In grapevine, previous studies have suggested that, gibberellin (GA) inhibits bud break before dormancy release while enhanced after dormancy release; the capacity of GA accumulation shows a trend of first inhibition and then upregulation. However, the regulatory mechanism of GA metabolism genes expression is as yet unclear during the process of dormancy release. In this study, we further validated the effect of GA and hydrogen cyanamide (HC) on bud break of ‘Red globe’ grape, confirmed inhibition and promotion effect, respectively. Restricted GA biosynthetic genes’ expression and enhanced GA catabolic gene’s expression were observed in the early stage after HC treatment, while opposite expression trend showed in the late stage. , a MADS-box transcription factor gene, was downregulated in the late stage, which might play an important role in regulating GA metabolism genes’ expression. It was shown that, VvSVP1 could bind to the promoter regions of GA biosynthetic gene and catabolic gene , negatively and positively regulated the corresponding genes’ expression, respectively; the contents of GAs related to GA20ox were significantly reduced in the grape callus overexpressed , while the ratio of GAs related to GA2ox were significantly increased. Taken together, VvSVP1 can regulate the endogenous GAs level by manipulating the expression of GA metabolism genes before dormant bud break induced by HC. Our findings may provide some new theoretical insights for the study of bud dormancy regulation in the perennial woody fruit trees.
以往的研究表明,赤霉素(GA)在葡萄休眠解除前对花芽分化有抑制作用,而在休眠解除后对花芽分化有促进作用;GA的积累能力呈现先抑后扬的趋势。然而,休眠解除过程中 GA 代谢基因表达的调控机制尚不清楚。本研究进一步验证了GA和氢氰酸酰胺(HC)对'红地球'葡萄花芽分化的影响,分别证实了抑制和促进作用。HC处理后,早期GA生物合成基因表达受限,GA分解代谢基因表达增强,而后期则表现出相反的表达趋势。在后期,MADS-box 转录因子基因Ⅴ表达下调,这可能在调控 GA 代谢基因的表达中起着重要作用。研究表明,VvSVP1能与GA生物合成基因和分解代谢基因的启动子区域结合,分别对相应基因的表达产生负调控和正调控作用;在过表达VvSVP1的葡萄胼胝体中,与GA20ox相关的GA含量显著降低,而与GA2ox相关的GA比例显著增加。综上所述,VvSVP1可在HC诱导的休眠芽断裂前通过调控GA代谢基因的表达来调节内源GA水平。我们的研究结果可为多年生木本果树花芽休眠调控的研究提供一些新的理论依据。
{"title":"VvSVP1 negatively regulates gibberellin accumulation before the dormant bud break of grapevine triggered by hydrogen cyanamide","authors":"Jingyi Li, Pinqi Sun, Anni Chen, Jilong Xu, Peiyong Xin, Jinfang Chu, Chuanlin Zheng","doi":"10.1016/j.hpj.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.12.002","url":null,"abstract":"In grapevine, previous studies have suggested that, gibberellin (GA) inhibits bud break before dormancy release while enhanced after dormancy release; the capacity of GA accumulation shows a trend of first inhibition and then upregulation. However, the regulatory mechanism of GA metabolism genes expression is as yet unclear during the process of dormancy release. In this study, we further validated the effect of GA and hydrogen cyanamide (HC) on bud break of ‘Red globe’ grape, confirmed inhibition and promotion effect, respectively. Restricted GA biosynthetic genes’ expression and enhanced GA catabolic gene’s expression were observed in the early stage after HC treatment, while opposite expression trend showed in the late stage. , a MADS-box transcription factor gene, was downregulated in the late stage, which might play an important role in regulating GA metabolism genes’ expression. It was shown that, VvSVP1 could bind to the promoter regions of GA biosynthetic gene and catabolic gene , negatively and positively regulated the corresponding genes’ expression, respectively; the contents of GAs related to GA20ox were significantly reduced in the grape callus overexpressed , while the ratio of GAs related to GA2ox were significantly increased. Taken together, VvSVP1 can regulate the endogenous GAs level by manipulating the expression of GA metabolism genes before dormant bud break induced by HC. Our findings may provide some new theoretical insights for the study of bud dormancy regulation in the perennial woody fruit trees.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"38 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N-methyladenosine (mA) RNA modification is a conserved mechanism that regulates the fate of RNA across eukaryotic organisms. Despite its significance, a comprehensive analysis of mA-related genes in non-model plants, such as kiwifruit, is lacking. Here, we identified 36 mA-related genes in the kiwifruit genome according to homology and phylogenetic inference. We performed bioinformatics and evolutionary analyses of the writer, eraser, and reader families of mA modification. Reanalysis of public RNA-seq data collected from samples under various biotic and abiotic stresses indicated that most mA-related genes were remarkably expressed under different conditions. Through construction of gene co-expression networks, we found significant correlations between several mA-related genes and transcription factors (TFs) as well as receptor-like genes during the development and ripening of kiwifruit. Furthermore, we performed ATAC-seq assays on diverse kiwifruit tissues to investigate the regulatory mechanisms of mA-related genes. We identified 10 common open chromatin regions that were present in at least two tissues, and these regions might serve as potential binding sites for MADS protein, C2H2 protein, and other predicted TFs. Our study offers comprehensive insights into the gene family of mA-related components in kiwifruit, which will lay foundation for exploring mechanisms of post-transcriptional regulation involved in development and adaptation of kiwifruit.
