Pub Date : 2023-04-03DOI: 10.15282/ijame.20.1.2023.09.0794
Haseeb Shafaqat, C. Krüger, Prof. Dr.-Ing. Peter Urban
The driving range of an electric vehicle can be increased through an efficient integration of the large battery within the vehicle structure. In this regard, a divided rocker concept from an existing study is investigated, in which the vehicle rocker is divided into two parts by means of a division plane. One part of the rocker remains vehicle sided and enables the attachment of the surrounding vehicle structures, while the other part is functionally integrated into the side frame of the battery housing. In the scope of this paper, several division plane concepts for such a divided rocker are created and analyzed. The crash performance of the modelled division plane concepts is studied on a component level using the side pole crash test as a load case. For the different division planes, a parametric analysis is performed by varying the number of chambers in the rocker profile, the chamber width, mass distribution, individual section thicknesses, the height of the division planes, and the air gap between the vertical surfaces of the division planes. Several crash performance criteria, such as structural deformation, force, and energy absorption, are examined. Among the studied parameters, the number of chambers and mass distribution have notable influences, while individual section thicknesses and the height of the division planes do not have a significant influence on the crash performance. Lastly, stiffer chambers in the battery-sided rocker created by decreasing the chamber width have the strongest effect on crash performance.
{"title":"Parametric Analysis of a Divided Rocker for Battery Electric Vehicles","authors":"Haseeb Shafaqat, C. Krüger, Prof. Dr.-Ing. Peter Urban","doi":"10.15282/ijame.20.1.2023.09.0794","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.09.0794","url":null,"abstract":"The driving range of an electric vehicle can be increased through an efficient integration of the large battery within the vehicle structure. In this regard, a divided rocker concept from an existing study is investigated, in which the vehicle rocker is divided into two parts by means of a division plane. One part of the rocker remains vehicle sided and enables the attachment of the surrounding vehicle structures, while the other part is functionally integrated into the side frame of the battery housing. In the scope of this paper, several division plane concepts for such a divided rocker are created and analyzed. The crash performance of the modelled division plane concepts is studied on a component level using the side pole crash test as a load case. For the different division planes, a parametric analysis is performed by varying the number of chambers in the rocker profile, the chamber width, mass distribution, individual section thicknesses, the height of the division planes, and the air gap between the vertical surfaces of the division planes. Several crash performance criteria, such as structural deformation, force, and energy absorption, are examined. Among the studied parameters, the number of chambers and mass distribution have notable influences, while individual section thicknesses and the height of the division planes do not have a significant influence on the crash performance. Lastly, stiffer chambers in the battery-sided rocker created by decreasing the chamber width have the strongest effect on crash performance.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"45 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88614980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.15282/ijame.20.1.2023.08.0793
Mustafa Aldulaimi, Areej H. Hilal, Husam A. Hassan, Faik A. Hamad
In this paper, the effect of using different configurations of absorber plate, including one line finned flat absorber and two lines finned absorber plate, on the thermal performance of a flat plate – double passing solar air heater was investigated experimentally. L- shape fins are soldered on the absorber plate to roughen the absorber plate and generate vortices to enhance the heat transfer between the working fluid (air) and absorber plate to improve the thermal efficiency. The outdoor experimental test was carried out during February and May under the weather conditions of Baghdad city (Longitude 33.3 N and Latitude 44.44 E). The results show that the air temperature is 48 ℃, 47.5 ℃, and 58.5 ℃ at an air velocity of 1.7 m/s for a single line of fins which increased to 52 ℃, 57.5 ℃, and 66 ℃ at air velocity of 0.9 m/s for two lines of fins. The efficiency is increased by 28% for one line of fins and 66% for two lines of fins at an air velocity of 0.9 m/s while increased by 27% for one line of fins and 51% for two lines of fins at an air velocity of 1.7 m/s. The average exergy destruction rate increases by 37.6%, 60.6%, and 68.66% for the absorber plate, working fluid, and glass cover, respectively, for velocity increase from 0.9 m/s to 1.9 m/s. The exergy efficiency increased by 24.1% when the velocity increased from 0.9 m/s to 1.9 m/s.
