This letter presents an ultralow-noise, power-efficient, and pulse-width modulation (PWM)-dimming-tolerant photocurrent readout circuit for under-display ambient light sensor (ALS). A transimpedance amplifier (TIA) with a feedback diode achieves G$Omega $ -level resistance and 6 fA/$surd $ Hz input current noise, enabling sub-pA resolution. Instability and noise folding are mitigated at low power through a signal-dependent auto-tracking zero for frequency compensation and a low-pass filter for high-frequency noise suppression. A 2-point calibration algorithm improves the linearity of the current-to-frequency (I2F) quantizer without incurring additional power. To extract ambient light in the presence of PWM dimming interference, the readout supports under-sampling, allowing digital cancellation of interference. Fabricated in 180 nm CMOS, the prototype achieves $0.36~rm pA_{pp}$ resolution, 146.3 dB dynamic range (DR), and a 206.3 dB $rm FoM_{DR}$ in 0.84 ms readout time, representing best-in-class performance. Optical ALS measurements under PWM dimming interference are experimentally validated.
{"title":"A 560 μ W, 6 fA/√Hz, 146 dB-DR Ultrasensitive Current Readout Circuit for PWM-Dimming-Tolerant Under-Display Ambient Light Sensors","authors":"Xiuzhi Zhao;Liheng Liu;Shi Chen;Tianxiang Qu;Qinjing Pan;Dan Li;Gan Guo;Zhiliang Hong;Jiawei Xu","doi":"10.1109/LSSC.2025.3626378","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3626378","url":null,"abstract":"This letter presents an ultralow-noise, power-efficient, and pulse-width modulation (PWM)-dimming-tolerant photocurrent readout circuit for under-display ambient light sensor (ALS). A transimpedance amplifier (TIA) with a feedback diode achieves G<inline-formula> <tex-math>$Omega $ </tex-math></inline-formula>-level resistance and 6 fA/<inline-formula> <tex-math>$surd $ </tex-math></inline-formula>Hz input current noise, enabling sub-pA resolution. Instability and noise folding are mitigated at low power through a signal-dependent auto-tracking zero for frequency compensation and a low-pass filter for high-frequency noise suppression. A 2-point calibration algorithm improves the linearity of the current-to-frequency (I2F) quantizer without incurring additional power. To extract ambient light in the presence of PWM dimming interference, the readout supports under-sampling, allowing digital cancellation of interference. Fabricated in 180 nm CMOS, the prototype achieves <inline-formula> <tex-math>$0.36~rm pA_{pp}$ </tex-math></inline-formula> resolution, 146.3 dB dynamic range (DR), and a 206.3 dB <inline-formula> <tex-math>$rm FoM_{DR}$ </tex-math></inline-formula> in 0.84 ms readout time, representing best-in-class performance. Optical ALS measurements under PWM dimming interference are experimentally validated.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"361-364"},"PeriodicalIF":2.0,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145510087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-30DOI: 10.1109/LSSC.2025.3627274
Jakob Finkbeiner;Raphael Nägele;Manuel Wittlinger;Markus Grözing;Manfred Berroth;Georg Rademacher
Analog computing offers intrinsic energy and latency benefits that makes it attractive for real-time and edge applications. Conventional analog accelerators suffer from repeated conversions between analog and digital domain, which degrades efficiency and throughput. We propose an all-analog pipelined neural network accelerator architecture in 22 nm fully-depleted silicon-on-insulator (FD-SOI) complementary metal-oxide-semiconductor (CMOS). Measurements of a demonstrator ASIC with analog I/Os and 6 bit weights are presented. The system energy efficiency is 290 TOPS/W or 558 TOPS/W if the energy for bias generation is neglected. The pipelined architecture achieves a throughput of 500M inferences/s and a latency of 1 ns/layer.
