首页 > 最新文献

IEEE Solid-State Circuits Letters最新文献

英文 中文
A 56-Gb/s DAC/ADC-Based Multicarrier Transceiver With TX Polar DSP and RX MIMO-DSP for >40-dB Loss Channel 一种56gb /s基于DAC/ adc的多载波收发器,具有TX极性DSP和RX MIMO-DSP,适用于>40-dB损耗通道
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-21 DOI: 10.1109/LSSC.2025.3562615
Srujan Kumar Kaile;Julian Camilo Gomez Diaz;Yuanming Zhu;Il-Min Yi;Tong Liu;Sebastian Hoyos;Samuel Palermo
This letter presents a digital-to-analog-converter/analog-to-digital converter (DAC/ADC)-based multicarrier transceiver fabricated in a 22-nm FinFET technology. The multicarrier signaling scheme utilizes orthogonally spaced carriers for spectral efficient band spacing and exhibit jitter robustness compared to conventional baseband pulse amplitude-based signaling. The transmitter has a polar digital signal processor (DSP) to generate the equalized codes driving the 7-b phase DACs, and 7-b amplitude DACs with 2-b predistortion to yield 1.2-Vppd swing. The multicarrier receiver front-end ADC outputs are equalized with a MIMO DSP backend to compensate for the intersymbol interference and interchannel interference. The measured transceiver at 56 Gb/s through a 40.8-dB loss at 14-GHz channel showed a jitter tolerance of up to 1.21 psrms at BER $lt 10{^{-}4 }$ with 7.82-pJ/bit power efficiency.
本文介绍了一种采用22nm FinFET技术制造的基于数模转换器/模数转换器(DAC/ADC)的多载波收发器。与传统的基于基带脉冲幅度的信令相比,多载波信令方案利用正交间隔载波实现频谱高效频带间隔,并表现出抖动鲁棒性。发射机具有一个极性数字信号处理器(DSP),用于生成驱动7b相位dac和7b幅度dac的均衡代码,其预失真为2b,产生1.2 vppd摆幅。多载波接收机前端ADC输出由MIMO DSP后端均衡,以补偿码间干扰和信道间干扰。在14ghz信道下,通过40.8 db损耗,以56gb /s速率测量的收发器在BER $lt 10{^{-}4}$下的抖动容忍度高达1.21 psrms,功率效率为7.82 pj /bit。
{"title":"A 56-Gb/s DAC/ADC-Based Multicarrier Transceiver With TX Polar DSP and RX MIMO-DSP for >40-dB Loss Channel","authors":"Srujan Kumar Kaile;Julian Camilo Gomez Diaz;Yuanming Zhu;Il-Min Yi;Tong Liu;Sebastian Hoyos;Samuel Palermo","doi":"10.1109/LSSC.2025.3562615","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3562615","url":null,"abstract":"This letter presents a digital-to-analog-converter/analog-to-digital converter (DAC/ADC)-based multicarrier transceiver fabricated in a 22-nm FinFET technology. The multicarrier signaling scheme utilizes orthogonally spaced carriers for spectral efficient band spacing and exhibit jitter robustness compared to conventional baseband pulse amplitude-based signaling. The transmitter has a polar digital signal processor (DSP) to generate the equalized codes driving the 7-b phase DACs, and 7-b amplitude DACs with 2-b predistortion to yield 1.2-Vppd swing. The multicarrier receiver front-end ADC outputs are equalized with a MIMO DSP backend to compensate for the intersymbol interference and interchannel interference. The measured transceiver at 56 Gb/s through a 40.8-dB loss at 14-GHz channel showed a jitter tolerance of up to 1.21 psrms at BER<inline-formula> <tex-math>$lt 10{^{-}4 }$ </tex-math></inline-formula> with 7.82-pJ/bit power efficiency.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"125-128"},"PeriodicalIF":2.2,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143896504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Single-Ended Offset-Compensating Bit-Line Sense-Amplifier With Ground Precharge and Charge Transfer Pre Sensing for Sub-1V DRAM 用于Sub-1V DRAM的带接地预充和电荷转移预传感的单端偏移补偿位线感测放大器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-16 DOI: 10.1109/LSSC.2025.3561280
Changyoung Lee;Youngseok Park;Hyunchul Yoon;Seryeong Yoon;Donggeon Kim;Bokyeon Won;Junhwa Song;Injae Bae;Jae-Joon Song;Kyuchang Kang;Jaehyuk Kim;Kyungrak Cho;Incheol Nam;Jungdon Ihm;Younghun Seo;Changsik Yoo;Sangjun Hwang
This letter presents a single-ended offset-compensating (SEOC) with ground precharge bit-line sense amplifier (BLSA). It uses a ground (GND) precharge (PRE) configuration to overcome its limited headroom margin. The single-ended topology that exploits a charge-transfer amplification can eliminate a redundant edge blocks and additional reference circuitry for GND PRE, while maintaining energy efficiency. It is fabricated in a 25-nm DRAM process and compared with offset-compensation sense amplifier (OCSA). The proposed BLSA can achieve 98% decrease in fail bit count (FBC) compared to OCSA at 0.8 V supply voltage and achieve less than 1% performance degradation without redundant edge blocks.
