Pub Date : 2025-03-10DOI: 10.1109/LSSC.2025.3549495
Yun Hao;Bo Zhou;Xukun Wang;Chunli Huang;Zhihua Wang
A bi-directional near-ground-output low-side-input current-sensing amplifier (CSA) is fabricated in 65-nm CMOS. Two negative-feedback paths drive dual pMOS transistors to conduct an auto-switching bi-directional current detection with configurable unidirectional gains, which reduces the conventional switching-point distortions and doubles the sensing accuracy. A DC shifter based on a negative-feedback loop, avoids an input large current to benefit the sensing linearity, and optimizes the common-mode rejection ratio (CMRR). Various noise and offset suppression mechanisms are also utilized. Experimental results show that the proposed CSA achieves an offset voltage of $1.58~mu $ V, a noise level of 37.5 nV/$surd $ Hz, and a CMRR up to 159 dB, with the power dissipation of 0.36 mW from a 1-V supply and an active area of 0.19 mm2. Reconfigurable or different unidirectional gains and near-ground input / output voltages are achieved, which are different from the existing designs.
{"title":"A Bi-Directional Near-Ground Current Sensor With Reconfigurable Unidirectional Gains","authors":"Yun Hao;Bo Zhou;Xukun Wang;Chunli Huang;Zhihua Wang","doi":"10.1109/LSSC.2025.3549495","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3549495","url":null,"abstract":"A bi-directional near-ground-output low-side-input current-sensing amplifier (CSA) is fabricated in 65-nm CMOS. Two negative-feedback paths drive dual pMOS transistors to conduct an auto-switching bi-directional current detection with configurable unidirectional gains, which reduces the conventional switching-point distortions and doubles the sensing accuracy. A DC shifter based on a negative-feedback loop, avoids an input large current to benefit the sensing linearity, and optimizes the common-mode rejection ratio (CMRR). Various noise and offset suppression mechanisms are also utilized. Experimental results show that the proposed CSA achieves an offset voltage of <inline-formula> <tex-math>$1.58~mu $ </tex-math></inline-formula>V, a noise level of 37.5 nV/<inline-formula> <tex-math>$surd $ </tex-math></inline-formula>Hz, and a CMRR up to 159 dB, with the power dissipation of 0.36 mW from a 1-V supply and an active area of 0.19 mm2. Reconfigurable or different unidirectional gains and near-ground input / output voltages are achieved, which are different from the existing designs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"77-80"},"PeriodicalIF":2.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-09DOI: 10.1109/LSSC.2025.3568061
Shaokang Zhao;Li Wang;C. Patrick Yue
This letter introduces the design of a 4-phase quadrature clock generator (QCG) featuring digital automatic calibration. The QCG architecture comprises a duty cycle correction (DCC) circuit, a digitally controlled delay line (DCDL), and an open-loop quadrature error correction (QEC) circuit utilizing phase interpolators (PIs). The DCDL generates clock signals with an initial coarse quadrature phase error, which is subsequently refined by the QEC to achieve a phase error of less than 1°. A finite state machine (FSM) conducts background calibration for the DCC and DCDL coarse correction, employing a pattern-detecting strategy to disable calibration, thereby eliminating spurious tones and deterministic jitter from the output clocks. Measurement results demonstrate that the proposed QCG achieves a phase error below 0.8° across a frequency range of 5–10 GHz, with an integrated jitter of 61.1 fs and a power consumption of 10.2 mW at 10-GHz operation.