{"title":"Energy and Exergy Investigation of a Solar Air Heater for Different Absorber Plate Configurations","authors":"Mustafa Aldulaimi, Areej H. Hilal, Husam A. Hassan, Faik A. Hamad","doi":"10.15282/ijame.20.1.2023.08.0793","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.08.0793","url":null,"abstract":"In this paper, the effect of using different configurations of absorber plate, including one line finned flat absorber and two lines finned absorber plate, on the thermal performance of a flat plate – double passing solar air heater was investigated experimentally. L- shape fins are soldered on the absorber plate to roughen the absorber plate and generate vortices to enhance the heat transfer between the working fluid (air) and absorber plate to improve the thermal efficiency. The outdoor experimental test was carried out during February and May under the weather conditions of Baghdad city (Longitude 33.3 N and Latitude 44.44 E). The results show that the air temperature is 48 ℃, 47.5 ℃, and 58.5 ℃ at an air velocity of 1.7 m/s for a single line of fins which increased to 52 ℃, 57.5 ℃, and 66 ℃ at air velocity of 0.9 m/s for two lines of fins. The efficiency is increased by 28% for one line of fins and 66% for two lines of fins at an air velocity of 0.9 m/s while increased by 27% for one line of fins and 51% for two lines of fins at an air velocity of 1.7 m/s. The average exergy destruction rate increases by 37.6%, 60.6%, and 68.66% for the absorber plate, working fluid, and glass cover, respectively, for velocity increase from 0.9 m/s to 1.9 m/s. The exergy efficiency increased by 24.1% when the velocity increased from 0.9 m/s to 1.9 m/s.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81234522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.15282/ijame.20.1.2023.05.0790
Shuaibu Balogun, Mohamad Kasim Abdul Jalil, Jamaludin Moh'd Taib
Morphological matrix-based conceptual design has been proven to enable the generation of high-quantity, variety, and novelty concepts. Indeed, many studies have proposed methods for enhancing it. However, logical relations for determining the compatibility of solution principles (SPs) in combinatorial solution chain is yet to be established in the literature. This study attempts to develop a logical relation for determining the compatibility of SPs in solution variants chain. The features of the interaction boundary of each solution principle were characterised and vectorially numerated for onward matching of adjacent SPs in a combinatorial solution chain to determine compatibility. The consistency of the compatibility determinant (CD) was tested on engineering designer students. It was found that the students could determine the CD with excellent consistency. Besides, the applicability of logical relation for determining the feasibility of solution variants was tested and found applicable in many trials. Despite the limitation of the study, the results indicate that the logical compatibility determinant is consistent and applicable for the complete exploration of the morphological matrix design space. Therefore, this study provides a foundation for the development of a reliable CAD system for conceptual design.