本文介绍了一种带接地预充位线感测放大器(BLSA)的单端偏移补偿(SEOC)电路。它使用接地(GND)预充(PRE)配置来克服其有限的净空余量。利用电荷转移放大的单端拓扑可以消除冗余的边缘块和额外的GND PRE参考电路,同时保持能源效率。采用25nm DRAM工艺制作了该放大器,并与偏移补偿感测放大器(OCSA)进行了比较。与OCSA相比,该BLSA在0.8 V供电电压下可以实现98%的故障比特计数(FBC)减少,并且在没有冗余边缘块的情况下实现不到1%的性能下降。
{"title":"A Single-Ended Offset-Compensating Bit-Line Sense-Amplifier With Ground Precharge and Charge Transfer Pre Sensing for Sub-1V DRAM","authors":"Changyoung Lee;Youngseok Park;Hyunchul Yoon;Seryeong Yoon;Donggeon Kim;Bokyeon Won;Junhwa Song;Injae Bae;Jae-Joon Song;Kyuchang Kang;Jaehyuk Kim;Kyungrak Cho;Incheol Nam;Jungdon Ihm;Younghun Seo;Changsik Yoo;Sangjun Hwang","doi":"10.1109/LSSC.2025.3561280","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3561280","url":null,"abstract":"This letter presents a single-ended offset-compensating (SEOC) with ground precharge bit-line sense amplifier (BLSA). It uses a ground (GND) precharge (PRE) configuration to overcome its limited headroom margin. The single-ended topology that exploits a charge-transfer amplification can eliminate a redundant edge blocks and additional reference circuitry for GND PRE, while maintaining energy efficiency. It is fabricated in a 25-nm DRAM process and compared with offset-compensation sense amplifier (OCSA). The proposed BLSA can achieve 98% decrease in fail bit count (FBC) compared to OCSA at 0.8 V supply voltage and achieve less than 1% performance degradation without redundant edge blocks.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"145-148"},"PeriodicalIF":2.2,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144125646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convolutional Window-Inspired Similarity-Aware Computation-in-Memory for Energy Saving 基于卷积窗口的内存相似性感知计算节能技术
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-15 DOI: 10.1109/LSSC.2025.3560676
Yong-Jun Jo;Chufeng Yang;Yuanjin Zheng;Tony Tae-Hyoung Kim
Various data-driven computation-in-memory (CIM) architectures have been proposed to reduce inference energy. However, most data-driven CIM architectures require specific conditions to achieve energy savings (e.g., zero skip requires a ReLU activation function). This letter proposes a convolutional window-inspired similarity-aware CIM that saves energy by predicting the current output based on the previous one, which is applicable in most cases where the neural network is based on convolution. In addition, this letter introduces a novel transposable architecture to enhance linearity and an analog-to-digital converter (ADC) for improved area efficiency. The prototype was fabricated with 65 nm process and achieved the highest SWaP FoM as 19.04 TOPS/W $times $ Mb/mm2 among the state-of-the-art transposable CIMs.
