Pub Date : 2021-09-06DOI: 10.30492/IJCCE.2021.527841.4668
N. Chafai, Hicham Salhi, Khalissa Benbouguerra, S. Chafaa
In this work, we study numerically the natural convection of nanofluids (NF) in an inclined flat bottom flask; it is one of laboratory flasks used in organic chemistry synthesis. The main reason of this study is to enhance the thermal properties of the reaction medium inside the flat bottom flask and to ameliorate the rate of chemical reactions using nanofluids. The flat bottom wall is maintained at a constant high temperature Th. While the top, left and right walls of the cavity are maintained at a low temperature TL. The NF comprises Cu and Al2O3 nanoparticles (NP) suspended in pure water. The governing equations are solved numerically using the finite-volume approach and formulated using the Boussinesq approximation. In this simulation we examined the effects of the NP volume fraction (φ) from 0% to 5%, the Rayleigh number from 103 to 106, the various inclination angles of enclosure (γ=0°,5°,10°, 15°) and the NF type (Cu and Al2O3) on the flow streamlines, isotherm distribution and Nusselt number. The obtained results show that the addition of Cu and Al2O3 NP increases the mean Nusselt number which enhances the heat transfer in the flat bottom flask and causes significant changes in the flow pattern. In addition, the mean Nusselt number is increase with increasing the Rayleigh number and the volume fraction and the best results have obtained from the Cu nanofluide. Also, as the inclination angle increases the mean Nusselt number decreases and the highest value of Nusselt number was obtained for a vertical enclosure (γ=0°). The obtained streamlines are mostly symmetric and their values are generally increase by increasing the Rayleigh number and volume fractions of NPs. Besides, the obtained isotherms are generally follow the geometry of the flat bottom flask.
{"title":"Numerical study of natural convection of nanofluids in an inclined flat bottom flask using finite-volume approach.","authors":"N. Chafai, Hicham Salhi, Khalissa Benbouguerra, S. Chafaa","doi":"10.30492/IJCCE.2021.527841.4668","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.527841.4668","url":null,"abstract":"In this work, we study numerically the natural convection of nanofluids (NF) in an inclined flat bottom flask; it is one of laboratory flasks used in organic chemistry synthesis. The main reason of this study is to enhance the thermal properties of the reaction medium inside the flat bottom flask and to ameliorate the rate of chemical reactions using nanofluids. The flat bottom wall is maintained at a constant high temperature Th. While the top, left and right walls of the cavity are maintained at a low temperature TL. The NF comprises Cu and Al2O3 nanoparticles (NP) suspended in pure water. The governing equations are solved numerically using the finite-volume approach and formulated using the Boussinesq approximation. In this simulation we examined the effects of the NP volume fraction (φ) from 0% to 5%, the Rayleigh number from 103 to 106, the various inclination angles of enclosure (γ=0°,5°,10°, 15°) and the NF type (Cu and Al2O3) on the flow streamlines, isotherm distribution and Nusselt number. The obtained results show that the addition of Cu and Al2O3 NP increases the mean Nusselt number which enhances the heat transfer in the flat bottom flask and causes significant changes in the flow pattern. In addition, the mean Nusselt number is increase with increasing the Rayleigh number and the volume fraction and the best results have obtained from the Cu nanofluide. Also, as the inclination angle increases the mean Nusselt number decreases and the highest value of Nusselt number was obtained for a vertical enclosure (γ=0°). The obtained streamlines are mostly symmetric and their values are generally increase by increasing the Rayleigh number and volume fractions of NPs. Besides, the obtained isotherms are generally follow the geometry of the flat bottom flask.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"2 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84886689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.131068.4236
Rachid Lamari, B. Benotmane, Farida Mostefa
Dyes, which are increasingly harmful to human health and ecology, are an environmental concern and their removal from wastewater is extremely required. It is also important for researchers to find relevant techniques to process these types of pollutants. This study examines the use of the synthesized imidazolate zeolite frameworks-11 (ZIF-11) by stirring method for the methyl orange (MO) dye removal from aqueous solution. The scanning electron microscopy, thermogravimetry, X-ray diffraction, and Fourier transform infrared spectroscopy, were used for the analysis of ZIF-11 particles, which exhibited highly porous, irregular and heterogeneous shapes and variable size. The MO removal was assessed by batch adsorption with ZIF-11 particles as adsorbent, whose efficiency was achieved at pH=8, stirring speed of 600 rpm, for a contact time of 40min and a dosage of 800mg/L of MO solution. The thermodynamic and kinetic analysis of the MO adsorption process was achieved successfully with the pseudo-second order kinetic model as well as Langmuir and Temkin isotherms, indicating the feasibility and spontaneity of the uniform distribution of MO molecules on the active sites of ZIF-11 particles. The calculated maximum adsorption capacity of MO on ZIF-11 particles was 178.57 mg/g, which is indicative of the potential adsorptive properties of the synthesised ZIF-11 for MO dyes.