N-甲基腺苷(mA)RNA修饰是一种调节真核生物中RNA命运的保守机制。尽管其意义重大,但目前还缺乏对猕猴桃等非模式植物中 mA 相关基因的全面分析。在此,我们根据同源性和系统发育推断在猕猴桃基因组中鉴定了 36 个 mA 相关基因。我们对mA修饰的书写器、橡皮擦和阅读器家族进行了生物信息学和进化分析。对从各种生物和非生物胁迫下的样本中收集的公开 RNA-seq 数据进行的再分析表明,大多数 mA 相关基因在不同条件下都有显著表达。通过构建基因共表达网络,我们发现在猕猴桃的发育和成熟过程中,多个 mA 相关基因与转录因子(TFs)以及受体类基因之间存在显著的相关性。此外,我们还对不同的猕猴桃组织进行了 ATAC-seq 分析,以研究 mA 相关基因的调控机制。我们发现了 10 个共同的开放染色质区域,它们至少存在于两个组织中,这些区域可能是 MADS 蛋白、C2H2 蛋白和其他预测的 TFs 的潜在结合位点。我们的研究全面揭示了猕猴桃中 mA 相关成分的基因家族,这将为探索猕猴桃发育和适应过程中的转录后调控机制奠定基础。
{"title":"Identification and characterization of genes related to m6A modification in kiwifruit using RNA-seq and ATAC-seq","authors":"Xiaoli Hu, Tong Li, Changbin Xu, Yanna Xu, Congjun You, Xinyi Li, Jinli Gong, Xiaolong Li, Xuepeng Sun","doi":"10.1016/j.hpj.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.hpj.2024.02.001","url":null,"abstract":"N-methyladenosine (mA) RNA modification is a conserved mechanism that regulates the fate of RNA across eukaryotic organisms. Despite its significance, a comprehensive analysis of mA-related genes in non-model plants, such as kiwifruit, is lacking. Here, we identified 36 mA-related genes in the kiwifruit genome according to homology and phylogenetic inference. We performed bioinformatics and evolutionary analyses of the writer, eraser, and reader families of mA modification. Reanalysis of public RNA-seq data collected from samples under various biotic and abiotic stresses indicated that most mA-related genes were remarkably expressed under different conditions. Through construction of gene co-expression networks, we found significant correlations between several mA-related genes and transcription factors (TFs) as well as receptor-like genes during the development and ripening of kiwifruit. Furthermore, we performed ATAC-seq assays on diverse kiwifruit tissues to investigate the regulatory mechanisms of mA-related genes. We identified 10 common open chromatin regions that were present in at least two tissues, and these regions might serve as potential binding sites for MADS protein, C2H2 protein, and other predicted TFs. Our study offers comprehensive insights into the gene family of mA-related components in kiwifruit, which will lay foundation for exploring mechanisms of post-transcriptional regulation involved in development and adaptation of kiwifruit.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"30 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The preharvest internal browning of Nane plum fruit, with no visible effects on the appearance of the fruit, has become a serious problem in recent years in its production area in Guangdong Province, China. This study investigated the effects of environmental factors, including temperature, on Nane plum internal browning. Plum orchards at different elevations with different incidences of internal browning were selected. Using fruits with different internal browning incidence levels, the internal browning mechanism was analyzed with transcriptome and metabolome analyses. The results revealed decreased internal browning at high altitudes. Shading treatment significantly reduced internal browning, whereas bagging and insect-proof net-covering treatments significantly increased internal browning. Because bagging and net coverings increase the local ambient temperature, the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum. The metabolome experiments showed that with increased internal browning, the levels of phenolic hydroxyls such as catechol increased, with simultaneous increases in hydrogen peroxide content and oxidase activity. It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum. Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning, possibly due to its increased content in the fruit. Further, with increasingly serious internal browning, genes related to photosynthesis were down-regulated, while genes related to senescence were up-regulated, thus suggesting the up-regulation of the process of cell senescence during internal browning. In conclusion, heat stress should be eliminated to reduce preharvest internal browning in Nane plum.