为了减少推理能量,人们提出了各种数据驱动的内存计算(CIM)体系结构。然而,大多数数据驱动的CIM体系结构需要特定的条件来实现节能(例如,零跳过需要ReLU激活功能)。这封信提出了一个卷积窗口启发的相似性感知CIM,通过基于前一个预测当前输出来节省能量,这适用于大多数基于卷积的神经网络。此外,本文还介绍了一种新的可转座架构,以提高线性度,并介绍了一种模数转换器(ADC),以提高面积效率。该原型机采用65纳米工艺制造,在最先进的转座式cim中实现了最高的SWaP FoM,为19.04 TOPS/W $times $ Mb/mm2。
{"title":"Convolutional Window-Inspired Similarity-Aware Computation-in-Memory for Energy Saving","authors":"Yong-Jun Jo;Chufeng Yang;Yuanjin Zheng;Tony Tae-Hyoung Kim","doi":"10.1109/LSSC.2025.3560676","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3560676","url":null,"abstract":"Various data-driven computation-in-memory (CIM) architectures have been proposed to reduce inference energy. However, most data-driven CIM architectures require specific conditions to achieve energy savings (e.g., zero skip requires a ReLU activation function). This letter proposes a convolutional window-inspired similarity-aware CIM that saves energy by predicting the current output based on the previous one, which is applicable in most cases where the neural network is based on convolution. In addition, this letter introduces a novel transposable architecture to enhance linearity and an analog-to-digital converter (ADC) for improved area efficiency. The prototype was fabricated with 65 nm process and achieved the highest SWaP FoM as 19.04 TOPS/W<inline-formula> <tex-math>$times $ </tex-math></inline-formula>Mb/mm2 among the state-of-the-art transposable CIMs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"121-124"},"PeriodicalIF":2.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MOS-Based Temperature Sensor With Energy-Efficient Techniques 一种基于mos的高能效温度传感器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-11 DOI: 10.1109/LSSC.2025.3559900
Jooeun Kim;Jeongmyeong Kim;Minkyu Yang;Kyounghun Kang;Wanyeong Jung
This letter presents an energy-efficient MOS-based temperature sensor, enhanced through transducer and readout circuit integrated design, LSB-first SAR, and energy-efficient comparator. The transducer and readout circuit integrated design reduces noise by combining two blocks into one. With temperature-dependent offset voltage, the comparator integrates with the LSB-first SAR and is optimized for energy efficiency. The LSB-first SAR reduces the number of cycles and energy consumption. In addition, an asynchronous clock controls the circuit, eliminating the need for a timing reference and adjusting speed to temperature to increase measurement robustness. The temperature sensor was fabricated with a 65 nm CMOS process, and the sensor has −60 to $145~^{circ }$ C measurement range. After two-point calibration with a second-order polynomial, errors are −1.93/ ${+} 1.44~^{circ }$ C over the entire range and −0.96/ ${+} 0.94~^{circ }$ C from −43 to $137~^{circ }$ C. At room temperature, the sensor achieves 71.8 mK resolution and 41.9 pJ per conversion, resulting in the best resolution figure-of-merit of 216 fJ $cdot $ K2 among MOS-based sensors.
本文介绍了一种节能的mos温度传感器,通过传感器和读出电路集成设计增强,LSB-first SAR和节能比较器。传感器和读出电路集成设计通过将两个模块合二为一来降低噪声。与温度相关的偏置电压,比较器集成了LSB-first SAR,并优化了能源效率。LSB-first SAR减少了循环次数和能耗。此外,异步时钟控制电路,消除了对时序参考和温度调节速度的需要,以增加测量稳健性。该温度传感器采用65 nm CMOS工艺,测量范围为- 60 ~ $145~ $ {circ}$ C。用二阶多项式进行两点标定后,在整个范围内误差为- 1.93/ ${+}1.44~ ${circ}$ C,在- 43 ~ $137~ ${circ}$ C范围内误差为- 0.96/ ${+}0.94~ ${circ}$ C。在室温下,传感器的分辨率为71.8 mK,每次转换为41.9 pJ,在mos传感器中分辨率最佳的品质系数为216 fJ $cdot $ K2。
{"title":"A MOS-Based Temperature Sensor With Energy-Efficient Techniques","authors":"Jooeun Kim;Jeongmyeong Kim;Minkyu Yang;Kyounghun Kang;Wanyeong Jung","doi":"10.1109/LSSC.2025.3559900","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3559900","url":null,"abstract":"This letter presents an energy-efficient MOS-based temperature sensor, enhanced through transducer and readout circuit integrated design, LSB-first SAR, and energy-efficient comparator. The transducer and readout circuit integrated design reduces noise by combining two blocks into one. With temperature-dependent offset voltage, the comparator integrates with the LSB-first SAR and is optimized for energy efficiency. The LSB-first SAR reduces the number of cycles and energy consumption. In addition, an asynchronous clock controls the circuit, eliminating the need for a timing reference and adjusting speed to temperature to increase measurement robustness. The temperature sensor was fabricated with a 65 nm CMOS process, and the sensor has −60 to <inline-formula> <tex-math>$145~^{circ }$ </tex-math></inline-formula>C measurement range. After two-point calibration with a second-order polynomial, errors are −1.93/<inline-formula> <tex-math>${+} 1.44~^{circ }$ </tex-math></inline-formula>C over the entire range and −0.96/<inline-formula> <tex-math>${+} 0.94~^{circ }$ </tex-math></inline-formula>C from −43 to <inline-formula> <tex-math>$137~^{circ }$ </tex-math></inline-formula>C. At room temperature, the sensor achieves 71.8 mK resolution and 41.9 pJ per conversion, resulting in the best resolution figure-of-merit of 216 fJ<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>K2 among MOS-based sensors.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"109-112"},"PeriodicalIF":2.2,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Segmented Precision Configurable Computing-in-Memory Macro With Dual-Edge Time-Domain Structure 具有双边缘时域结构的分段精确可配置内存宏
