{"title":"Modeling and Analysis of Parasitic Parameters of Through-Glass Vias with Various Tapers and Sidewall Roughness","authors":"Zhen Fang, Jihua Zhang, Shuqi Li, Jinxu Liu, Libin Gao, Hongwei Chen, Xingzhou Cai, Wanli Zhang","doi":"10.1109/tcpmt.2024.3452103","DOIUrl":"https://doi.org/10.1109/tcpmt.2024.3452103","url":null,"abstract":"","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"5 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1109/TCPMT.2024.3452637
Euichul Chung;Geyu Yan;Shane Oh;Bharath Ramakrishnan;Husam Alissa;Vaidehi Oruganti;Christian Belady;Muhannad S. Bakir
The electrical-thermal characteristics of microfluidic cooled 3-D-integrated circuits (3D-ICs) accounting for thermal metrics, including thermal resistance and pressure drop, and electrical metrics, including signal delay and bandwidth density, are investigated in this article. The parametric design exploration of various through-silicon via (TSV)-integrated microfluidic pin-fin heat sinks is modeled using computational fluid dynamics (CFD) and SPICE simulation. The co-integration of micropin-fin and TSVs forms a design interdependence, leading to a tradeoff between electrical and thermal performance. Owing to the complex relationship between electrical and thermal metrics, we explore optimal 3D-IC design solutions using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a multicriteria decision method to determine the optimized TSV-integrated microfluidic heat sink design with different degrees of weights assigned to thermal and electrical considerations.
{"title":"Electrical–Thermal Co-Analysis of Through-Silicon Vias (TSVs) Integrated Within Micropin-Fin Heatsink for 3-D Heterogeneous Integration (HI)","authors":"Euichul Chung;Geyu Yan;Shane Oh;Bharath Ramakrishnan;Husam Alissa;Vaidehi Oruganti;Christian Belady;Muhannad S. Bakir","doi":"10.1109/TCPMT.2024.3452637","DOIUrl":"10.1109/TCPMT.2024.3452637","url":null,"abstract":"The electrical-thermal characteristics of microfluidic cooled 3-D-integrated circuits (3D-ICs) accounting for thermal metrics, including thermal resistance and pressure drop, and electrical metrics, including signal delay and bandwidth density, are investigated in this article. The parametric design exploration of various through-silicon via (TSV)-integrated microfluidic pin-fin heat sinks is modeled using computational fluid dynamics (CFD) and SPICE simulation. The co-integration of micropin-fin and TSVs forms a design interdependence, leading to a tradeoff between electrical and thermal performance. Owing to the complex relationship between electrical and thermal metrics, we explore optimal 3D-IC design solutions using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a multicriteria decision method to determine the optimized TSV-integrated microfluidic heat sink design with different degrees of weights assigned to thermal and electrical considerations.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"14 10","pages":"1792-1802"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1109/TCPMT.2024.3452484
Priyanka Borkar;Vijay S. Duryodhan
The performance of a phase change material (PCM)-based hybrid heat sink is evaluated using a transient, 3-D numerical study. PCM is used in a passive cooling method to dissipate the heat, whereas liquid flowthrough microchannels is employed as active cooling to resolidify the PCM. Passive and active cooling modes operate periodically, governed by various operating temperatures. Simulations are performed by varying aspect ratio (AR) of the microchannel (AR = 1 and 3) and fin spacing/PCM volume ( $S = 1$