{"title":"An Approach to Logical Compatibility Determination for Solution Principles in Morphological Matrix-Based Conceptual Design","authors":"Shuaibu Balogun, Mohamad Kasim Abdul Jalil, Jamaludin Moh'd Taib","doi":"10.15282/ijame.20.1.2023.05.0790","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.05.0790","url":null,"abstract":"Morphological matrix-based conceptual design has been proven to enable the generation of high-quantity, variety, and novelty concepts. Indeed, many studies have proposed methods for enhancing it. However, logical relations for determining the compatibility of solution principles (SPs) in combinatorial solution chain is yet to be established in the literature. This study attempts to develop a logical relation for determining the compatibility of SPs in solution variants chain. The features of the interaction boundary of each solution principle were characterised and vectorially numerated for onward matching of adjacent SPs in a combinatorial solution chain to determine compatibility. The consistency of the compatibility determinant (CD) was tested on engineering designer students. It was found that the students could determine the CD with excellent consistency. Besides, the applicability of logical relation for determining the feasibility of solution variants was tested and found applicable in many trials. Despite the limitation of the study, the results indicate that the logical compatibility determinant is consistent and applicable for the complete exploration of the morphological matrix design space. Therefore, this study provides a foundation for the development of a reliable CAD system for conceptual design.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"36 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85624217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The need for titanium and its alloys has led to a significant increase in commercial manufacturing, although this material’s poor tribological qualities have been a drawback. The present study was to determine the effect of laser-textured surfaces to enhance Ti6Al4V surface wear performance. The sample underwent laser texturing based on pre-set parameter values at 15 W power at a laser scanning speed of 200 mm/s with a frequency of 50 kHz. The surface morphological and topological profile of laser-textured Ti6Al4V was characterized with also the surface microhardness. A comparative appraisal of wear rate (WR) and coefficient of friction (COF) for related samples of as-received Ti6Al4V and laser-textured Ti6Al4V was performed under dry and oil sliding conditions. The results revealed that the formation of oxidation due to the frictional force and plastic displacement plays a role of abrasive to the laser-textured surface and may result in increasing the COF. The wear rate of the laser-textured surface of Ti6Al4V exhibited 88.31% improvement compared to the as-received Ti6Al4V in the dry sliding wear test. It was proved that Ti6Al4V could benefit from LST to gain effectively enhanced wear performance.
{"title":"Effect of Laser-Textured Surface of Ti6Al4V on Frictional Wear Behavior","authors":"M.H. Zul, Mahadzir Ishak@Muhammad, R.M. Nasir, M.H. Aiman, M.M. Quazi","doi":"10.15282/ijame.20.1.2023.02.0787","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.02.0787","url":null,"abstract":"The need for titanium and its alloys has led to a significant increase in commercial manufacturing, although this material’s poor tribological qualities have been a drawback. The present study was to determine the effect of laser-textured surfaces to enhance Ti6Al4V surface wear performance. The sample underwent laser texturing based on pre-set parameter values at 15 W power at a laser scanning speed of 200 mm/s with a frequency of 50 kHz. The surface morphological and topological profile of laser-textured Ti6Al4V was characterized with also the surface microhardness. A comparative appraisal of wear rate (WR) and coefficient of friction (COF) for related samples of as-received Ti6Al4V and laser-textured Ti6Al4V was performed under dry and oil sliding conditions. The results revealed that the formation of oxidation due to the frictional force and plastic displacement plays a role of abrasive to the laser-textured surface and may result in increasing the COF. The wear rate of the laser-textured surface of Ti6Al4V exhibited 88.31% improvement compared to the as-received Ti6Al4V in the dry sliding wear test. It was proved that Ti6Al4V could benefit from LST to gain effectively enhanced wear performance.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"77 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83916931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.15282/ijame.20.1.2023.04.0789
P. Meethum, C. Suvanjumrat
Hydroplaning is a hydrodynamic phenomenon and has crucial effects on motorcycle tires that roll on a wet road at high speed. It causes an accident that results in numerous injuries and deaths of motorcyclists. This accident happens to an overestimation of the dynamic tire performance. Therefore, this research aims to propose a mathematical model to predict the maximum hydroplaning speed of motorcycle tires. The motorcycle tire was experimentally performed the hydroplaning test by the developing machine. The fluid-structure interaction (FSI), in which a rolling tire interacted with fluid on the road, was modeled using finite element and finite volume methods. It compared against the experiment and was in good agreement. Therefore, motorcycle tire hydroplaning was studied by varying velocities, inflation pressures, and carrying loads. It was found that the hydroplaning speeds had a serious relationship only to the carrying loads. Therefore, the novel function of hydroplaning velocity was established in the carrying load form. It is simple to specify the maximum hydroplaning speed of motorcycle tires. In addition, it will be a good and novel guidance tool for motorcycle riding communities and motorcycle tire manufacturers to calculate hydroplaning resistance of their motorcycle tires.
