"PeriodicalIF":24.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10793786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-30DOI: 10.5380/diver.v14i2.83346
Vandra Feretti, A. Rodrigues, Roberta Geovanna Cavalheiro Alvim, Fernando Luiz Ramos Brock, Marcos Joel Vaccarelli, H. Kashiwagi, Roberto Eduardo Bueno, Manoel Flores Lesama
Após um ano de pandemia da covid-19, as instituições da rede estadual de educação do Paraná mantinham o ensino remoto como forma de diminuir a disseminação do vírus, utilizando a plataforma on-line disponibilizada pela Google e suas ferramentas, possibilitando assim que o aluno mantivesse o vínculo com a escola. Nesse contexto, o objetivo deste artigo foi analisar os possíveis impactos de uma prática pedagógica remota e interdisciplinar com docência compartilhada e sua contribuição em relação as concepções/ideias/conceitos que os alunos possuem sobre: ser humano e natureza, preservação das nascentes e uso da água. Os sujeitos dessa investigação foram alunos do município de Matinhos, de uma turma do 9o ano e outra da 1a série do Ensino Médio, tendo como docentes regentes dessas turmas uma professora da disciplina de Matemática e outra de Ciências. Os convidados para a docência compartilhada foram profissionais de diferentes áreas e instituições de ensino. Com uma abordagem quali-quantitativa,realizou-se uma análise comparativa, cujos dados foram coletados por meio de questionários na forma online e analisados pela técnica de Análise de Conteúdo. Após a análise percebeu-se que a partir das aulas interdisciplinares, houve variação de 4,0% para 19,0% de alunos que passaram a perceber o homem como parte da natureza. A docência compartilhada como estratégia metodológica favoreceu o diálogo, proporcionou maior dinamismo e estimulou diferentes visões sobre os assuntos abordados, destarte a ação mostrou-se relevante, contribuindo para a formação de sujeitos críticos com capacidade de argumentar e tomar decisões pertinentes sobre questões socioambientais.Palavras-chave: prática pedagógica; educação remota; ensino interdisciplinar.
{"title":"INTERDISCIPLINARIDADE E EDUCAÇÃO AMBIENTAL EM PERÍODO DE ENSINO REMOTO","authors":"Vandra Feretti, A. Rodrigues, Roberta Geovanna Cavalheiro Alvim, Fernando Luiz Ramos Brock, Marcos Joel Vaccarelli, H. Kashiwagi, Roberto Eduardo Bueno, Manoel Flores Lesama","doi":"10.5380/diver.v14i2.83346","DOIUrl":"https://doi.org/10.5380/diver.v14i2.83346","url":null,"abstract":"Após um ano de pandemia da covid-19, as instituições da rede estadual de educação do Paraná mantinham o ensino remoto como forma de diminuir a disseminação do vírus, utilizando a plataforma on-line disponibilizada pela Google e suas ferramentas, possibilitando assim que o aluno mantivesse o vínculo com a escola. Nesse contexto, o objetivo deste artigo foi analisar os possíveis impactos de uma prática pedagógica remota e interdisciplinar com docência compartilhada e sua contribuição em relação as concepções/ideias/conceitos que os alunos possuem sobre: ser humano e natureza, preservação das nascentes e uso da água. Os sujeitos dessa investigação foram alunos do município de Matinhos, de uma turma do 9o ano e outra da 1a série do Ensino Médio, tendo como docentes regentes dessas turmas uma professora da disciplina de Matemática e outra de Ciências. Os convidados para a docência compartilhada foram profissionais de diferentes áreas e instituições de ensino. Com uma abordagem quali-quantitativa,realizou-se uma análise comparativa, cujos dados foram coletados por meio de questionários na forma online e analisados pela técnica de Análise de Conteúdo. Após a análise percebeu-se que a partir das aulas interdisciplinares, houve variação de 4,0% para 19,0% de alunos que passaram a perceber o homem como parte da natureza. A docência compartilhada como estratégia metodológica favoreceu o diálogo, proporcionou maior dinamismo e estimulou diferentes visões sobre os assuntos abordados, destarte a ação mostrou-se relevante, contribuindo para a formação de sujeitos críticos com capacidade de argumentar e tomar decisões pertinentes sobre questões socioambientais.Palavras-chave: prática pedagógica; educação remota; ensino interdisciplinar.","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"27 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83887775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}