{"title":"Transcriptome and metabolome analysis of preharvest internal browning in Nane plum fruit caused by high temperatures","authors":"Cheng Peng, Linping Deng, Hejun Tan, Wancong Meng, Jianliang Luo, Zengwen Zhang, Huiqiong Chen, Jishui Qiu, Xiaoxiao Chang, Yusheng Lu","doi":"10.1016/j.hpj.2023.10.004","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.10.004","url":null,"abstract":"The preharvest internal browning of Nane plum fruit, with no visible effects on the appearance of the fruit, has become a serious problem in recent years in its production area in Guangdong Province, China. This study investigated the effects of environmental factors, including temperature, on Nane plum internal browning. Plum orchards at different elevations with different incidences of internal browning were selected. Using fruits with different internal browning incidence levels, the internal browning mechanism was analyzed with transcriptome and metabolome analyses. The results revealed decreased internal browning at high altitudes. Shading treatment significantly reduced internal browning, whereas bagging and insect-proof net-covering treatments significantly increased internal browning. Because bagging and net coverings increase the local ambient temperature, the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum. The metabolome experiments showed that with increased internal browning, the levels of phenolic hydroxyls such as catechol increased, with simultaneous increases in hydrogen peroxide content and oxidase activity. It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum. Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning, possibly due to its increased content in the fruit. Further, with increasingly serious internal browning, genes related to photosynthesis were down-regulated, while genes related to senescence were up-regulated, thus suggesting the up-regulation of the process of cell senescence during internal browning. In conclusion, heat stress should be eliminated to reduce preharvest internal browning in Nane plum.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"87 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inducing adventitious root (AR) formation in mature walnut species ( L.) is challenging. However, the AR formation of mature trees can be improved by rejuvenation. In rejuvenated cuttings, exogenous indole-3-butyric acid (IBA) is essential for AR formation, and the underlying mechanism is still not well understood. Therefore, we utilized transcriptome sequencing to investigate the mechanism of IBA-induced AR formation. Our results revealed that, in comparison to the control group, IBA treatment (9 mM) significantly increased the endogenous indole-3-acetic acid (IAA) content, leading to an enhanced rooting rate. We performed RNA sequencing to identify differentially expressed genes (DEGs) between the IBA-treated and control (CK) groups at 1, 2, 3, and 5 days after cutting (DAC). The results showed that, compared to the control cuttings, there were 1 539, 889, 785, and 984 up-regulated genes and 2 791, 2 936, 3 017, and 1 752 down-regulated genes, at 1, 2, 3, and 5 DAC, respectively. Analysis of RNA-seq data revealed that (/) and (), associated with IBA transport, were down-regulated in the rejuvenation cuttings. In contrast, () and (), associated with auxin efflux, were up-regulated. We identified 49 ()-encoding genes, including , , , , , , , , and , which were up-regulated at 1–5 DAC in the rejuvenated cuttings. This study highlights that the overexpression of in poplar significantly enhance AR growth, as evidenced by increased root length, surface area, volume, and quantity. Moreover, the co-expression network analysis involving and in walnut cuttings elucidates complex genetic interactions, underscoring their pivotal role in the formation of AR. Our data supported the following molecular mechanism of IBA-induced adventitious root formation. Firstly, IBA is converted to free IAA in peroxisomes. Then, the highly concentrated IAA in the procambium and parenchyma cells induces