{"title":"Numerical Study of Dynamic Hydroplaning Effects on Motorcycle Tires","authors":"P. Meethum, C. Suvanjumrat","doi":"10.15282/ijame.20.1.2023.04.0789","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.04.0789","url":null,"abstract":"Hydroplaning is a hydrodynamic phenomenon and has crucial effects on motorcycle tires that roll on a wet road at high speed. It causes an accident that results in numerous injuries and deaths of motorcyclists. This accident happens to an overestimation of the dynamic tire performance. Therefore, this research aims to propose a mathematical model to predict the maximum hydroplaning speed of motorcycle tires. The motorcycle tire was experimentally performed the hydroplaning test by the developing machine. The fluid-structure interaction (FSI), in which a rolling tire interacted with fluid on the road, was modeled using finite element and finite volume methods. It compared against the experiment and was in good agreement. Therefore, motorcycle tire hydroplaning was studied by varying velocities, inflation pressures, and carrying loads. It was found that the hydroplaning speeds had a serious relationship only to the carrying loads. Therefore, the novel function of hydroplaning velocity was established in the carrying load form. It is simple to specify the maximum hydroplaning speed of motorcycle tires. In addition, it will be a good and novel guidance tool for motorcycle riding communities and motorcycle tire manufacturers to calculate hydroplaning resistance of their motorcycle tires.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"27 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73380022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.15282/ijame.20.1.2023.07.0792
S. Hasbi, K. Leong, K. Z. Ku Ahmad, Nor Azura Abdul Rahim, M. Saharudin
In this study, a eutectic mixture of coconut oil (CO)-capric acid (CA) was synthesised and investigated with the aim of producing newly eutectic phase change materials (PCMs) with improved thermal properties as thermal energy storage (TES). Although eutectic fatty acids have been widely studied, the information on the thermal properties of the CO-CA eutectic mixture is very limited to the authors’ knowledge. Coconut oil offers good thermal and chemical stability with acceptable latent heat and melting temperature. The thermal properties of the eutectic mixture were enhanced by graphene addition at 1, 3, 5, and 7 wt% concentrations. The surfactant was added to the mixture to avoid the sedimentation of graphene. The material characterisation techniques include thermal conductivity measurement, Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), and Thermal Gravimetric (TG) analysis. The results revealed that the pure eutectic CO-CA has a melting point of 23.5°C with a latent heat of 110 J/g. With the addition of graphene, the melting point of the mixture is 22.8°C, and the latent heat is 103 J/g. Overall, the findings showed that the thermal conductivity improved by 21.7% for 7wt% graphene concentration. The spectra from FTIR and TG analysis showed that the mixture offers thermal and chemical stability. The promising findings in this study showed that the newly developed eutectic mixture with improved thermal properties makes them favourable to be used as TES for low-temperature applications.
