The tough, hoof-shaped fruiting bodies of the tinder conk mushroom, Fomes fomentarius (L.) Fr. (Polyporaceae, Agaricomycetes), were traditionally used all over the world as tinder to start fire, for ritual purposes, to make artworks like clothing, frames, ornaments, and also to cure various human diseases (wounds, gastro-intestinal disorders, liver-related problems, inflammations, various cancers, etc.). The first wave of scientific interest in F. fomentarius in Europe dates back to the early 1970s with the discovery of the red-brown pigments of the F. fomentarius external layer. Since then, a number of research papers and reviews have mentioned the history of use, taxonomy, composition and medicinal properties of some F. fomentarius preparations, e.g., soluble extracts and their fractions, isolated cell walls, mycelia and compounds purified from the culture broth. The present review is focused on the composition and benefits of the water-insoluble cell walls obtained from the F. fomentarius fruiting bodies. Isolated cell walls of the tinder mushroom reveal a fibrous hollow structure with an average diameter of 3-5 μm and a wall thickness of 0.2-1.5 μm. Naturally, the fibers are composed of 25-38% glucans, with a majority of β-glucans, around 30% polyphenols, 6% chitin and less than 2% hemicellulose. The percentage of the main structural compounds can vary either slightly or considerably, depending on the extraction conditions. According to in vitro, in vivo, ex vivo as well as clinical studies, F. fomentarius fibers can modulate the immune system, contribute to intestinal health, accelerate wound healing, absorb heavy metals, organic dyes and radionuclides, normalize kidney and liver function, and provide antibacterial, antiviral, antifungal, anxiolytic, anti-inflammatory and analgesic effects. Multiple action of the insoluble cell walls purified from the F. fomentarius fruiting bodies is particularly effective in the treatment of chronic, recurring, complicated multifactorial diseases. It is certainly worth exploring the medicinal potential and the practical application of these preparations further.
We investigated the chemical constituents and anti-tumor activity of cultivated Pholiota adiposa in vitro using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. HepG-2, A549, HeLa, and MCF-7 cells, which are 4 kinds of human cancer cell lines, were cultured in vitro, treated with different concentrations of the ethanol extract of Ph. adiposa (EPA), and cytotoxicity was determined using the cell counting kit-8 assay. Flow cytometry was used to analyze the apoptosis of HepG-2 cells via annexin V-fluorescein isothiocyanate/propidium iodide double staining. Expression levels of apoptosis-associated proteins were determined via Western blotting analysis. Thirty-five components were consistent with those recorded in the chemical composition database, with sterols, fatty acids, and polysaccharide compounds accounting for a relatively high proportion. EPA showed the strongest cytotoxicity against HepG-2 cells, increasing the apoptosis rate up to 23.71 ± 1.59% at a concentration of 50 μg/mL. Ph. adiposa has various functional chemical constituents and potential anti-tumor applications. We found that the functional constituents exerted anti-tumor activity by inducing apoptosis. Furthermore, the expression levels of BCL-2-associated X were increased, whereas those of BCL-2 were decreased in cells after treatment with EPA. These results suggest that EPA induces HepG-2 cell apoptosis via a caspase-mediated pathway.
Lepista sordida is an edible mushroom possessing high nutritional value and high medicinal value. The artificial cultivation technology of L. sordida made a breakthrough and has been popularized in Yunnan, Guizhou, Sichuan province with good economic benefits. The secondary metabolites were investigated from ethyl EtOAc (acetate extract) of solid cultures of L. sordida. Silica gel column chromatography, semi-preparation HPLC, recrystallization, and medium pressure column chromatography were applied to obtain 15 compounds. Nine compounds were first isolated from genus Lepista and 11 compounds were first isolated from species L. sordida. Moreover, compounds 13 and 14 exhibited strong scavenging activity of ABTS.