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-08 DOI: 10.1109/LSSC.2025.3558928
Chang Xue;Youming Yang;Siyuan He;Gang Du;Yuan Wang;Yandong He
In computing-in-memory (CIM) architecture, it is necessary to reliably adjust the precision according to the specific demands of the application, enabling a tradeoff between high precision and high energy efficiency. In addition, when performing multibit computations, nonlinearity errors between different bits can adversely affect the network’s accuracy. Therefore, this work proposes an 8Kb dual-edge time-domain CIM macro, which incorporates a segmented precision configuration scheme. By mapping the high and low 4 bits of the 8-bit input to the rising and falling edges of the pulse for independent computation, this design mitigates nonlinearity errors between high and low bits. The precision of multiplication-and-accumulation (MAC) operations for both high and low bits can be independently adjusted, ensuring sufficient accuracy while enhancing energy efficiency. This work attains an energy efficiency ranging from 8.03 to 13.20 TOPS/W in the end. For the CIFAR-10 dataset, when the inputs and weights are of 8-bit precision, this work reaches an inference accuracy of 90.27%–91.92%.
在内存计算(computing-in-memory, CIM)架构中,需要根据应用程序的具体需求可靠地调整精度,从而在高精度和高能效之间进行权衡。此外,在进行多比特计算时,不同比特之间的非线性误差会对网络的精度产生不利影响。因此,本文提出了一个8Kb的双边缘时域CIM宏,其中包含了分段精度配置方案。通过将8位输入的高、低4位映射到脉冲的上升沿和下降沿进行独立计算,该设计减轻了高、低位之间的非线性误差。高低位的MAC运算精度均可独立调整,在保证足够精度的同时提高能效。最终获得了8.03 ~ 13.20 TOPS/W的能源效率。对于CIFAR-10数据集,当输入和权值为8位精度时,本文的推理准确率为90.27% ~ 91.92%。
{"title":"A Segmented Precision Configurable Computing-in-Memory Macro With Dual-Edge Time-Domain Structure","authors":"Chang Xue;Youming Yang;Siyuan He;Gang Du;Yuan Wang;Yandong He","doi":"10.1109/LSSC.2025.3558928","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3558928","url":null,"abstract":"In computing-in-memory (CIM) architecture, it is necessary to reliably adjust the precision according to the specific demands of the application, enabling a tradeoff between high precision and high energy efficiency. In addition, when performing multibit computations, nonlinearity errors between different bits can adversely affect the network’s accuracy. Therefore, this work proposes an 8Kb dual-edge time-domain CIM macro, which incorporates a segmented precision configuration scheme. By mapping the high and low 4 bits of the 8-bit input to the rising and falling edges of the pulse for independent computation, this design mitigates nonlinearity errors between high and low bits. The precision of multiplication-and-accumulation (MAC) operations for both high and low bits can be independently adjusted, ensuring sufficient accuracy while enhancing energy efficiency. This work attains an energy efficiency ranging from 8.03 to 13.20 TOPS/W in the end. For the CIFAR-10 dataset, when the inputs and weights are of 8-bit precision, this work reaches an inference accuracy of 90.27%–91.92%.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"117-120"},"PeriodicalIF":2.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Low-Power Fully Dynamic Latched Comparator Using Flexible Oxide TFT Technology 采用柔性氧化物TFT技术的低功耗全动态锁存比较器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-04 DOI: 10.1109/LSSC.2025.3557862
Vaishali Choudhary;Pydi Ganga Bahubalindruni
This letter presents a novel low-power, fully dynamic, latched comparator using only n-type, single-gate amorphous-indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) on a $27~mu $ m thick polyimide substrate. This circuit demonstrates a stable performance up to an input signal frequency of 15 kHz with 1-MHz clock. By employing a pseudo-CMOS bootstrapped load, it achieved an output voltage swing of around 90%, an input-referred offset and noise voltages of 28 mV and 14 mV, respectively from measurements. In addition, it can reliably detect a minimum differential input voltage of 50 mV at a $V_{mathrm { DD}}$ of 4 V, while consuming only $8~mu $ W power. Therefore, this design is well-suited in biomedical wearable devices which typically needs low-power.