{"title":"Development of Coconut Oil/Capric Acid Eutectic Phase Change Material with Graphene as Latent Thermal Energy Storage","authors":"S. Hasbi, K. Leong, K. Z. Ku Ahmad, Nor Azura Abdul Rahim, M. Saharudin","doi":"10.15282/ijame.20.1.2023.07.0792","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.07.0792","url":null,"abstract":"In this study, a eutectic mixture of coconut oil (CO)-capric acid (CA) was synthesised and investigated with the aim of producing newly eutectic phase change materials (PCMs) with improved thermal properties as thermal energy storage (TES). Although eutectic fatty acids have been widely studied, the information on the thermal properties of the CO-CA eutectic mixture is very limited to the authors’ knowledge. Coconut oil offers good thermal and chemical stability with acceptable latent heat and melting temperature. The thermal properties of the eutectic mixture were enhanced by graphene addition at 1, 3, 5, and 7 wt% concentrations. The surfactant was added to the mixture to avoid the sedimentation of graphene. The material characterisation techniques include thermal conductivity measurement, Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), and Thermal Gravimetric (TG) analysis. The results revealed that the pure eutectic CO-CA has a melting point of 23.5°C with a latent heat of 110 J/g. With the addition of graphene, the melting point of the mixture is 22.8°C, and the latent heat is 103 J/g. Overall, the findings showed that the thermal conductivity improved by 21.7% for 7wt% graphene concentration. The spectra from FTIR and TG analysis showed that the mixture offers thermal and chemical stability. The promising findings in this study showed that the newly developed eutectic mixture with improved thermal properties makes them favourable to be used as TES for low-temperature applications.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"13 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86366277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.15282/ijame.20.1.2023.06.0791
Sharil Izwan Haris, Fauzi Ahmad, Hishamuddin Jamaluddin, Mohd Hanif Che Hassan, Ahmad Kamal Mat Yamin, Amrik Singh Phuman Singh
This paper describes a new design of an electronic wedge brake (EWB) system called the Cone Wedge Shape Based Electronic Wedge Brake (CW-EWB). The CW-EWB brake is made up of two cone wedges, one female and one male, stacked on top of each other. The CW-EWB is powered by the linear movement of a roller screw caused by the rotation of an electric motor through the roller screw, which causes the lower wedge to move tangentially to the disc brake, creating braking torque as the wheel rotates. A dynamic model of the CW-EWB that creates braking torque was built in this study, utilising a physical parametric estimate method. A torque tracking controller based on the proportional integral derivative (PID) control scheme is presented to ensure the CW-EWB model performs properly. The resulting mathematical model and control method were then experimentally tested using a braking test rig outfitted with multiple sensors and input-output (IO) devices. The performance of the brake mechanism is analysed in terms of actuator voltage, current, wedge position, wheel speed, and brake torque. Consequently, comparisons are made between experimental outcomes and simulated model responses. There are comparable trends between simulation results and experimental data, with an acceptable level of error.
{"title":"Mechanism of Cone Wedge Shape Based Electronic Wedge Brake: Model and Experimental Validation","authors":"Sharil Izwan Haris, Fauzi Ahmad, Hishamuddin Jamaluddin, Mohd Hanif Che Hassan, Ahmad Kamal Mat Yamin, Amrik Singh Phuman Singh","doi":"10.15282/ijame.20.1.2023.06.0791","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.06.0791","url":null,"abstract":"This paper describes a new design of an electronic wedge brake (EWB) system called the Cone Wedge Shape Based Electronic Wedge Brake (CW-EWB). The CW-EWB brake is made up of two cone wedges, one female and one male, stacked on top of each other. The CW-EWB is powered by the linear movement of a roller screw caused by the rotation of an electric motor through the roller screw, which causes the lower wedge to move tangentially to the disc brake, creating braking torque as the wheel rotates. A dynamic model of the CW-EWB that creates braking torque was built in this study, utilising a physical parametric estimate method. A torque tracking controller based on the proportional integral derivative (PID) control scheme is presented to ensure the CW-EWB model performs properly. The resulting mathematical model and control method were then experimentally tested using a braking test rig outfitted with multiple sensors and input-output (IO) devices. The performance of the brake mechanism is analysed in terms of actuator voltage, current, wedge position, wheel speed, and brake torque. Consequently, comparisons are made between experimental outcomes and simulated model responses. There are comparable trends between simulation results and experimental data, with an acceptable level of error.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73939575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.15282/ijame.20.1.2023.01.0786
Dhruv Panchal, Bhavesh Patel, Hardik Gohil
The deteriorated condition of friction liners after prolonged use is one of the primary causes of judder in centrifugal clutches. The friction characteristics can be retained by generating specific textures or grooves on the friction liner. An attempt has been made to study the characteristics of centrifugal clutch using grooved friction liners. A test cycle for centrifugal clutch has been developed using a number of engagements as the basis. A vehicle test bench was used for the experiment where the developed test cycle was automated. The performance characteristics of the centrifugal clutch have been recorded and analyzed with normal friction liners and grooved friction liners for 100 test cycles. For this study, the groove area ratio was retained at 0.15, and the grooves were cut at 90°. After completing 100 test cycles, the clutch with a grooved friction liner exhibited better characteristics. After completing 100 test cycles, the surface roughness reduction at the leading section of the grooved friction liner and normal friction liner has been found to be 6.44% and 8.11%, respectively. The thickness reduction at the leading section of the grooved friction liner and normal friction liner has been reported to be 3.73% and 4.98%, respectively. Throughout the run of 100 test cycles, the higher clutch housing temperature has been witnessed in the case of a clutch with a grooved friction liner. At the 100th test cycle, the clutch torque with a grooved friction liner was 15.22% more than the clutch torque with a normal friction liner. Even after prolonged use, the clutch with grooved friction liner exhibited better judder characteristics and also provided higher fuel economy for vehicles.