{"title":"Removal of Methyl Orange from aqueous solution using Zeolitic Imidazolate Framework-11: Adsorption Isotherms, Kinetics and Error analysis.","authors":"Rachid Lamari, B. Benotmane, Farida Mostefa","doi":"10.30492/IJCCE.2021.131068.4236","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.131068.4236","url":null,"abstract":"Dyes, which are increasingly harmful to human health and ecology, are an environmental concern and their removal from wastewater is extremely required. It is also important for researchers to find relevant techniques to process these types of pollutants. This study examines the use of the synthesized imidazolate zeolite frameworks-11 (ZIF-11) by stirring method for the methyl orange (MO) dye removal from aqueous solution. The scanning electron microscopy, thermogravimetry, X-ray diffraction, and Fourier transform infrared spectroscopy, were used for the analysis of ZIF-11 particles, which exhibited highly porous, irregular and heterogeneous shapes and variable size. The MO removal was assessed by batch adsorption with ZIF-11 particles as adsorbent, whose efficiency was achieved at pH=8, stirring speed of 600 rpm, for a contact time of 40min and a dosage of 800mg/L of MO solution. The thermodynamic and kinetic analysis of the MO adsorption process was achieved successfully with the pseudo-second order kinetic model as well as Langmuir and Temkin isotherms, indicating the feasibility and spontaneity of the uniform distribution of MO molecules on the active sites of ZIF-11 particles. The calculated maximum adsorption capacity of MO on ZIF-11 particles was 178.57 mg/g, which is indicative of the potential adsorptive properties of the synthesised ZIF-11 for MO dyes.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"19 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86046883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.527558.4664
Xueye Chen, Honglin Lv
Changing the structure of microchannel or setting obstacles in microchannel has become an effective way to improve the mixing performance of passive micromixer. Here, we design a three-dimensional micromixer with fractal obstacles based on Cantor fractal principle. The effect of fractal obstacle level, micromixer height, spacing between fractal obstacles and different Re (Reynold number) on the mixing efficiency are studied. Some valuable conclusions are obtained. The micromixer with quadratic fractal obstacles has better mixing efficiency than the micromixer with primary fractal obstacles. With the increase of the micromixer height, the effective folding area of the fluid can be increased. When the spacing between the fractal barriers is 0µm, the mixing efficiency of the micromixer is better. The mixing efficiency of all micromixers can reach more than 90% at Re is less 0.1 or more than 40. When Re is 70 and 100, the fluid convection in the micromixer is very strong. Finally, a best micromixer CSM600(Cantor structure micromixer with height 600µm) is obtained. The mixing effect is superior to other micromixers under any conditions.