本文介绍了一种新型的低功耗、全动态、锁存比较器,该比较器仅使用n型、单栅极非晶铟镓锌氧化物薄膜晶体管(a- igzo TFTs)在27~mu $ m厚聚酰亚胺衬底上。该电路在输入信号频率为15khz、时钟频率为1mhz时表现出稳定的性能。通过采用伪cmos自举负载,它实现了约90%的输出电压摆幅,输入参考偏置电压和噪声电压分别为28 mV和14 mV。此外,它可以在$V_{math {DD}}$ 4 V时可靠地检测最小差分输入电压为50 mV,而功耗仅为$8~ $ mu $ W。因此,这种设计非常适合通常需要低功耗的生物医学可穿戴设备。
{"title":"A Low-Power Fully Dynamic Latched Comparator Using Flexible Oxide TFT Technology","authors":"Vaishali Choudhary;Pydi Ganga Bahubalindruni","doi":"10.1109/LSSC.2025.3557862","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3557862","url":null,"abstract":"This letter presents a novel low-power, fully dynamic, latched comparator using only n-type, single-gate amorphous-indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) on a <inline-formula> <tex-math>$27~mu $ </tex-math></inline-formula>m thick polyimide substrate. This circuit demonstrates a stable performance up to an input signal frequency of 15 kHz with 1-MHz clock. By employing a pseudo-CMOS bootstrapped load, it achieved an output voltage swing of around 90%, an input-referred offset and noise voltages of 28 mV and 14 mV, respectively from measurements. In addition, it can reliably detect a minimum differential input voltage of 50 mV at a <inline-formula> <tex-math>$V_{mathrm { DD}}$ </tex-math></inline-formula> of 4 V, while consuming only <inline-formula> <tex-math>$8~mu $ </tex-math></inline-formula>W power. Therefore, this design is well-suited in biomedical wearable devices which typically needs low-power.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"101-104"},"PeriodicalIF":2.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Power Consumption and Propagation Delay in Voltage Level Shifters 电压电平转换器的功耗和传播延迟分析
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-03 DOI: 10.1109/LSSC.2025.3557524
Mehdi Saberi;Alexandre Schmid
The analysis of the operation of nonlinear circuits, such as voltage level shifters and latched comparators, and therefore the prediction of their propagation delay and power consumption, is challenging. This is because the operating points of the employed nonlinear devices are time-varying. Hence, in this letter, a new approach which uses the trajectory of the operating points of the employed devices is proposed to analyze nonlinear circuits. The proposed method is used to provide a comprehensive study about the operation of the cross-coupled voltage level shifters. The proposed analysis not only formulates the existing contention between the pull-up and pull-down devices but also presents closed-form formulas for the delay as well as the power consumption. Measurement results of a prototype implemented in a standard 0.18- $mu $ m CMOS technology verify the effectiveness of the proposed method.
对电压电平转换器和锁存式比较器等非线性电路的运行进行分析,从而预测其传播延迟和功耗,是一项具有挑战性的工作。这是因为所采用的非线性器件的工作点是时变的。因此,在这封信中,我们提出了一种利用所采用器件的工作点轨迹来分析非线性电路的新方法。所提出的方法用于全面研究交叉耦合电压电平转换器的运行。所提出的分析不仅阐述了上拉和下拉器件之间的现有争论,还提出了延迟和功耗的闭式公式。在标准 0.18 $mu $ m CMOS 技术中实现的原型的测量结果验证了所提方法的有效性。
{"title":"Analysis of Power Consumption and Propagation Delay in Voltage Level Shifters","authors":"Mehdi Saberi;Alexandre Schmid","doi":"10.1109/LSSC.2025.3557524","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3557524","url":null,"abstract":"The analysis of the operation of nonlinear circuits, such as voltage level shifters and latched comparators, and therefore the prediction of their propagation delay and power consumption, is challenging. This is because the operating points of the employed nonlinear devices are time-varying. Hence, in this letter, a new approach which uses the trajectory of the operating points of the employed devices is proposed to analyze nonlinear circuits. The proposed method is used to provide a comprehensive study about the operation of the cross-coupled voltage level shifters. The proposed analysis not only formulates the existing contention between the pull-up and pull-down devices but also presents closed-form formulas for the delay as well as the power consumption. Measurement results of a prototype implemented in a standard 0.18-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m CMOS technology verify the effectiveness of the proposed method.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"113-116"},"PeriodicalIF":2.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GaN HEMT-Based Resonators Using Parasitic Effects and Its Application to A Ka-band Coupled-Resonator SPDT Switch 利用寄生效应的GaN hemt谐振器及其在ka波段耦合谐振器SPDT开关中的应用