{"title":"A 5–10-GHz Quadrature Clock Generator With Open-Loop Quadrature Error Correction in 28-nm CMOS","authors":"Shaokang Zhao;Li Wang;C. Patrick Yue","doi":"10.1109/LSSC.2025.3568061","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3568061","url":null,"abstract":"This letter introduces the design of a 4-phase quadrature clock generator (QCG) featuring digital automatic calibration. The QCG architecture comprises a duty cycle correction (DCC) circuit, a digitally controlled delay line (DCDL), and an open-loop quadrature error correction (QEC) circuit utilizing phase interpolators (PIs). The DCDL generates clock signals with an initial coarse quadrature phase error, which is subsequently refined by the QEC to achieve a phase error of less than 1°. A finite state machine (FSM) conducts background calibration for the DCC and DCDL coarse correction, employing a pattern-detecting strategy to disable calibration, thereby eliminating spurious tones and deterministic jitter from the output clocks. Measurement results demonstrate that the proposed QCG achieves a phase error below 0.8° across a frequency range of 5–10 GHz, with an integrated jitter of 61.1 fs and a power consumption of 10.2 mW at 10-GHz operation.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"149-152"},"PeriodicalIF":2.2,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-07DOI: 10.1109/LSSC.2025.3567840
Hao Guo;Jiawei Chen;Hailong Jiao
A 15-transistor (15T) SRAM cell-based fully-digital computing-in-memory (CIM) macro is proposed for artificial intelligence accelerations. The CIM macro not only supports simultaneous read + write + multiply-accumulate (MAC) operations, but also supports ultrawide-range voltage scaling, digital design flow, and cell-wise bit interleaving. A fine-grained weight update scheme is introduced to perform write and MAC operations simultaneously. A specialized two’s complement processing strategy is proposed to enable efficient signed MAC operations without in-array sign extension. Fabricated in a 55-nm CMOS technology, the proposed fully-digital CIM macro enhances the peak energy efficiency by up to $3.46times $ compared with the state-of-the-art digital CIM schemes.
{"title":"A 15T SRAM Cell-Based Fully-Digital Computing-in-Memory Macro Supporting High Parallelism and Fine-Grained Simultaneous Read + Write + MAC Operations","authors":"Hao Guo;Jiawei Chen;Hailong Jiao","doi":"10.1109/LSSC.2025.3567840","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3567840","url":null,"abstract":"A 15-transistor (15T) SRAM cell-based fully-digital computing-in-memory (CIM) macro is proposed for artificial intelligence accelerations. The CIM macro not only supports simultaneous read + write + multiply-accumulate (MAC) operations, but also supports ultrawide-range voltage scaling, digital design flow, and cell-wise bit interleaving. A fine-grained weight update scheme is introduced to perform write and MAC operations simultaneously. A specialized two’s complement processing strategy is proposed to enable efficient signed MAC operations without in-array sign extension. Fabricated in a 55-nm CMOS technology, the proposed fully-digital CIM macro enhances the peak energy efficiency by up to <inline-formula> <tex-math>$3.46times $ </tex-math></inline-formula> compared with the state-of-the-art digital CIM schemes.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"153-156"},"PeriodicalIF":2.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-06DOI: 10.1109/LSSC.2025.3567309
Yu-Teng Chang;Shau-Chi Ho;Wen-Jie Lin
In this letter, we propose a wideband voltage-controlled oscillator (VCO) that combines a switchable inductor technique and negative transconductance $(G_{m})$ enhancement with the positive feedback loop. To extend the tuning range (TR) and reduce the frequency overlapping region between two modes, a mathematical analysis for the optimization TR is proposed to resist the frequency gap caused by process variations and implement a wider TR by using the switchable inductor. Furthermore, to compensate for the loss of the switchable inductor, the source-coupled pair provides additional wideband –$G_{m}$ characteristics to improve the Q value of the entire LC tank across the TR, thereby cooperating with the switchable inductance technique to implement the better phase noise (PN) across all TR. The measured TR is 39.67%, spanning from 10.77 to 16.1 GHz. At 13.19 GHz, the measured PN is –138 dBc/Hz at a 10-MHz offset frequency. The proposed VCO consumes only 10.7 mW of the total DC power. Comparing the proposed VCO to existing designs, these results demonstrate that it has a wider TR, an improved PN, and a higher figure of merit (FoM).