{"title":"PANNA: A 558 TOPS/W Pipelined All-Analog Neural Network Accelerator in 22 nm FD-SOI","authors":"Jakob Finkbeiner;Raphael Nägele;Manuel Wittlinger;Markus Grözing;Manfred Berroth;Georg Rademacher","doi":"10.1109/LSSC.2025.3627274","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3627274","url":null,"abstract":"Analog computing offers intrinsic energy and latency benefits that makes it attractive for real-time and edge applications. Conventional analog accelerators suffer from repeated conversions between analog and digital domain, which degrades efficiency and throughput. We propose an all-analog pipelined neural network accelerator architecture in 22 nm fully-depleted silicon-on-insulator (FD-SOI) complementary metal-oxide-semiconductor (CMOS). Measurements of a demonstrator ASIC with analog I/Os and 6 bit weights are presented. The system energy efficiency is 290 TOPS/W or 558 TOPS/W if the energy for bias generation is neglected. The pipelined architecture achieves a throughput of 500M inferences/s and a latency of 1 ns/layer.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"365-368"},"PeriodicalIF":2.0,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145510089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-28DOI: 10.1109/LSSC.2025.3626442
Ethan Chou;Hesham Beshary;Nima Baniasadi;Ali M. Niknejad
This letter presents a wideband and low-power direct-downconversion 200 GHz receiver element for digital-beamforming applications implemented in 16 nm FinFET technology. Wideband and low integrated receiver noise figure of 9.8 dB across a 21 GHz baseband bandwidth is realized with a differential low-noise amplifier leveraging an active input balun stage, while wideband gain of 29 dB with a 3-dB bandwidth at RF of 42 GHz is maintained throughout the receiver chain. Low-loss I/Q splitting and current-efficient variable-gain baseband amplification enable relatively low total DC power consumption of 130 mW, including the LO chain. The high instantaneous bandwidth and low power consumption enable potentially high data rates with high energy efficiency.
{"title":"A 200 GHz Wideband and Low-Power Direct-Downconversion Receiver Element in 16 nm FinFET Technology","authors":"Ethan Chou;Hesham Beshary;Nima Baniasadi;Ali M. Niknejad","doi":"10.1109/LSSC.2025.3626442","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3626442","url":null,"abstract":"This letter presents a wideband and low-power direct-downconversion 200 GHz receiver element for digital-beamforming applications implemented in 16 nm FinFET technology. Wideband and low integrated receiver noise figure of 9.8 dB across a 21 GHz baseband bandwidth is realized with a differential low-noise amplifier leveraging an active input balun stage, while wideband gain of 29 dB with a 3-dB bandwidth at RF of 42 GHz is maintained throughout the receiver chain. Low-loss I/Q splitting and current-efficient variable-gain baseband amplification enable relatively low total DC power consumption of 130 mW, including the LO chain. The high instantaneous bandwidth and low power consumption enable potentially high data rates with high energy efficiency.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"349-352"},"PeriodicalIF":2.0,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145510086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-22DOI: 10.1109/LSSC.2025.3624096
Xiaosen Liu;Xichen Sun;Renwei Chen;Haozhe Zhang;Zhoutong Liu;Yan Wang
With the rapid advancement of chiplet and heterogenous integration technologies, delivering power through the package, redistribution layer (RDL), and chip layers in 3-D space has become a fundamental challenge for high-performance SoCs. This letter provides a comprehensive overview of power delivery solutions, including low-dropout regulator (LDOs), switched capacitor converters, and Buck converters. It further details and compares advanced techniques such as novel conversion topologies, control schemes, optimization strategies, and integration strategies, offering insights into overcoming the power wall in emerging 3D-ICs.
{"title":"3D-IC Chiplet Integrated Power Supply With LDO, SCVR, and Buck DC–DC Converter","authors":"Xiaosen Liu;Xichen Sun;Renwei Chen;Haozhe Zhang;Zhoutong Liu;Yan Wang","doi":"10.1109/LSSC.2025.3624096","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3624096","url":null,"abstract":"With the rapid advancement of chiplet and heterogenous integration technologies, delivering power through the package, redistribution layer (RDL), and chip layers in 3-D space has become a fundamental challenge for high-performance SoCs. This letter provides a comprehensive overview of power delivery solutions, including low-dropout regulator (LDOs), switched capacitor converters, and Buck converters. It further details and compares advanced techniques such as novel conversion topologies, control schemes, optimization strategies, and integration strategies, offering insights into overcoming the power wall in emerging 3D-ICs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"341-344"},"PeriodicalIF":2.0,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-22DOI: 10.1109/LSSC.2025.3624263
Changjoo Kim;Sooho Park;Yohan Choi;Minkyun Shim;Woojin Lee;Donghwi Seo;Chulwoo Kim
This letter presents an 8-bit 400 MS/s 1-then-2-bit/cycle successive approximation register (SAR) analog-to-digital converter (ADC) employing a comparator rotation-based background offset calibration (CRBC) technique. Unlike conventional 1-then-2-bit/cycle architectures, where calibration validity depends on the input voltage, the proposed comparator rotation-based background calibration enables input-independent background calibration, ensuring rapid calibration convergence and the reliable detection of time-varying errors, irrespective of input conditions. The prototype ADC was fabricated in 28 nm CMOS technology and achieves a signal-to-noise and distortion ratio (SNDR) of 42.9 dB and a spurious-free dynamic range (SFDR) of 56.5 dB at the Nyquist frequency. It consumes 1.67 mW at 400 MS/s, resulting in a Walden figure-of-merit (FoMW) of 36.6 fJ/conversion-step.