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-04-03 DOI: 10.1109/LSSC.2025.3557531
Guangxu Shen;Haitao Ma;Chenyang Zhang;Dingyuan Zeng Member;Haoshen Zhu;Wenquan Che
A series of switchable resonators are proposed by incorporating the parasitic effects of two gallium nitride (GaN) high electron mobility transistor (HEMT) devices in this letter, based on which a broadband single-pole double-throw (SPDT) switch is presented with a bandpass response. As for on-chip switches, the ideal transistor is desired to act as a capacitor in its off-state but a resistor in its on-state. In conventional switch designs, the inductive effects of transistors are typically suppressed due to their detrimental impact on impedance matching and isolation. In contrast to this conventional approach, this study proposes a resonator-based design strategy that intentionally exploits and amplifies these inductive characteristics to construct two distinct GaN HEMT-integrated resonators. The first resonator employs the enhanced on-state inductance of a switching transistor combined with an MIM capacitor to form a series resonant network, enabling broadband impedance matching. The second resonator utilizes the large off-state capacitance of a power transistor and a short-circuited transmission line to establish a parallel resonant network. Leveraging the unique properties of these resonators, a broadband switch topology is accordingly proposed and experimentally validated. For demonstration, a SPDT switch is designed and fabricated in a 100 nm GaN-on-Si process. The proposed switch operates from 16 to 33 GHz based on experimental measurements. Two transmission poles are observed in the passband. This result experimentally validates the GaN HEMT-based resonator design.
本文通过结合两个氮化镓(GaN)高电子迁移率晶体管(HEMT)器件的寄生效应,提出了一系列可切换谐振器,并在此基础上提出了具有带通响应的宽带单极双掷(SPDT)开关。至于片上开关,理想的晶体管在其关断状态下充当电容器,而在其导通状态下充当电阻。在传统的开关设计中,由于晶体管的电感效应对阻抗匹配和隔离的不利影响,它们通常被抑制。与这种传统方法相反,本研究提出了一种基于谐振器的设计策略,该策略有意地利用和放大这些感应特性来构建两个不同的GaN hemt集成谐振器。第一个谐振器采用开关晶体管的增强导通电感与MIM电容器相结合,形成串联谐振网络,实现宽带阻抗匹配。第二谐振器利用功率晶体管的大离态电容和短路传输线来建立并联谐振网络。利用这些谐振器的独特特性,提出了相应的宽带开关拓扑结构并进行了实验验证。为了演示,我们设计并制造了一个SPDT开关,该开关采用了100nm的GaN-on-Si工艺。根据实验测量,所提议的开关工作在16到33 GHz之间。在通带中观察到两个传输极。实验结果验证了基于GaN hemt的谐振器设计。
{"title":"GaN HEMT-Based Resonators Using Parasitic Effects and Its Application to A Ka-band Coupled-Resonator SPDT Switch","authors":"Guangxu Shen;Haitao Ma;Chenyang Zhang;Dingyuan Zeng Member;Haoshen Zhu;Wenquan Che","doi":"10.1109/LSSC.2025.3557531","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3557531","url":null,"abstract":"A series of switchable resonators are proposed by incorporating the parasitic effects of two gallium nitride (GaN) high electron mobility transistor (HEMT) devices in this letter, based on which a broadband single-pole double-throw (SPDT) switch is presented with a bandpass response. As for on-chip switches, the ideal transistor is desired to act as a capacitor in its off-state but a resistor in its on-state. In conventional switch designs, the inductive effects of transistors are typically suppressed due to their detrimental impact on impedance matching and isolation. In contrast to this conventional approach, this study proposes a resonator-based design strategy that intentionally exploits and amplifies these inductive characteristics to construct two distinct GaN HEMT-integrated resonators. The first resonator employs the enhanced on-state inductance of a switching transistor combined with an MIM capacitor to form a series resonant network, enabling broadband impedance matching. The second resonator utilizes the large off-state capacitance of a power transistor and a short-circuited transmission line to establish a parallel resonant network. Leveraging the unique properties of these resonators, a broadband switch topology is accordingly proposed and experimentally validated. For demonstration, a SPDT switch is designed and fabricated in a 100 nm GaN-on-Si process. The proposed switch operates from 16 to 33 GHz based on experimental measurements. Two transmission poles are observed in the passband. This result experimentally validates the GaN HEMT-based resonator design.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"105-108"},"PeriodicalIF":2.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 4×56 -Gbaud PAM-4 Linear and Low-Noise TIA for Linear-Drive Pluggable Optics 用于线性驱动可插拔光学器件的4×56 -Gbaud PAM-4线性和低噪声TIA