{"title":"A Wideband VCO Using a Switchable Inductance Technique and Negative Gₘ Enhancement With Positive Feedback","authors":"Yu-Teng Chang;Shau-Chi Ho;Wen-Jie Lin","doi":"10.1109/LSSC.2025.3567309","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3567309","url":null,"abstract":"In this letter, we propose a wideband voltage-controlled oscillator (VCO) that combines a switchable inductor technique and negative transconductance <inline-formula> <tex-math>$(G_{m})$ </tex-math></inline-formula> enhancement with the positive feedback loop. To extend the tuning range (TR) and reduce the frequency overlapping region between two modes, a mathematical analysis for the optimization TR is proposed to resist the frequency gap caused by process variations and implement a wider TR by using the switchable inductor. Furthermore, to compensate for the loss of the switchable inductor, the source-coupled pair provides additional wideband –<inline-formula> <tex-math>$G_{m}$ </tex-math></inline-formula> characteristics to improve the Q value of the entire LC tank across the TR, thereby cooperating with the switchable inductance technique to implement the better phase noise (PN) across all TR. The measured TR is 39.67%, spanning from 10.77 to 16.1 GHz. At 13.19 GHz, the measured PN is –138 dBc/Hz at a 10-MHz offset frequency. The proposed VCO consumes only 10.7 mW of the total DC power. Comparing the proposed VCO to existing designs, these results demonstrate that it has a wider TR, an improved PN, and a higher figure of merit (FoM).","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"137-140"},"PeriodicalIF":2.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter presents a near-$lambda $ /2-antenna-pitch 2-D phased-array CMOS receiver to address the challenge of implementing sub-THz beamforming with the narrow $lambda $ /$2~(approx ~555~mu $ m at 270 GHz) antenna pitch. A double superheterodyne architecture is adopted to reduce the area occupied by the 2-D RX array circuits by locating the E- and H-plane phase control circuits outside the array. Additionally, interpolated feeding is employed to enlarge the area available for the RX circuits by enabling an n-by-n array of RX elements to feed a near-$lambda $ /2-pitch ($2{n}$ – 1)-by-($2{n}$ – 1) antenna array composed of main and auxiliary antennas. A 40-nm CMOS prototype with $2times 2$ RX elements feeding $3times 3$ antenna elements demonstrate beam scanning ranges of approximately ±20° and ±30°in the E- and H-planes, respectively, and achieves 36-Gb/s QPSK signal transmission over a distance of 5 cm.
{"title":"A 300-GHz-Band 36-Gb/s Scalable 2-D Phased-Array CMOS Double Superheterodyne Receiver","authors":"Satoshi Tanaka;Shinsuke Hara;Kyoya Takano;Akifumi Kasamatsu;Yoshiki Sugimoto;Kunio Sakakibara;Shunichi Kubo;Takeshi Yoshida;Shuhei Amakawa;Minoru Fujishima","doi":"10.1109/LSSC.2025.3566726","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3566726","url":null,"abstract":"This letter presents a near-<inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>/2-antenna-pitch 2-D phased-array CMOS receiver to address the challenge of implementing sub-THz beamforming with the narrow <inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>/<inline-formula> <tex-math>$2~(approx ~555~mu $ </tex-math></inline-formula>m at 270 GHz) antenna pitch. A double superheterodyne architecture is adopted to reduce the area occupied by the 2-D RX array circuits by locating the E- and H-plane phase control circuits outside the array. Additionally, interpolated feeding is employed to enlarge the area available for the RX circuits by enabling an n-by-n array of RX elements to feed a near-<inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>/2-pitch (<inline-formula> <tex-math>$2{n}$ </tex-math></inline-formula> – 1)-by-(<inline-formula> <tex-math>$2{n}$ </tex-math></inline-formula> – 1) antenna array composed of main and auxiliary antennas. A 40-nm CMOS prototype with <inline-formula> <tex-math>$2times 2$ </tex-math></inline-formula> RX elements feeding <inline-formula> <tex-math>$3times 3$ </tex-math></inline-formula> antenna elements demonstrate beam scanning ranges of approximately ±20° and ±30°in the E- and H-planes, respectively, and achieves 36-Gb/s QPSK signal transmission over a distance of 5 cm.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"133-136"},"PeriodicalIF":2.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985811","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article presents a two-step direct-conversion front-end (Direct-FE) for noninvasive wearable biomedical devices. In the first step, a delta modulator ($Delta $ M) with embedded gain is used to implement coarse quantization, while in the second step, a discrete-time sigma delta modulator (DT-$Sigma Delta $ M) is used to realize fine quantization. DC-coupled differential difference amplifier (DDA) with resistor-based digital-to-analog converter (RDAC) is adopted as the input stage. Mismatch error shaping (MES) with reduced silicon area is utilized to suppress the mismatch error of the RDAC. The prototype has been implemented in 0.18-$mu $ m BCD process and achieves a peak input range of $7.64~{mathrm {V}_{mathrm {pp}}}$ , an input-referred-noise (IRN) of $1.59~mu mathrm {V}_{mathrm {RMS}}$ , a corresponding dynamic range (DR) of 115.2 dB, while consuming 2.4-mW power. The real physiological signals recording demonstrates its potential capability for wearable bio-potential acquisition, boosting the wearable and fitness application areas.
