David W. Clow, Garrett A. Akie, Sheila F. Murphy, Evan J. Gohring
In 2020, Colorado experienced the most severe wildfire season in recorded history, with wildfires burning 625 357 acres across the state. Two of the largest fires burned parts of Rocky Mountain National Park (RMNP), and a study was initiated to address concerns about potential effects on drinking water quality from mobilization of ash and sediment. The study took advantage of a wealth of pre-fire data from adjacent burned and unburned basins in western RMNP. Pre- and post-fire data collection included discrete sample collection and high-frequency water-quality measurements using in-stream sensors. Kruskal–Wallis tests on discrete data indicated that specific conductance, base cations, sulphate, chloride, nitrate, and total dissolved nitrogen concentrations increased post-fire, whereas silica and dissolved organic carbon (DOC) did not (p ≤ 0.05). In-stream sensors captured large spikes in concentrations of nutrients, turbidity, and DOC in the burned basin that were missed by discrete sampling. Sensor data indicated nitrate and turbidity increased by up to one and two orders of magnitude, respectively, from pre-event concentrations during storms, and DOC increased up to 3.5×. Empirical regression equations were developed using pre-fire data and applied to the post-fire period to estimate expected stream chemistry in the absence of fire (a ‘no-fire’ scenario). Overlays of actual post-fire chemistry showed the timing and magnitude of differences between observed and ‘estimated’ chemistry. For most solutes, observed post-fire concentrations were notably greater than expected under the ‘no-fire’ scenario, and differences were greatest during storm events. Comparison of data from the burned and unburned basins indicated DOC concentrations were affected by climate as well as fire. Results from this study demonstrate the importance of both pre-fire data and high-frequency data for characterizing dynamic hydrochemical responses in wildfire-affected areas.
{"title":"Dynamic water-quality responses to wildfire in Colorado","authors":"David W. Clow, Garrett A. Akie, Sheila F. Murphy, Evan J. Gohring","doi":"10.1002/hyp.15291","DOIUrl":"https://doi.org/10.1002/hyp.15291","url":null,"abstract":"<p>In 2020, Colorado experienced the most severe wildfire season in recorded history, with wildfires burning 625 357 acres across the state. Two of the largest fires burned parts of Rocky Mountain National Park (RMNP), and a study was initiated to address concerns about potential effects on drinking water quality from mobilization of ash and sediment. The study took advantage of a wealth of pre-fire data from adjacent burned and unburned basins in western RMNP. Pre- and post-fire data collection included discrete sample collection and high-frequency water-quality measurements using in-stream sensors. Kruskal–Wallis tests on discrete data indicated that specific conductance, base cations, sulphate, chloride, nitrate, and total dissolved nitrogen concentrations increased post-fire, whereas silica and dissolved organic carbon (DOC) did not (<i>p</i> ≤ 0.05). In-stream sensors captured large spikes in concentrations of nutrients, turbidity, and DOC in the burned basin that were missed by discrete sampling. Sensor data indicated nitrate and turbidity increased by up to one and two orders of magnitude, respectively, from pre-event concentrations during storms, and DOC increased up to 3.5×. Empirical regression equations were developed using pre-fire data and applied to the post-fire period to estimate expected stream chemistry in the absence of fire (a ‘no-fire’ scenario). Overlays of actual post-fire chemistry showed the timing and magnitude of differences between observed and ‘estimated’ chemistry. For most solutes, observed post-fire concentrations were notably greater than expected under the ‘no-fire’ scenario, and differences were greatest during storm events. Comparison of data from the burned and unburned basins indicated DOC concentrations were affected by climate as well as fire. Results from this study demonstrate the importance of both pre-fire data and high-frequency data for characterizing dynamic hydrochemical responses in wildfire-affected areas.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan William Webb, John F. Knowles, Alex Fox, Alex Fabricus, Timothy Corrie, Kori Mooney, Jocelyn Gallais, Nana Afua Gyau Frimpong, Christopher Akuka Akurugu, Greg Barron-Gafford, Peter D. Blanken, Sean P. Burns, John Frank, Marcy Litvak
Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy-water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy-water asynchrony (adjusted r2 = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko-type runoff anomaly (highest adjusted r2 = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy-water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities.