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-03-29 DOI: 10.1109/LSSC.2025.3574875
Wei Chen;Minhao Li;Ming Zhong;Yuan Li;Ying Wu;Pisen Zhou;Patrick Yin Chiang
This letter presents a $4times 56$ -Gbaud linear transimpedance amplifier (TIA) with low noise and high linearity, designed for linear-drive pluggable optics (LPO) and implemented in 0.13- $mu $ m SiGe-BiCMOS technology (fT/f ${_{text {MAX}}} {=} 260$ /350 GHz). The TIA features an inductive shunt-feedback (ISFB) transimpedance stage (TIS) with a $pi $ -topology L-C network as the input stage, achieving wide bandwidth (BW) and low noise despite large photodiode (PD) and packaging parasitic capacitances. Two current-splitting variable gain amplifiers (VGAs) with continuous-time linear equalizer (CTLE) functionality are cascaded after the TIS, providing a gain control range of –12 to +18 dB and accommodating input currents up to 2mApp. A 50-ohm output buffer with T-coil further extends the BW. Measurement results demonstrate a maximum optical-to-electrical transimpedance gain (O/E.ZT) of 73.8 dB $Omega $ , an O/E O/E.BW exceeding 40 GHz, an input-referred noise (IRN) current of $1.9~mu $ Arms, and total harmonic distortion (THD) ¡ 4.5% for a 700-mVpp output swing. The TIA supports 56-Gbaud PAM-4 eye diagrams with PRBS31Q and achieves 9.7-dBm optical modulation amplitude (OMA) sensitivity at the pre-FEC BER limit of $2.4times 10^{-4}$ for 56-Gbaud PAM-4 SSPRQ. The design achieves a power efficiency of 1.67 pJ/bit and occupies an area of $3.14times 1.04$ mm2.
本文介绍了一种$4times 56$ - gbaud线性跨阻放大器(TIA),具有低噪声和高线性度,专为线性驱动可插拔光学器件(LPO)设计,采用0.13- $mu $ m SiGe-BiCMOS技术(fT/f ${_{text {MAX}}} {=} 260$ /350 GHz)实现。该TIA具有电感式并联反馈(ISFB)跨阻级(TIS),其输入级为$pi $ -拓扑L-C网络,尽管具有较大的光电二极管(PD)和封装寄生电容,但仍可实现宽带(BW)和低噪声。两个具有连续时间线性均衡器(CTLE)功能的分流可变增益放大器(vga)级联在TIS之后,提供-12至+18 dB的增益控制范围,可容纳高达2mApp的输入电流。50欧姆输出缓冲器与t线圈进一步扩展了BW。测量结果表明,最大光电透阻增益(O/E. zt)为73.8 dB $Omega $, O/E. O/E。BW超过40 GHz,输入参考噪声(IRN)电流为$1.9~mu $ Arms,总谐波失真(THD)为4.5% for a 700-mVpp output swing. The TIA supports 56-Gbaud PAM-4 eye diagrams with PRBS31Q and achieves 9.7-dBm optical modulation amplitude (OMA) sensitivity at the pre-FEC BER limit of $2.4times 10^{-4}$ for 56-Gbaud PAM-4 SSPRQ. The design achieves a power efficiency of 1.67 pJ/bit and occupies an area of $3.14times 1.04$ mm2.
{"title":"A 4×56 -Gbaud PAM-4 Linear and Low-Noise TIA for Linear-Drive Pluggable Optics","authors":"Wei Chen;Minhao Li;Ming Zhong;Yuan Li;Ying Wu;Pisen Zhou;Patrick Yin Chiang","doi":"10.1109/LSSC.2025.3574875","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3574875","url":null,"abstract":"This letter presents a <inline-formula> <tex-math>$4times 56$ </tex-math></inline-formula>-Gbaud linear transimpedance amplifier (TIA) with low noise and high linearity, designed for linear-drive pluggable optics (LPO) and implemented in 0.13-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m SiGe-BiCMOS technology (fT/f<inline-formula> <tex-math>${_{text {MAX}}} {=} 260$ </tex-math></inline-formula>/350 GHz). The TIA features an inductive shunt-feedback (ISFB) transimpedance stage (TIS) with a <inline-formula> <tex-math>$pi $ </tex-math></inline-formula>-topology L-C network as the input stage, achieving wide bandwidth (BW) and low noise despite large photodiode (PD) and packaging parasitic capacitances. Two current-splitting variable gain amplifiers (VGAs) with continuous-time linear equalizer (CTLE) functionality are cascaded after the TIS, providing a gain control range of –12 to +18 dB and accommodating input currents up to 