{"title":"A 115.2-dB Dynamic-Range Two-Step Direct-Conversion Front-End With Mismatch Error Shaping for Noninvasive Biomedical Devices","authors":"Yuxuan Chen;Xianzhi Yang;Jiayi Lin;Zilong Liu;Min Zeng;Qi Wu;Mingyi Chen","doi":"10.1109/LSSC.2025.3548453","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3548453","url":null,"abstract":"This article presents a two-step direct-conversion front-end (Direct-FE) for noninvasive wearable biomedical devices. In the first step, a delta modulator (<inline-formula> <tex-math>$Delta $ </tex-math></inline-formula> M) with embedded gain is used to implement coarse quantization, while in the second step, a discrete-time sigma delta modulator (DT-<inline-formula> <tex-math>$Sigma Delta $ </tex-math></inline-formula> M) is used to realize fine quantization. DC-coupled differential difference amplifier (DDA) with resistor-based digital-to-analog converter (RDAC) is adopted as the input stage. Mismatch error shaping (MES) with reduced silicon area is utilized to suppress the mismatch error of the RDAC. The prototype has been implemented in 0.18-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula> m BCD process and achieves a peak input range of <inline-formula> <tex-math>$7.64~{mathrm {V}_{mathrm {pp}}}$ </tex-math></inline-formula>, an input-referred-noise (IRN) of <inline-formula> <tex-math>$1.59~mu mathrm {V}_{mathrm {RMS}}$ </tex-math></inline-formula>, a corresponding dynamic range (DR) of 115.2 dB, while consuming 2.4-mW power. The real physiological signals recording demonstrates its potential capability for wearable bio-potential acquisition, boosting the wearable and fitness application areas.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"69-72"},"PeriodicalIF":2.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter presents a fully dynamic 4th-order noise-shaping (NS) successive approximation register (SAR) analog-to-digital converter (ADC) with the proposed 4th-order cascaded integrator using dynamic-amplifier-assisted and passive integration. This ADC can achieve sharp NTF with only two dynamic amplifiers and is insensitive to process, voltage, and temperature (PVT) variation. The NS-SAR ADC occupies 0.09 mm2 in a 28-nm CMOS process. With a 1-V supply voltage, it consumes $107.38~mu $ W at 5 MS/s. The measured signal-to-noise and distortion ratio (SNDR) is 94.3 dB over a 100-kHz bandwidth (BW), resulting in a Schreier figure of merit (FoM) of 184 dB and a Walden FoM of 12.6 fJ/conv.-step.