{"title":"An 8-Bit 400-MS/s 1-Then-2-Bit/Cycle SAR ADC With Comparator Rotation-Based Input-Independent Background Offset Calibration","authors":"Changjoo Kim;Sooho Park;Yohan Choi;Minkyun Shim;Woojin Lee;Donghwi Seo;Chulwoo Kim","doi":"10.1109/LSSC.2025.3624263","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3624263","url":null,"abstract":"This letter presents an 8-bit 400 MS/s 1-then-2-bit/cycle successive approximation register (SAR) analog-to-digital converter (ADC) employing a comparator rotation-based background offset calibration (CRBC) technique. Unlike conventional 1-then-2-bit/cycle architectures, where calibration validity depends on the input voltage, the proposed comparator rotation-based background calibration enables input-independent background calibration, ensuring rapid calibration convergence and the reliable detection of time-varying errors, irrespective of input conditions. The prototype ADC was fabricated in 28 nm CMOS technology and achieves a signal-to-noise and distortion ratio (SNDR) of 42.9 dB and a spurious-free dynamic range (SFDR) of 56.5 dB at the Nyquist frequency. It consumes 1.67 mW at 400 MS/s, resulting in a Walden figure-of-merit (FoMW) of 36.6 fJ/conversion-step.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"345-348"},"PeriodicalIF":2.0,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145455901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-15DOI: 10.1109/LSSC.2025.3622233
Basem Abdelaziz Abdelmagid;Yuqi Liu;Hua Wang
This work presents a compact 110–140 GHz bidirectional D-band passive phase shifter based on combining a 5-stage capacitively-loaded reflective-type PS (RTPS) with a wideband 0°/180° stage. The design achieves a 360° phase range with a resolution of 11.25°. By applying: 1) a wideband RTPS design methodology on the stage level; 2) frequency/switching-staggering techniques among the RTPS stages; and 3) a balun-staggering technique into the 0°/180° stage, the design achieves calibration-free operation with frequency-invariant codes over 24% fractional bandwidth (FBW). The design is implemented in GlobalFoundaries 22-nm CMOS FD-SOI technology with a compact core area of $130~mu $ m $times 480~mu $ m. It achieves measured RMS phase and magnitude errors lower than 2.38° and 0.63 dB, respectively, across the entire operating bandwidth using the same frequency-invariant codes.
{"title":"A Wideband Calibration-Free D-Band Passive Phase Shifter With Frequency-Invariant Codes Over 24% Fractional Bandwidth","authors":"Basem Abdelaziz Abdelmagid;Yuqi Liu;Hua Wang","doi":"10.1109/LSSC.2025.3622233","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3622233","url":null,"abstract":"This work presents a compact 110–140 GHz bidirectional D-band passive phase shifter based on combining a 5-stage capacitively-loaded reflective-type PS (RTPS) with a wideband 0°/180° stage. The design achieves a 360° phase range with a resolution of 11.25°. By applying: 1) a wideband RTPS design methodology on the stage level; 2) frequency/switching-staggering techniques among the RTPS stages; and 3) a balun-staggering technique into the 0°/180° stage, the design achieves calibration-free operation with frequency-invariant codes over 24% fractional bandwidth (FBW). The design is implemented in GlobalFoundaries 22-nm CMOS FD-SOI technology with a compact core area of <inline-formula> <tex-math>$130~mu $ </tex-math></inline-formula>m <inline-formula> <tex-math>$times 480~mu $ </tex-math></inline-formula>m. It achieves measured RMS phase and magnitude errors lower than 2.38° and 0.63 dB, respectively, across the entire operating bandwidth using the same frequency-invariant codes.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"329-332"},"PeriodicalIF":2.0,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-14DOI: 10.1109/LSSC.2025.3621413
Berkay Özbek;Timothy G. Constandinou
This letter presents an adaptable ring oscillator (RO)-true random number generator (TRNG) that removes the fixed power–throughput tradeoff by selecting delay-cell physics at run time. A hybrid core uses a current-starved inverter in low-power (LP) mode to amplify slew-limited jitter for high bit-efficiency at low frequency, and a latched cross-coupled cell in high-performance (HP) mode to exploit regeneration-time jitter over a wider band; both share a unified fast-by-slow sampling path with XOR combining. Fabricated in 180 nm CMOS ($265times 490~mu $ m), the TRNG spans 0.8–2.0 V and $- 20~^{circ }$ C–$80~^{circ }$ C, achieves 168 nW (3.95 pJ/bit) in LP and 44.3 Mb/s in HP, and reaches near-ideal HP entropy (0.999999999984). Long datasets pass NIST SP 800-22 (including under 400 mV injection at the second harmonic), SP 800-90B, and AIS31. A single, digitally-tunable IP thus delivers nanowatt standby entropy and burst-mode throughput without architectural change.