2mApp. A 50-ohm output buffer with T-coil further extends the BW. Measurement results demonstrate a maximum optical-to-electrical transimpedance gain (O/E.ZT) of 73.8 dB<inline-formula> <tex-math>$Omega $ </tex-math></inline-formula>, an O/E O/E.BW exceeding 40 GHz, an input-referred noise (IRN) current of <inline-formula> <tex-math>$1.9~mu $ </tex-math></inline-formula>Arms, and total harmonic distortion (THD) ¡ 4.5% for a 700-mVpp output swing. The TIA supports 56-Gbaud PAM-4 eye diagrams with PRBS31Q and achieves 9.7-dBm optical modulation amplitude (OMA) sensitivity at the pre-FEC BER limit of <inline-formula> <tex-math>$2.4times 10^{-4}$ </tex-math></inline-formula> for 56-Gbaud PAM-4 SSPRQ. The design achieves a power efficiency of 1.67 pJ/bit and occupies an area of <inline-formula> <tex-math>$3.14times 1.04$ </tex-math></inline-formula> mm2.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"197-200"},"PeriodicalIF":2.2,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144663709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 302.5-GHz 30.9-dB-Gain THz Amplifier in 65-nm CMOS 302.5 ghz 30.9 db增益的65纳米CMOS太赫兹放大器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-03-28 DOI: 10.1109/LSSC.2025.3574413
Yu-Kai Chen;Yi-Fan Tseng;Wei-Zhe Su;Chun-Hsing Li
A 302.5-GHz high-gain CMOS THz amplifier is proposed in this work. An electromagnetic (EM) modeling approach, verified by transistor measurements, is employed to optimize transistor layout, effectively reducing gate resistance and drain-to-gate capacitance. This significantly enhances the transistor’s maximum oscillation frequency $f_{mathrm {max }}$ from 239.7 to 367.5 GHz. Furthermore, a $G_{mathrm {max }}$ -peak-offset-matching technique is proposed to simultaneously optimize active transistors and passive matching networks, significantly increasing the gain by 3.5 dB. Implemented in a 65-nm CMOS technology, the proposed THz amplifier achieves a measured gain of 30.9 dB at 302.5 GHz with an output saturation power of –5.3 dBm while only consuming 35.4 mW from a 1.1 V supply. To the best of the authors’ knowledge, this work exhibits the first experimental validation of the EM modeling approach and achieves the highest reported gain above 200 GHz in bulk CMOS technologies.
本文提出了一种302.5 ghz高增益CMOS太赫兹放大器。采用电磁(EM)建模方法优化晶体管布局,有效降低栅极电阻和漏极电容。这显着提高了晶体管的最大振荡频率$f_{ mathm {max}}$从239.7到367.5 GHz。此外,提出了一种$G_{ mathm {max}}$峰值偏移匹配技术,可同时优化有源晶体管和无源匹配网络,使增益显著提高3.5 dB。该太赫兹放大器采用65纳米CMOS技术实现,在302.5 GHz时的测量增益为30.9 dB,输出饱和功率为-5.3 dBm,而在1.1 V电源下仅消耗35.4 mW。据作者所知,这项工作展示了EM建模方法的首次实验验证,并在批量CMOS技术中实现了200 GHz以上的最高增益。
{"title":"A 302.5-GHz 30.9-dB-Gain THz Amplifier in 65-nm CMOS","authors":"Yu-Kai Chen;Yi-Fan Tseng;Wei-Zhe Su;Chun-Hsing Li","doi":"10.1109/LSSC.2025.3574413","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3574413","url":null,"abstract":"A 302.5-GHz high-gain CMOS THz amplifier is proposed in this work. An electromagnetic (EM) modeling approach, verified by transistor measurements, is employed to optimize transistor layout, effectively reducing gate resistance and drain-to-gate capacitance. This significantly enhances the transistor’s maximum oscillation frequency <inline-formula> <tex-math>$f_{mathrm {max }}$ </tex-math></inline-formula> from 239.7 to 367.5 GHz. Furthermore, a <inline-formula> <tex-math>$G_{mathrm {max }}$ </tex-math></inline-formula>-peak-offset-matching technique is proposed to simultaneously optimize active transistors and passive matching networks, significantly increasing the gain by 3.5 dB. Implemented in a 65-nm CMOS technology, the proposed THz amplifier achieves a measured gain of 30.9 dB at 302.5 GHz with an output saturation power of –5.3 dBm while only consuming 35.4 mW from a 1.1 V supply. To the best of the authors’ knowledge, this work exhibits the first experimental validation of the EM modeling approach and achieves the highest reported gain above 200 GHz in bulk CMOS technologies.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"165-168"},"PeriodicalIF":2.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Solid-State Circuits Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1