{"title":"A 94.3-dB SNDR 184-dB FoMs 4th-Order Noise-Shaping SAR ADC With Dynamic-Amplifier-Assisted Cascaded Integrator","authors":"Kai-Cheng Cheng;Soon-Jyh Chang;Chung-Chieh Chen;Shuo-Hong Hung","doi":"10.1109/LSSC.2025.3544649","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3544649","url":null,"abstract":"This letter presents a fully dynamic 4th-order noise-shaping (NS) successive approximation register (SAR) analog-to-digital converter (ADC) with the proposed 4th-order cascaded integrator using dynamic-amplifier-assisted and passive integration. This ADC can achieve sharp NTF with only two dynamic amplifiers and is insensitive to process, voltage, and temperature (PVT) variation. The NS-SAR ADC occupies 0.09 mm2 in a 28-nm CMOS process. With a 1-V supply voltage, it consumes <inline-formula> <tex-math>$107.38~mu $ </tex-math></inline-formula>W at 5 MS/s. The measured signal-to-noise and distortion ratio (SNDR) is 94.3 dB over a 100-kHz bandwidth (BW), resulting in a Schreier figure of merit (FoM) of 184 dB and a Walden FoM of 12.6 fJ/conv.-step.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"65-68"},"PeriodicalIF":2.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-05DOI: 10.1109/LSSC.2025.3539228
Hesham Beshary;Yikuan Chen;Ethan Chou;Ali M. Niknejad
This work represents a 140 GHz wideband 2-D scalable phased array in 28-nm bulk CMOS technology. The chip integrates $2times 2$ transceiving elements with on-chip antennas and a $times 16$ LO multiplication chain in $2.115times 2$ .115 mm2. The elements are forming an RF beamformer while keeping approximately half-wavelength spacing between the elements. The integrated antennas leverage substrate thinning and substrate mode cancellation to boost the array radiation efficiency. The system adopts a superheterodyne transceiver (TRX) architecture with 25 GHz IF center frequency. The proposed work achieves 1.54 pJ/b and 80 Gb/s over-the-air (OTA) using 16-QAM modulation scheme for the overall transmit-receive link. To the best of the authors’ knowledge, this work achieves the highest reported array-level OTA data rate while improving the energy efficiency (pJ/b) by approximately an order of magnitude compared to other D-band transceiver arrays.
{"title":"A 1.54 pJ/b 80 Gb/s D-Band 2-D Scalable Transceiver Array With On-Chip Antennas in 28-nm Bulk CMOS","authors":"Hesham Beshary;Yikuan Chen;Ethan Chou;Ali M. Niknejad","doi":"10.1109/LSSC.2025.3539228","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3539228","url":null,"abstract":"This work represents a 140 GHz wideband 2-D scalable phased array in 28-nm bulk CMOS technology. The chip integrates <inline-formula> <tex-math>$2times 2$ </tex-math></inline-formula> transceiving elements with on-chip antennas and a <inline-formula> <tex-math>$times 16$ </tex-math></inline-formula> LO multiplication chain in <inline-formula> <tex-math>$2.115times 2$ </tex-math></inline-formula>.115 mm2. The elements are forming an RF beamformer while keeping approximately half-wavelength spacing between the elements. The integrated antennas leverage substrate thinning and substrate mode cancellation to boost the array radiation efficiency. The system adopts a superheterodyne transceiver (TRX) architecture with 25 GHz IF center frequency. The proposed work achieves 1.54 pJ/b and 80 Gb/s over-the-air (OTA) using 16-QAM modulation scheme for the overall transmit-receive link. To the best of the authors’ knowledge, this work achieves the highest reported array-level OTA data rate while improving the energy efficiency (pJ/b) by approximately an order of magnitude compared to other D-band transceiver arrays.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"61-64"},"PeriodicalIF":2.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1109/LSSC.2025.3532788
Seok-Ju Yun;Jaehyuk Lee;Sungmeen Myung;Jangho An;Daekun Yoon;Seungchul Jung;Soonwan Kwon;Sangjoon Kim
Two specialized digital SRAM In-memory computing (IMC) macros were implemented using a 5-nm process: 1) a high efficiency (HE) macro and 2) a high-density (HD) macro. The HE macro achieves an energy efficiency of 274 TOPS/W under 90% input bit sparsity, 50% weight bit sparsity, and 0.46-V supply voltage, by adopting a compact Wallace tree adder (WTA) and a tristate buffer optimized for pipelined operation. The HD macro achieves a state-of-the-art memory density performance of 5.67 Mb/mm2 by employing a multiply-cell consisting of a single transistor. Extensive sample measurements have confirmed the robust and reliable performance of the two digital IMC macros. The proposed HE and HD macros have demonstrated their significant potential as key building blocks for next-generation Artificial intelligence (AI) accelerators.