{"title":"A 168 nW to 44.3 Mb/s Adaptable TRNG With 400 mV Attack-Resilient Hybrid RO Core","authors":"Berkay Özbek;Timothy G. Constandinou","doi":"10.1109/LSSC.2025.3621413","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3621413","url":null,"abstract":"This letter presents an adaptable ring oscillator (RO)-true random number generator (TRNG) that removes the fixed power–throughput tradeoff by selecting delay-cell physics at run time. A hybrid core uses a current-starved inverter in low-power (LP) mode to amplify slew-limited jitter for high bit-efficiency at low frequency, and a latched cross-coupled cell in high-performance (HP) mode to exploit regeneration-time jitter over a wider band; both share a unified fast-by-slow sampling path with XOR combining. Fabricated in 180 nm CMOS (<inline-formula> <tex-math>$265times 490~mu $ </tex-math></inline-formula>m), the TRNG spans 0.8–2.0 V and <inline-formula> <tex-math>$- 20~^{circ }$ </tex-math></inline-formula>C–<inline-formula> <tex-math>$80~^{circ }$ </tex-math></inline-formula>C, achieves 168 nW (3.95 pJ/bit) in LP and 44.3 Mb/s in HP, and reaches near-ideal HP entropy (0.999999999984). Long datasets pass NIST SP 800-22 (including under 400 mV injection at the second harmonic), SP 800-90B, and AIS31. A single, digitally-tunable IP thus delivers nanowatt standby entropy and burst-mode throughput without architectural change.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"325-328"},"PeriodicalIF":2.0,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145351895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-07DOI: 10.1109/LSSC.2025.3618942
Prashanth Mohan;Siddharth Das;Ken Mai
This letter presents a flexible and energy-efficient RISC-V system-on-chip (SoC) in 22nm FinFET technology, achieving state-of-the-art performance by tightly integrating the CPU with a synthesized embedded FPGA (embedded field programmable gate array (eFPGA)), enabling the implementation of reconfigurable custom instructions. The tight integration of the eFPGA with SoC scratchpad memory facilitates parallel high-bandwidth (16 GB/s) access to scratchpad SRAMs and enables rapid eFPGA reconfiguration ($2~mu $ s) to switch between custom instruction sets. The eFPGA fabric itself is optimized for compute-intensive tasks, featuring fused logic tiles that amortize routing overheads to achieve a compute density of 22.3 GOPS/mm2. The measurement results from the fabricated chip demonstrate a peak energy efficiency of 748 GOPS/W (INT8) while improving throughput and energy by 1-2 orders of magnitude compared to the CPU for accelerated applications.
{"title":"A RISC-V SoC With Reconfigurable Custom Instructions on a Synthesized eFPGA Fabric in 22nm FinFET","authors":"Prashanth Mohan;Siddharth Das;Ken Mai","doi":"10.1109/LSSC.2025.3618942","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3618942","url":null,"abstract":"This letter presents a flexible and energy-efficient RISC-V system-on-chip (SoC) in 22nm FinFET technology, achieving state-of-the-art performance by tightly integrating the CPU with a synthesized embedded FPGA (embedded field programmable gate array (eFPGA)), enabling the implementation of reconfigurable custom instructions. The tight integration of the eFPGA with SoC scratchpad memory facilitates parallel high-bandwidth (16 GB/s) access to scratchpad SRAMs and enables rapid eFPGA reconfiguration (<inline-formula> <tex-math>$2~mu $ </tex-math></inline-formula>s) to switch between custom instruction sets. The eFPGA fabric itself is optimized for compute-intensive tasks, featuring fused logic tiles that amortize routing overheads to achieve a compute density of 22.3 GOPS/mm2. The measurement results from the fabricated chip demonstrate a peak energy efficiency of 748 GOPS/W (INT8) while improving throughput and energy by 1-2 orders of magnitude compared to the CPU for accelerated applications.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"321-324"},"PeriodicalIF":2.0,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145351924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-06DOI: 10.1109/LSSC.2025.3618161
Bram Veraverbeke;Filip Tavernier
All cryo-CMOS quantum-classical control interfaces require an analog-to-digital converter (ADC) bridging the analog qubits and the digital control logic. Dynamic comparators play a crucial role in the precision, speed, and power consumption of these ADCs. Yet, their performance is severely impacted by the cryogenic environment. Therefore, this letter benchmarks, for the first time in the literature, four comparator topologies at room temperature (RT) and 6K. Their noise, delay, and energy consumption are characterized, allowing the identification of the best topology for a given application. This analysis shows that the strongARM (SA) comparator is the most energy efficient, closely followed by the double tail comparator. However, the reduced voltage headroom at 6K almost doubles the SA’s delay compared to RT and leaves it susceptible to common-mode and supply voltage variations. In contrast, the recently proposed triple tail comparator with capacitive over-neutralization limits the delay increase to only 13ps by separating the preamplifier and the latch. Furthermore, its boosted preamplification gain makes it notably more resilient to voltage variations, ensuring a highly robust cryogenic operation favorable for scaled technologies.