{"title":"Experimental Investigation on Performance Characteristics of Dry Centrifugal Clutch with Grooved Friction Liners","authors":"Dhruv Panchal, Bhavesh Patel, Hardik Gohil","doi":"10.15282/ijame.20.1.2023.01.0786","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.01.0786","url":null,"abstract":"The deteriorated condition of friction liners after prolonged use is one of the primary causes of judder in centrifugal clutches. The friction characteristics can be retained by generating specific textures or grooves on the friction liner. An attempt has been made to study the characteristics of centrifugal clutch using grooved friction liners. A test cycle for centrifugal clutch has been developed using a number of engagements as the basis. A vehicle test bench was used for the experiment where the developed test cycle was automated. The performance characteristics of the centrifugal clutch have been recorded and analyzed with normal friction liners and grooved friction liners for 100 test cycles. For this study, the groove area ratio was retained at 0.15, and the grooves were cut at 90°. After completing 100 test cycles, the clutch with a grooved friction liner exhibited better characteristics. After completing 100 test cycles, the surface roughness reduction at the leading section of the grooved friction liner and normal friction liner has been found to be 6.44% and 8.11%, respectively. The thickness reduction at the leading section of the grooved friction liner and normal friction liner has been reported to be 3.73% and 4.98%, respectively. Throughout the run of 100 test cycles, the higher clutch housing temperature has been witnessed in the case of a clutch with a grooved friction liner. At the 100th test cycle, the clutch torque with a grooved friction liner was 15.22% more than the clutch torque with a normal friction liner. Even after prolonged use, the clutch with grooved friction liner exhibited better judder characteristics and also provided higher fuel economy for vehicles.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"29 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73696751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.15282/ijame.20.1.2023.03.0788
P. Sethuramalingam, U. M, Jayant Jaishwin, Mylavarapu Nikhil
Fused deposition modeling (FDM) is a well-liked additive fabrication method used to manufacture prototypes and components in industries. The quality of the 3D printed component depends on the temperature profile between the layers of the printed components and the process parameters. The deviations in the quality of manufactured components can be established using tools of metrology, including Coordinate-Measuring Machine and Machine Vision. This research is to determine the effect of temperature on the aforementioned phenomenon by using collected data to build a predictive model. The leading factor effect intrigue is stressed for the correlative closeness coefficient (Cn*) and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS). The most favorable combinations of the experiment were obtained from the response diagram at a layer thickness of 0.3 mm, print speed of 80 mm/sec, and infill percentage of 20%. It is noted that the parameters have a contribution of 55.60%, 33.16%, and 0.15%, respectively. The majority of agreeable combinations of the investigations were acquired from the main factor effect response diagram, a layer thickness of 0.3 mm, printing FDM speed of 80 mm/sec, and an infill percentage of material is 20% for maximizing the temperature gradient and minimizing shrinkage and warpage. A fuzzy logic expert system was used to predict the shrinkage allowances precisely with less than 5% error.