{"title":"5-nm High-Efficiency and High-Density Digital SRAM In-Memory-Computing Macros for AI Accelerators","authors":"Seok-Ju Yun;Jaehyuk Lee;Sungmeen Myung;Jangho An;Daekun Yoon;Seungchul Jung;Soonwan Kwon;Sangjoon Kim","doi":"10.1109/LSSC.2025.3532788","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3532788","url":null,"abstract":"Two specialized digital SRAM In-memory computing (IMC) macros were implemented using a 5-nm process: 1) a high efficiency (HE) macro and 2) a high-density (HD) macro. The HE macro achieves an energy efficiency of 274 TOPS/W under 90% input bit sparsity, 50% weight bit sparsity, and 0.46-V supply voltage, by adopting a compact Wallace tree adder (WTA) and a tristate buffer optimized for pipelined operation. The HD macro achieves a state-of-the-art memory density performance of 5.67 Mb/mm2 by employing a multiply-cell consisting of a single transistor. Extensive sample measurements have confirmed the robust and reliable performance of the two digital IMC macros. The proposed HE and HD macros have demonstrated their significant potential as key building blocks for next-generation Artificial intelligence (AI) accelerators.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"269-272"},"PeriodicalIF":2.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145141623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter presents a low-noise, power-efficient, and pulsatile-interference stabilized photocurrent readout circuit for under-display ambient light sensors (ALS). To achieve pA-level input noise and seven decades of input current dynamic range (DR) simultaneously, a logarithmic transimpedance amplifier (TIA) with a diode-connected MOS feedback is set as the first stage of the ALS. An auto-tracking zero, implemented in the amplifier of the TIA, improves the phase-margin and reduces the settling time against pulsatile interference without extra power consumption. The TIA output is then quantized by a first-order 9-bit incremental delta-sigma modulator. Fabricated in a standard 0.18-$mu $ m CMOS process, the proposed ALS achieves the best-in-the-class input-referred current noise of $0.6~rm {pA}_{mathrm {rms}}$ within a 400-$mu $ s readout time. The total input range of $1.7~rm {pA}_{mathrm {PP}}$ –$5~mu rm {A}_{mathrm {PP}}$ corresponds to a DR of 129 dB while consuming 0.86 mW at a 1.8-V supply.
{"title":"A 0.86 mW 17 fA/√Hz, 129-dB DR Current-Sensing Front-End for Under-Display Ambient Light Sensor With Zero-Compensated Logarithmic TIA","authors":"Liheng Liu;Tianxiang Qu;Hao Li;Dan Li;Gan Guo;Zhiliang Hong;Jiawei Xu","doi":"10.1109/LSSC.2025.3528962","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3528962","url":null,"abstract":"This letter presents a low-noise, power-efficient, and pulsatile-interference stabilized photocurrent readout circuit for under-display ambient light sensors (ALS). To achieve pA-level input noise and seven decades of input current dynamic range (DR) simultaneously, a logarithmic transimpedance amplifier (TIA) with a diode-connected MOS feedback is set as the first stage of the ALS. An auto-tracking zero, implemented in the amplifier of the TIA, improves the phase-margin and reduces the settling time against pulsatile interference without extra power consumption. The TIA output is then quantized by a first-order 9-bit incremental delta-sigma modulator. Fabricated in a standard 0.18-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m CMOS process, the proposed ALS achieves the best-in-the-class input-referred current noise of <inline-formula> <tex-math>$0.6~rm {pA}_{mathrm {rms}}$ </tex-math></inline-formula> within a 400-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>s readout time. The total input range of <inline-formula> <tex-math>$1.7~rm {pA}_{mathrm {PP}}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$5~mu rm {A}_{mathrm {PP}}$ </tex-math></inline-formula> corresponds to a DR of 129 dB while consuming 0.86 mW at a 1.8-V supply.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"49-52"},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}