{"title":"A Benchmark of Cryo-CMOS Dynamic Comparators in a 40 nm Bulk CMOS Technology","authors":"Bram Veraverbeke;Filip Tavernier","doi":"10.1109/LSSC.2025.3618161","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3618161","url":null,"abstract":"All cryo-CMOS quantum-classical control interfaces require an analog-to-digital converter (ADC) bridging the analog qubits and the digital control logic. Dynamic comparators play a crucial role in the precision, speed, and power consumption of these ADCs. Yet, their performance is severely impacted by the cryogenic environment. Therefore, this letter benchmarks, for the first time in the literature, four comparator topologies at room temperature (RT) and 6K. Their noise, delay, and energy consumption are characterized, allowing the identification of the best topology for a given application. This analysis shows that the strongARM (SA) comparator is the most energy efficient, closely followed by the double tail comparator. However, the reduced voltage headroom at 6K almost doubles the SA’s delay compared to RT and leaves it susceptible to common-mode and supply voltage variations. In contrast, the recently proposed triple tail comparator with capacitive over-neutralization limits the delay increase to only 13ps by separating the preamplifier and the latch. Furthermore, its boosted preamplification gain makes it notably more resilient to voltage variations, ensuring a highly robust cryogenic operation favorable for scaled technologies.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"317-320"},"PeriodicalIF":2.0,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145351897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this letter, we present a high-entropy strong physically unclonable function (PUF) utilizing weak-inversion current mirrors implemented in a standard 65-nm CMOS technology. Each response bit of the proposed PUF relies on the threshold voltage differences of minimum-sized transistors arranged in a $32times 32$ matrix. The analog operating principle enables encoding at least three effective bits per transistor pair, significantly improving entropy density. Leveraging a bit-masking technique, the design achieves remarkable robustness, attaining a bit error rate (BER) as low as 0.22% even under substantial supply voltage and temperature variations, with less than 10% discarded bits. The presented architecture exhibits a record area-to-entropy ratio of $166~rm {F^{2}}$ /bit, confirming its suitability for highly secure, compact applications in hardware security.
{"title":"High-Entropy Analog-Based Strong Physical Unclonable Function With Area-to-Entropy-ratio of 166 F2/bit","authors":"Alessandro Catania;Sebastiano Strangio;Maksym Paliy;Christian Sbrana;Michele Bertozzi;Giuseppe Iannaccone","doi":"10.1109/LSSC.2025.3616263","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3616263","url":null,"abstract":"In this letter, we present a high-entropy strong physically unclonable function (PUF) utilizing weak-inversion current mirrors implemented in a standard 65-nm CMOS technology. Each response bit of the proposed PUF relies on the threshold voltage differences of minimum-sized transistors arranged in a <inline-formula> <tex-math>$32times 32$ </tex-math></inline-formula> matrix. The analog operating principle enables encoding at least three effective bits per transistor pair, significantly improving entropy density. Leveraging a bit-masking technique, the design achieves remarkable robustness, attaining a bit error rate (BER) as low as 0.22% even under substantial supply voltage and temperature variations, with less than 10% discarded bits. The presented architecture exhibits a record area-to-entropy ratio of <inline-formula> <tex-math>$166~rm {F^{2}}$ </tex-math></inline-formula>/bit, confirming its suitability for highly secure, compact applications in hardware security.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"309-312"},"PeriodicalIF":2.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145255900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}