{"title":"Transcriptome profiling of Indole-3-Butyric Acid-Induced Adventitious Root Formation in softwood Cuttings of walnut","authors":"Xiaobo Song, Ruimin Huang, Hao Liu, Zhang Junpei, Yingying Chang, Dong Pei","doi":"10.1016/j.hpj.2023.04.013","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.04.013","url":null,"abstract":"Inducing adventitious root (AR) formation in mature walnut species ( L.) is challenging. However, the AR formation of mature trees can be improved by rejuvenation. In rejuvenated cuttings, exogenous indole-3-butyric acid (IBA) is essential for AR formation, and the underlying mechanism is still not well understood. Therefore, we utilized transcriptome sequencing to investigate the mechanism of IBA-induced AR formation. Our results revealed that, in comparison to the control group, IBA treatment (9 mM) significantly increased the endogenous indole-3-acetic acid (IAA) content, leading to an enhanced rooting rate. We performed RNA sequencing to identify differentially expressed genes (DEGs) between the IBA-treated and control (CK) groups at 1, 2, 3, and 5 days after cutting (DAC). The results showed that, compared to the control cuttings, there were 1 539, 889, 785, and 984 up-regulated genes and 2 791, 2 936, 3 017, and 1 752 down-regulated genes, at 1, 2, 3, and 5 DAC, respectively. Analysis of RNA-seq data revealed that (/) and (), associated with IBA transport, were down-regulated in the rejuvenation cuttings. In contrast, () and (), associated with auxin efflux, were up-regulated. We identified 49 ()-encoding genes, including , , , , , , , , and , which were up-regulated at 1–5 DAC in the rejuvenated cuttings. This study highlights that the overexpression of in poplar significantly enhance AR growth, as evidenced by increased root length, surface area, volume, and quantity. Moreover, the co-expression network analysis involving and in walnut cuttings elucidates complex genetic interactions, underscoring their pivotal role in the formation of AR. Our data supported the following molecular mechanism of IBA-induced adventitious root formation. Firstly, IBA is converted to free IAA in peroxisomes. Then, the highly concentrated IAA in the procambium and parenchyma cells induces","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"12 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1016/j.hpj.2023.06.006
Esther Gimeno-Páez, Jaime Prohens, María Moreno-Cerveró, Ana de Luis-Margarit, María José Díez, Pietro Gramazio
Unlike other major crops, little research has been performed on tomato to reduce the generation time for speed breeding. We evaluated several agronomic treatments to reduce the generation time of tomato in the ‘M82’ (determinate) and ‘Moneymaker’ (indeterminate) varieties and evaluated the best combination in conjunction with embryo rescue. Five container sizes with volumes of 0.2 L (XS), 0.45 L (S), 0.8 L (M), 1.3 L (L), and 6 L (XL), were evaluated in the first experiment under the autumn cycle. We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis (DSA) and from anthesis to fruit ripening (DAR). In the second experiment, using XL containers in the autumn–winter cycle, we evaluated the effects of cold priming at the cotyledonary stage, water stress, P supplementation, and K supplementation on generation time. Compared to the control, we found that cold priming significantly reduced the number of leaves, plant height to first the inflorescence, and DSA (2.7 d), whereas K supplementation reduced the DAR (8.8 d). In contrast, water stress and P supplementation did not significantly affect any of the measured traits like DAR, DSA or fruit set. To validate these data, in a third experiment with XL containers in the spring-summer cycle, the combination of cold priming and K supplementation was tested, confirming the significant effect of this combination on the reduction of generation time (2.9 d for DSA and 3.9 d for DAR) compared to the control. Embryo rescue during the cell expansion cycle (average of 22.0 d and 23.3 d after anthesis for ‘M82’ and ‘Moneymaker’, respectively) allowed the shortening of the generation time by 8.7 d in ‘M82’ and 11.6 d in ‘Moneymaker’ compared to the fruit ripening. The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.
