The cultivation of apples in replanted orchards is essential given limitations in land resources. However, the presence of Fusarium and phenolic acids in the replanted soil harms the soil environment, which impedes the sustainable development of the apple industry. In this study, earthworm was used as the fermentation precursor protein to optimize the fermentation conditions, and the inhibition mechanism of the fermentation product on Fusarium and its potential to repair the apple replant soil environment were explored. Laboratory experiments showed that the optimum initial pH, temperature and time of earthworm fermentation were 7, 37 °C and 10 d, respectively. The inhibition rates of earthworm fermentation products against F. oxysporum, F. solani, F. proliferatum, and F. moniliforme were 79.8%, 75.1%, 78.7% and 79.2%, respectively. The inhibition rates of spore germination on F. oxysporum, F. solani, F. proliferatum, and F. moniliforme were 83.8%, 87.3%, 83.2% and 84.8%, respectively. In the field, use 300 mL of earthworm fermentation products for each planting pits before planting. The experimental results showed that, compared with the control, the content of soil pathogenic Fusarium and phenolic acid in Wantou (W3) were decreased by 75.1% and 59.8%, respectively, after treatment with earthworm fermentation products in 2019. Soil urease, phosphatase, sucrase and catalase activities increased by 383.2%, 78.2%, 130.3% and 43.5%, respectively. The fruit weight, anthocyanin content, soluble sugar, sugar-acid ratio, total ester ratio, total ester concentration and yield increased by 80.7%, 60.6%, 25.6%, 50.3%, 19.7%, 262.4% and 193.5%, respectively, while titratable acid content decreased by 16.9%. In conclusion, earthworm fermentation products can be used as a sustainable amendment to control apple replant disease.
The formation of root system architecture (RSA) plays a crucial role in plant growth. OsDRO1 is known to have a function in controlling RSA in rice, however, the role of potato StDRO2, a homolog of rice OsDRO1, in root growth remains unclear. In this study, we obtained potato dro2 mutant lines by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR/Cas9)-mediated genome editing system. The mutant lines were generated from a splicing defect of the StDRO2 intron 1, which causes a nonsense mutation in StDRO2. Furthermore, the secondary structure of StDRO2 mRNA analyzed with RNAfold WebServer was altered in the dro2 mutant. Mutation of StDRO2 conveys potato adaptation through changing the RSA via alteration of auxin transport under drought stress. The potato dro2 lines showed higher plant height, longer root length, smaller root growth angle and increased tuber weight than the wild-type. The alteration of RSA was associated with a disturbance of IAA distribution in the dro2 mutant, and the levels of StPIN7 and StPIN10 detected by using real-time PCR were up-regulated in the roots of potato dro2 lines grown under drought stress. Moreover, the microRNAs (miRNAs) PmiREN024536 and PmiREN024486 targeted the StDRO2 gene, and auxin positively and negatively regulated the expression of StDRO2 and the miRNAs PmiREN024536 and PmiREN024486, respectively, in the potato roots. Our data shows that a regulatory network involving auxin, StDRO2, PmiREN024536 and PmiREN024486 can control RSA to convey potato fitness under drought stress.
Waterlogging stress is one of the greatest environmental threats to kiwifruit growth and development. ERF-VII proteins have been demonstrated to play pivotal roles in regulating plant tolerance to waterlogging. Nevertheless, the genome-wide role of ERF-VII in kiwifruit waterlogging stress tolerance remains unclear. Here, we report the function and regulatory network of an ERF-VII transcription factor located to the nucleus, AvERF73, in kiwifruit waterlogging tolerance. Overexpression of AvERF73 in Arabidopsis thaliana and A. chinensis cv. Hongyang enhanced waterlogging tolerance in transgenic plants. Furthermore, we performed transcriptome analysis (RNA-seq) and DNA affinity purification sequencing (DAP-seq) to explore the regulatory mechanism of AvERF73. RNA-seq coupled with DAP-seq showed that AvERF73 might directly activate AcNAC022 involved in the “cellular response to hypoxia” process and AcHMGS1 involved in the mevalonate pathway to respond to waterlogging, which were also confirmed by a dual-luciferase reporter assay. Based on our results, we propose a putative working model for controlling waterlogging tolerance by AvERF73 in kiwifruit.