{"title":"Energy-Water Asynchrony Principally Determines Water Available for Runoff From Snowmelt in Continental Montane Forests","authors":"Ryan William Webb, John F. Knowles, Alex Fox, Alex Fabricus, Timothy Corrie, Kori Mooney, Jocelyn Gallais, Nana Afua Gyau Frimpong, Christopher Akuka Akurugu, Greg Barron-Gafford, Peter D. Blanken, Sean P. Burns, John Frank, Marcy Litvak","doi":"10.1002/hyp.15297","DOIUrl":"https://doi.org/10.1002/hyp.15297","url":null,"abstract":"<p>Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy-water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy-water asynchrony (adjusted <i>r</i><sup>2</sup> = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko-type runoff anomaly (highest adjusted <i>r</i><sup>2</sup> = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy-water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil erosion is a key concern with regard to ecosystem functionality and food, fibre and bioenergy productions worldwide. Therefore, understanding the mechanisms and controls of soil erosion, particularly the link between soil aggregate stability and soil erodibility, is of utmost importance. The use of disturbed samples and sieved soil to determine the involved erodibility and aggregate stability is standard in soil erosion studies. However, soil erodibility estimation based on disturbed-soil samples can be inaccurate as it involves changes in the architecture of the considered soil, possibly leading to overestimations. Moreover, a necessity for evaluating soil erodibility beyond intrinsic soil characteristics (e.g. texture) exists. The objective of this research was to assess the erodibility impact of soil disturbance. Undisturbed-soil cores with dimensions of 45 cm (length) × 30 cm (width) × 10 cm (depth) were extracted while preserving their architecture. An A horizon corresponding to brown clayey subtropical oxisol soil from Southern Brazil was used for performing an experiment that involved simulation of 58–mm h−1 rain for 30 min. A total of seven replicate experiments were performed for each soil condition (i.e. undisturbed and disturbed soils). Results show that soil architecture deterioration had a larger impact on the involved soil loss than runoff. Further, soil structure failure did not affect the aggregate stability per se. Notably, the soil erodibility and loss were approximately 10 times larger under the disturbed-soil condition than under the undisturbed-soil condition (interrill erodibility: 4.30 × 107 and 4.39 × 106 kg s m−4, respectively; soil loss: 0.925 and 0.094 kg m−2, respectively). Overall, the intrinsic soil characteristics did not change; however the soil architecture deterioration considerably increased the erodibility.
土壤侵蚀是全世界生态系统功能以及粮食、纤维和生物能源生产的一个关键问题。因此,了解土壤侵蚀的机制和控制,特别是土壤团聚体稳定性和土壤可侵蚀性之间的联系至关重要。在土壤侵蚀研究中,使用扰动样本和过筛土壤来确定相关的侵蚀性和集聚稳定性是标准的方法。然而,基于扰动土壤样本的土壤侵蚀性估算可能并不准确,因为它涉及到所考虑土壤结构的变化,可能导致估算过高。此外,有必要在土壤固有特征(如质地)之外评估土壤的侵蚀性。这项研究的目的是评估土壤扰动对侵蚀性的影响。在保留土壤结构的前提下,提取了尺寸为 45 厘米(长)×30 厘米(宽)×10 厘米(深)的未扰动土芯。实验使用了巴西南部棕色粘质亚热带草溶土壤的 A 层,模拟 58 毫米/小时的降雨量,持续 30 分钟。每种土壤条件(即未扰动土壤和扰动土壤)共进行了七次重复实验。结果表明,与径流相比,土壤结构退化对土壤流失的影响更大。此外,土壤结构破坏本身并不影响集料稳定性。值得注意的是,扰动土壤条件下的土壤侵蚀性和流失量是未扰动土壤条件下的约 10 倍(钻孔间侵蚀性:分别为 4.30 × 107 和 4.39 × 106 kg s m-4;土壤流失量:分别为 0.925 和 0.025 kg s m-4):分别为 0.925 和 0.094 kg m-2)。总体而言,土壤的固有特征没有发生变化,但土壤结构的恶化大大增加了土壤的侵蚀性。
{"title":"Impact of soil architecture on the interrill erodibility in clayey subtropical soil","authors":"Edivaldo L. Thomaz","doi":"10.1002/hyp.15285","DOIUrl":"https://doi.org/10.1002/hyp.15285","url":null,"abstract":"<p>Soil erosion is a key concern with regard to ecosystem functionality and food, fibre and bioenergy productions worldwide. Therefore, understanding the mechanisms and controls of soil erosion, particularly the link between soil aggregate stability and soil erodibility, is of utmost importance. The use of disturbed samples and sieved soil to determine the involved erodibility and aggregate stability is standard in soil erosion studies. However, soil erodibility estimation based on disturbed-soil samples can be inaccurate as it involves changes in the architecture of the considered soil, possibly leading to overestimations. Moreover, a necessity for evaluating soil erodibility beyond intrinsic soil characteristics (e.g. texture) exists. The objective of this research was to assess the erodibility impact of soil disturbance. Undisturbed-soil cores with dimensions of 45 cm (length) × 30 cm (width) × 10 cm (depth) were extracted while preserving their architecture. An A horizon corresponding to brown clayey subtropical oxisol soil from Southern Brazil was used for performing an experiment that involved simulation of 58–mm h<sup>−1</sup> rain for 30 min. A total of seven replicate experiments