{"title":"Agronomic treatments combined with embryo rescue for rapid generation advancement in tomato speed breeding","authors":"Esther Gimeno-Páez, Jaime Prohens, María Moreno-Cerveró, Ana de Luis-Margarit, María José Díez, Pietro Gramazio","doi":"10.1016/j.hpj.2023.06.006","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.06.006","url":null,"abstract":"Unlike other major crops, little research has been performed on tomato to reduce the generation time for speed breeding. We evaluated several agronomic treatments to reduce the generation time of tomato in the ‘M82’ (determinate) and ‘Moneymaker’ (indeterminate) varieties and evaluated the best combination in conjunction with embryo rescue. Five container sizes with volumes of 0.2 L (XS), 0.45 L (S), 0.8 L (M), 1.3 L (L), and 6 L (XL), were evaluated in the first experiment under the autumn cycle. We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis (DSA) and from anthesis to fruit ripening (DAR). In the second experiment, using XL containers in the autumn–winter cycle, we evaluated the effects of cold priming at the cotyledonary stage, water stress, P supplementation, and K supplementation on generation time. Compared to the control, we found that cold priming significantly reduced the number of leaves, plant height to first the inflorescence, and DSA (2.7 d), whereas K supplementation reduced the DAR (8.8 d). In contrast, water stress and P supplementation did not significantly affect any of the measured traits like DAR, DSA or fruit set. To validate these data, in a third experiment with XL containers in the spring-summer cycle, the combination of cold priming and K supplementation was tested, confirming the significant effect of this combination on the reduction of generation time (2.9 d for DSA and 3.9 d for DAR) compared to the control. Embryo rescue during the cell expansion cycle (average of 22.0 d and 23.3 d after anthesis for ‘M82’ and ‘Moneymaker’, respectively) allowed the shortening of the generation time by 8.7 d in ‘M82’ and 11.6 d in ‘Moneymaker’ compared to the fruit ripening. The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"119 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1016/j.hpj.2023.07.008
Jinita Sthapit Kandel, Ivan Simko, Ryan J. Hayes, Beiquan Mou
Fresh-cut lettuce is widely used in ready-to-eat salads sold in modified atmosphere packages (MAP). Even in MAP, fresh-cut lettuce has short shelf life that results in loss of nutrients. Lettuce cultivars exhibit genetic variation for shelf life in MAP, but their variation for nutrient retention is not known. Fifty accessions were evaluated for initial content of ascorbic acid (AsA), carotenoids, and sugars and their retention in storage. Accessions with high content and/or good retention of one or more nutrients were identified. The romaine accession ‘Floricos’ had high levels of all the three nutrients. Accessions with relatively high retention of all the three nutrients were ‘Salinas 88’, ‘Siskiyou’, ‘Solar’, SM09A, ‘Romance’, and ‘Green Towers’. Romaine cultivars, ‘Balady Barrage’, ‘Green Towers’, and ‘Darkland’ had relatively high initial levels of all tested nutrients and good rate of their retention. There was no clear correlation between initial AsA/carotene concentrations and their retention rates, suggesting that besides content, retention of nutrients should also be a breeding target in a lettuce nutritional improvement program. Statistical analyses with the Pearson’s correlation coefficient determined a negative relationship between tissue deterioration (AUDePS) and retention of all tested nutrients [ of -0.52 ( < 0.0001) for AsA, -0.27 ( < 0.01) for total carotene, and -0.59 ( < 0.0001) for total sugars], suggesting that an increase in tissue deterioration intensifies nutrient decay. Broad-sense heritability () across the experiments was 0.15 for AsA, 0.23 for total carotene, and 0.50 for total sugars. Identification of germplasm with high nutrient content, extended shelf life and good nutrient retention provides valuable information for the lettuce industry and associated breeding programs.
