An area-efficient CMOS cross-coupled LC-VCO, operating from 5.74 GHz to 8.02 GHz and featuring a tail noise filter with two tail inductors integrated inside the main inductor, is presented for the first time. The tail noise filter comprised two nested intertwined tail inductors (NITIs) and a tail capacitor bank, effectively suppressing phase noise (PN) while generating negligible magnetic couplings between the main inductor and the NITIs. The proposed architecture enables area-efficient CMOS cross-coupled design, even with the two NITIs, but has no performance degradation, i.e., it eliminates the additional area for the tail noise filter. Implemented in 28-nm CMOS process, it consumed 11 mA current from 0.73 V power supply. The LC-VCO achieved PN of −116.38 dBc/Hz at 1 MHz offset frequency for an output frequency of 5.747 GHz. 37% and 27% reductions in silicon area were achieved, over the conventional LC-VCO and an LC-VCO using intertwined tail inductors (ITIs), respectively, without compromising on performance. The proposed design has the smallest area among state-of-the-art LC-VCOs that include a tail noise filter along with competitive PN and frequency tuning range (FTR).
{"title":"An Area-Efficient CMOS Cross-Coupled LC-VCO Using Nested Intertwined Tail Inductors","authors":"Hyogyoung An;Hyeonjun Nam;Sungjin Kim;Younghyun Lim;Heein Yoon","doi":"10.1109/TCSII.2024.3485921","DOIUrl":"https://doi.org/10.1109/TCSII.2024.3485921","url":null,"abstract":"An area-efficient CMOS cross-coupled LC-VCO, operating from 5.74 GHz to 8.02 GHz and featuring a tail noise filter with two tail inductors integrated inside the main inductor, is presented for the first time. The tail noise filter comprised two nested intertwined tail inductors (NITIs) and a tail capacitor bank, effectively suppressing phase noise (PN) while generating negligible magnetic couplings between the main inductor and the NITIs. The proposed architecture enables area-efficient CMOS cross-coupled design, even with the two NITIs, but has no performance degradation, i.e., it eliminates the additional area for the tail noise filter. Implemented in 28-nm CMOS process, it consumed 11 mA current from 0.73 V power supply. The LC-VCO achieved PN of −116.38 dBc/Hz at 1 MHz offset frequency for an output frequency of 5.747 GHz. 37% and 27% reductions in silicon area were achieved, over the conventional LC-VCO and an LC-VCO using intertwined tail inductors (ITIs), respectively, without compromising on performance. The proposed design has the smallest area among state-of-the-art LC-VCOs that include a tail noise filter along with competitive PN and frequency tuning range (FTR).","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"143-147"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/TCSII.2024.3485649
Hongjie Zeng;Zemeng Huang;Tao Tan;Yubing Li;Xiuping Li
This brief presents a wideband low noise amplifier (LNA) at K-band. A parasitic-aware analysis focused on gain is proposed in the transformer feedback $g_{mathrm {m}}$