were performed for each soil condition (i.e. undisturbed and disturbed soils). Results show that soil architecture deterioration had a larger impact on the involved soil loss than runoff. Further, soil structure failure did not affect the aggregate stability per se. Notably, the soil erodibility and loss were approximately 10 times larger under the disturbed-soil condition than under the undisturbed-soil condition (interrill erodibility: 4.30 × 10<sup>7</sup> and 4.39 × 10<sup>6</sup> kg s m<sup>−4</sup>, respectively; soil loss: 0.925 and 0.094 kg m<sup>−2</sup>, respectively). Overall, the intrinsic soil characteristics did not change; however the soil architecture deterioration considerably increased the erodibility.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rainfall redistribution plays a crucial role in the water cycle. However, the main factors affecting the redistribution of rainfall remain uncertain. We chose three different plantations—cork oak (Quercus variabilis Bl.), oriental arborvitae (Platycladus orientalis L.) and black locust (Robinia pseudoacacia L.)—to investigate the role of plantations in rainfall redistribution and to determine the main factors influencing rainfall redistribution. The results indicated that cork oak exhibited the highest stemflow (0.34%) and the lowest canopy interception (12.58%), whereas black locust had the lowest stemflow (0.21%), and oriental arborvitae displayed the greatest canopy interception (32.8%). Under different density conditions for cork oaks, the stemflow was highest (0.39%) in low-density forests with 750 trees ha−2 and lowest (0.34%) in medium-density forests with 1100 trees ha−2. Meanwhile, the highest canopy interception (17.68%) was observed in high-density forests (1300 trees ha−2), while the lowest interception rate (9.22%) was found in low-density forests. The main factors affecting rainfall redistribution and their contribution rates were as follows: bark roughness index (35%), wind speed (18.6%), tree species (14.2%), diameter at breast height (11.2%), stand density (9.6%) and rainfall amount (5.4%). Our findings suggested that structural characteristics of trees are the primary factors affecting rainfall redistribution. Planting cork oak in the rocky mountain regions of North China is recommended because of its substantial stemflow production, particularly under low-density growth conditions. Therefore, this study has significant guiding implications for the selection of afforestation tree species in similar rocky mountain areas globally.
{"title":"Effects of plantations on rainfall redistribution in a rocky mountain area of North China","authors":"Shan Lu, Letian Yang, Wu Tang, Shuailin Tian, Ruijing Ma, Yuqiang Sang, Jinsong Zhang, Zhi-Hua Zhang, Yuefeng Shi","doi":"10.1002/hyp.15292","DOIUrl":"https://doi.org/10.1002/hyp.15292","url":null,"abstract":"<p>Rainfall redistribution plays a crucial role in the water cycle. However, the main factors affecting the redistribution of rainfall remain uncertain. We chose three different plantations—cork oak (<i>Quercus variabilis</i> Bl.), oriental arborvitae (<i>Platycladus orientalis</i> L.) and black locust (<i>Robinia pseudoacacia</i> L.)—to investigate the role of plantations in rainfall redistribution and to determine the main factors influencing rainfall redistribution. The results indicated that cork oak exhibited the highest stemflow (0.34%) and the lowest canopy interception (12.58%), whereas black locust had the lowest stemflow (0.21%), and oriental arborvitae displayed the greatest canopy interception (32.8%). Under different density conditions for cork oaks, the stemflow was highest (0.39%) in low-density forests with 750 trees ha<sup>−2</sup> and lowest (0.34%) in medium-density forests with 1100 trees ha<sup>−2</sup>. Meanwhile, the highest canopy interception (17.68%) was observed in high-density forests (1300 trees ha<sup>−2</sup>), while the lowest interception rate (9.22%) was found in low-density forests. The main factors affecting rainfall redistribution and their contribution rates were as follows: bark roughness index (35%), wind speed (18.6%), tree species (14.2%), diameter at breast height (11.2%), stand density (9.6%) and rainfall amount (5.4%). Our findings suggested that structural characteristics of trees are the primary factors affecting rainfall redistribution. Planting cork oak in the rocky mountain regions of North China is recommended because of its substantial stemflow production, particularly under low-density growth conditions. Therefore, this study has significant guiding implications for the selection of afforestation tree species in similar rocky mountain areas globally.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}