{"title":"Concentration and retention of ascorbic acid, carotenoids, and sugars in fresh-cut lettuce in modified atmosphere packaging","authors":"Jinita Sthapit Kandel, Ivan Simko, Ryan J. Hayes, Beiquan Mou","doi":"10.1016/j.hpj.2023.07.008","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.07.008","url":null,"abstract":"Fresh-cut lettuce is widely used in ready-to-eat salads sold in modified atmosphere packages (MAP). Even in MAP, fresh-cut lettuce has short shelf life that results in loss of nutrients. Lettuce cultivars exhibit genetic variation for shelf life in MAP, but their variation for nutrient retention is not known. Fifty accessions were evaluated for initial content of ascorbic acid (AsA), carotenoids, and sugars and their retention in storage. Accessions with high content and/or good retention of one or more nutrients were identified. The romaine accession ‘Floricos’ had high levels of all the three nutrients. Accessions with relatively high retention of all the three nutrients were ‘Salinas 88’, ‘Siskiyou’, ‘Solar’, SM09A, ‘Romance’, and ‘Green Towers’. Romaine cultivars, ‘Balady Barrage’, ‘Green Towers’, and ‘Darkland’ had relatively high initial levels of all tested nutrients and good rate of their retention. There was no clear correlation between initial AsA/carotene concentrations and their retention rates, suggesting that besides content, retention of nutrients should also be a breeding target in a lettuce nutritional improvement program. Statistical analyses with the Pearson’s correlation coefficient determined a negative relationship between tissue deterioration (AUDePS) and retention of all tested nutrients [ of -0.52 ( < 0.0001) for AsA, -0.27 ( < 0.01) for total carotene, and -0.59 ( < 0.0001) for total sugars], suggesting that an increase in tissue deterioration intensifies nutrient decay. Broad-sense heritability () across the experiments was 0.15 for AsA, 0.23 for total carotene, and 0.50 for total sugars. Identification of germplasm with high nutrient content, extended shelf life and good nutrient retention provides valuable information for the lettuce industry and associated breeding programs.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"29 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basic helix–loop–helix (bHLH) transcription factor gene family in plants controls various growth and development aspects; however, the actual roles of these genes in flowering plants are not well known. In this study, a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by and experiments, a chrysanthemum ERF110 homolog that acts as a positive flowering regulator. In addition, was also found to regulate the flowering of chrysanthemums, overexpression of causes chrysanthemums to flower earlier, and suppressed leads to delayed flowering. Furthermore, the loss-of-function mutant of its homologue () had a noticeable late flowering phenotype, and completely complemented the late flowering phenotype of the mutant, whereas heterologous overexpression of in Col-0 caused early flowering. Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum. Therefore, we concluded that CmbHLH110, as a novel flowering regulator, could interact with CmERF110 to regulate flowering in chrysanthemum.
{"title":"CmbHLH110, a novel bHLH transcription factor, accelerates flowering in chrysanthemum","authors":"Yaoyao Huang, Xiaojuan Xing, Jinyu Jin, Yun Tang, Lian Ding, Aiping Song, Sumei Chen, Fadi Chen, Jiafu Jiang, Weimin Fang","doi":"10.1016/j.hpj.2023.05.022","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.05.022","url":null,"abstract":"Basic helix–loop–helix (bHLH) transcription factor gene family in plants controls various growth and development aspects; however, the actual roles of these genes in flowering plants are not well known. In this study, a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by and experiments, a chrysanthemum ERF110 homolog that acts as a positive flowering regulator. In addition, was also found to regulate the flowering of chrysanthemums, overexpression of causes chrysanthemums to flower earlier, and suppressed leads to delayed flowering. Furthermore, the loss-of-function mutant of its homologue () had a noticeable late flowering phenotype, and completely complemented the late flowering phenotype of the mutant, whereas heterologous overexpression of in Col-0 caused early flowering. Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum. Therefore, we concluded that CmbHLH110, as a novel flowering regulator, could interact with CmERF110 to regulate flowering in chrysanthemum.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1016/j.hpj.2023.11.004