{"title":"Experimental Study and Predictive Modelling of Fused Deposition Modelling (FDM) Using TOPSIS and Fuzzy Logic Expert System","authors":"P. Sethuramalingam, U. M, Jayant Jaishwin, Mylavarapu Nikhil","doi":"10.15282/ijame.20.1.2023.03.0788","DOIUrl":"https://doi.org/10.15282/ijame.20.1.2023.03.0788","url":null,"abstract":"Fused deposition modeling (FDM) is a well-liked additive fabrication method used to manufacture prototypes and components in industries. The quality of the 3D printed component depends on the temperature profile between the layers of the printed components and the process parameters. The deviations in the quality of manufactured components can be established using tools of metrology, including Coordinate-Measuring Machine and Machine Vision. This research is to determine the effect of temperature on the aforementioned phenomenon by using collected data to build a predictive model. The leading factor effect intrigue is stressed for the correlative closeness coefficient (Cn*) and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS). The most favorable combinations of the experiment were obtained from the response diagram at a layer thickness of 0.3 mm, print speed of 80 mm/sec, and infill percentage of 20%. It is noted that the parameters have a contribution of 55.60%, 33.16%, and 0.15%, respectively. The majority of agreeable combinations of the investigations were acquired from the main factor effect response diagram, a layer thickness of 0.3 mm, printing FDM speed of 80 mm/sec, and an infill percentage of material is 20% for maximizing the temperature gradient and minimizing shrinkage and warpage. A fuzzy logic expert system was used to predict the shrinkage allowances precisely with less than 5% error.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"27 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75054495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-06DOI: 10.15282/ijame.19.4.2022.11.0785
B. Halfina, Hendrato, Y.P.D.S. Depari, Muhammad, S.H.M. Kurnia, H.A. Fitri
Indonesia is developing a high-speed train (HST) prototype planned for a maximum speed of 250 km/h. In high operating speed, an aerodynamics drag contributes significantly to the total resistance. Thus, reducing the aerodynamic drag becomes a primary concern. One of the significant aspects that need to be solved is to design the optimum shape of the frontal nose of the train called the Mask of Car (MoC). This research aims to study the drag coefficient from the various shape of the HST Mask of Car design by numerical method and to develop the optimum design strategy. The curvature parameters of the complex 3D model, such as nose-length, upper curvature, and side-curvature used as an optimization method The base model was constructed in 2D parameters and then developed into different shapes using 3D CAD software. A set of models was then analyzed using computational fluid dynamics with the coefficient of drag and flow characteristic. Based on the iterative simulation, it is discovered that the longer nose and sharper side of the MoC will reduce the aerodynamic drag. In conclusion, the length and the slenderness of the nose shape are significant factors in designing the mask of car of high-speed train.
{"title":"Numerical Analysis for Different Masks of Car Design of High-Speed Train","authors":"B. Halfina, Hendrato, Y.P.D.S. Depari, Muhammad, S.H.M. Kurnia, H.A. Fitri","doi":"10.15282/ijame.19.4.2022.11.0785","DOIUrl":"https://doi.org/10.15282/ijame.19.4.2022.11.0785","url":null,"abstract":"Indonesia is developing a high-speed train (HST) prototype planned for a maximum speed of 250 km/h. In high operating speed, an aerodynamics drag contributes significantly to the total resistance. Thus, reducing the aerodynamic drag becomes a primary concern. One of the significant aspects that need to be solved is to design the optimum shape of the frontal nose of the train called the Mask of Car (MoC). This research aims to study the drag coefficient from the various shape of the HST Mask of Car design by numerical method and to develop the optimum design strategy. The curvature parameters of the complex 3D model, such as nose-length, upper curvature, and side-curvature used as an optimization method The base model was constructed in 2D parameters and then developed into different shapes using 3D CAD software. A set of models was then analyzed using computational fluid dynamics with the coefficient of drag and flow characteristic. Based on the iterative simulation, it is discovered that the longer nose and sharper side of the MoC will reduce the aerodynamic drag. In conclusion, the length and the slenderness of the nose shape are significant factors in designing the mask of car of high-speed train.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"36 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82184846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}