Weitao Jiang, Fengbing Pan, Ran Chen, Lefen Song, Lei Qin, Xin Xu, Zihui Xu, Li Xiang, Xuesen Chen, Chengmiao Yin, Yanfang Wang, Zhiquan Mao
The cultivation of apples in replanted orchards is essential given limitations in land resources. However, the presence of Fusarium and phenolic acids in the replanted soil harms the soil environment, which impedes the sustainable development of the apple industry. In this study, earthworm was used as the fermentation precursor protein to optimize the fermentation conditions, and the inhibition mechanism of the fermentation product on Fusarium and its potential to repair the apple replant soil environment were explored. Laboratory experiments showed that the optimum initial pH, temperature and time of earthworm fermentation were 7, 37 °C and 10 d, respectively. The inhibition rates of earthworm fermentation products against F. oxysporum, F. solani, F. proliferatum, and F. moniliforme were 79.8%, 75.1%, 78.7% and 79.2%, respectively. The inhibition rates of spore germination on F. oxysporum, F. solani, F. proliferatum, and F. moniliforme were 83.8%, 87.3%, 83.2% and 84.8%, respectively. In the field, use 300 mL of earthworm fermentation products for each planting pits before planting. The experimental results showed that, compared with the control, the content of soil pathogenic Fusarium and phenolic acid in Wantou (W3) were decreased by 75.1% and 59.8%, respectively, after treatment with earthworm fermentation products in 2019. Soil urease, phosphatase, sucrase and catalase activities increased by 383.2%, 78.2%, 130.3% and 43.5%, respectively. The fruit weight, anthocyanin content, soluble sugar, sugar-acid ratio, total ester ratio, total ester concentration and yield increased by 80.7%, 60.6%, 25.6%, 50.3%, 19.7%, 262.4% and 193.5%, respectively, while titratable acid content decreased by 16.9%. In conclusion, earthworm fermentation products can be used as a sustainable amendment to control apple replant disease.
{"title":"Earthworm fermentation products enhance the apple replant soil environment and increase the yield and quality of apple fruit","authors":"Weitao Jiang, Fengbing Pan, Ran Chen, Lefen Song, Lei Qin, Xin Xu, Zihui Xu, Li Xiang, Xuesen Chen, Chengmiao Yin, Yanfang Wang, Zhiquan Mao","doi":"10.1016/j.hpj.2023.11.004","DOIUrl":"https://doi.org/10.1016/j.hpj.2023.11.004","url":null,"abstract":"<p>The cultivation of apples in replanted orchards is essential given limitations in land resources. However, the presence of <em>Fusarium</em> and phenolic acids in the replanted soil harms the soil environment, which impedes the sustainable development of the apple industry. In this study, earthworm was used as the fermentation precursor protein to optimize the fermentation conditions, and the inhibition mechanism of the fermentation product on Fusarium and its potential to repair the apple replant soil environment were explored. Laboratory experiments showed that the optimum initial pH, temperature and time of earthworm fermentation were 7, 37 °C and 10 d, respectively. The inhibition rates of earthworm fermentation products against <em>F. oxysporum</em>, <em>F. solani</em>, <em>F. proliferatum</em>, and <em>F. moniliforme</em> were 79.8%, 75.1%, 78.7% and 79.2%, respectively. The inhibition rates of spore germination on F. oxysporum, <em>F. solani</em>, <em>F. proliferatum</em>, and <em>F. moniliforme</em> were 83.8%, 87.3%, 83.2% and 84.8%, respectively. In the field, use 300 mL of earthworm fermentation products for each planting pits before planting. The experimental results showed that, compared with the control, the content of soil pathogenic <em>Fusarium</em> and phenolic acid in Wantou (W3) were decreased by 75.1% and 59.8%, respectively, after treatment with earthworm fermentation products in 2019. Soil urease, phosphatase, sucrase and catalase activities increased by 383.2%, 78.2%, 130.3% and 43.5%, respectively. The fruit weight, anthocyanin content, soluble sugar, sugar-acid ratio, total ester ratio, total ester concentration and yield increased by 80.7%, 60.6%, 25.6%, 50.3%, 19.7%, 262.4% and 193.5%, respectively, while titratable acid content decreased by 16.9%. In conclusion, earthworm fermentation products can be used as a sustainable amendment to control apple replant disease.</p>","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"23 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}