{"title":"Numerical study on bilateral stagger Cantor fractal baffles micromixer","authors":"Xueye Chen, Honglin Lv","doi":"10.30492/IJCCE.2021.527558.4664","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.527558.4664","url":null,"abstract":"Changing the structure of microchannel or setting obstacles in microchannel has become an effective way to improve the mixing performance of passive micromixer. Here, we design a three-dimensional micromixer with fractal obstacles based on Cantor fractal principle. The effect of fractal obstacle level, micromixer height, spacing between fractal obstacles and different Re (Reynold number) on the mixing efficiency are studied. Some valuable conclusions are obtained. The micromixer with quadratic fractal obstacles has better mixing efficiency than the micromixer with primary fractal obstacles. With the increase of the micromixer height, the effective folding area of the fluid can be increased. When the spacing between the fractal barriers is 0µm, the mixing efficiency of the micromixer is better. The mixing efficiency of all micromixers can reach more than 90% at Re is less 0.1 or more than 40. When Re is 70 and 100, the fluid convection in the micromixer is very strong. Finally, a best micromixer CSM600(Cantor structure micromixer with height 600µm) is obtained. The mixing effect is superior to other micromixers under any conditions.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"35 6 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80090260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.521869.4488
S. Upadhyaya, T. Chaturvedi, P. Pandit, M. Vashishtha
In this study, the optimum conditions for different process parameters were determined for solvent extraction of copper ions from wastewater using reverse micelles. The process parameters viz. copper ion concentration, sodium bis-2-ethyl hexyl sulphosuccinate (AOT) concentration, solution pH, organic to aqueous phase volume ratio, and NaCl concentration were taken into consideration in response surface methodology, ranging from 30-150 mg/l, 0.04-0.2 [M], 3-11, 0.2-1.0, 0-4 g/100 ml respectively and their effect on percentage removal of copper ions were studied. A regression model was developed by conducting response surface methodology for the analysis of percentage removal of copper ions from wastewater. As many as fifty four experiments were procured from the design of experiments for the percentage removal of copper ions. The developed model was employed to optimize the process parameters being considered to maximize the response. The optimum conditions were found to be 30 mg/l copper ion concentration, 0.20 [M] AOT concentration, 3.12 pH, 0.57 organic to aqueous phase volume ratio, and 0.134 g/100 ml NaCl concentration. The obtained model was validated with experimental data and found to be best fitted within the tolerance limit. The effect of cross-interaction among the process parameters on the percentage removal of copper ions were also investigated. In this study, the copper ion concentration was analyzed by Atomic absorption spectroscopy (AAS).
{"title":"Solvent Extraction of Copper Ions from Wastewater using Reverse Micelles: Experimental and Optimization","authors":"S. Upadhyaya, T. Chaturvedi, P. Pandit, M. Vashishtha","doi":"10.30492/IJCCE.2021.521869.4488","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.521869.4488","url":null,"abstract":"In this study, the optimum conditions for different process parameters were determined for solvent extraction of copper ions from wastewater using reverse micelles. The process parameters viz. copper ion concentration, sodium bis-2-ethyl hexyl sulphosuccinate (AOT) concentration, solution pH, organic to aqueous phase volume ratio, and NaCl concentration were taken into consideration in response surface methodology, ranging from 30-150 mg/l, 0.04-0.2 [M], 3-11, 0.2-1.0, 0-4 g/100 ml respectively and their effect on percentage removal of copper ions were studied. A regression model was developed by conducting response surface methodology for the analysis of percentage removal of copper ions from wastewater. As many as fifty four experiments were procured from the design of experiments for the percentage removal of copper ions. The developed model was employed to optimize the process parameters being considered to maximize the response. The optimum conditions were found to be 30 mg/l copper ion concentration, 0.20 [M] AOT concentration, 3.12 pH, 0.57 organic to aqueous phase volume ratio, and 0.134 g/100 ml NaCl concentration. The obtained model was validated with experimental data and found to be best fitted within the tolerance limit. The effect of cross-interaction among the process parameters on the percentage removal of copper ions were also investigated. In this study, the copper ion concentration was analyzed by Atomic absorption spectroscopy (AAS).","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"67 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80632919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.138262.4393
K. DevanP, C. Ramakrishnan, Bibin Chidambaranathan, S. Gopinath
To reduce the importance of fossil fuels, the identification of biofuels plays a vital role. The plant oil chosen for this study is novel plant oil named Jojoba oil (the botanical name is Simmondsia Chinensis). To utilise this type of oil in higher proportion with diesel, engine modifications were carried. The engine modifications include optimising salient operating parameters with Thermal Barrier Coating (TBC). Taguchi and Gray relational methods were used for finding the optimised values of salient operating parameters like injection pressure, compression ratio, injection timing and intake air temperature as 275 bar, 19.5 CR, 27.5 bTDC and 65˚C, respectively [1]. This has helped to combust the higher blends of jojoba oil, namely 60J, 70J and 80J, without adverse performance and emission characteristics. The fundamental aim of coating Aluminium oxide, Molybdenum and Titanium oxide (40%, 30% and 30%) on the inner surface of the piston crown and the cylinder head is to retain heat and thereby achieve higher thermal efficiency. Combustion, performance and emission analysis were done and found that 60% by volume of jojoba oil can be applied in a TBC engine which offers 11.5% higher BTE, 74.3% lower CO, 31.2% lower HC, 8.6% higher NOx and 25.9% lower smoke than 70% and 80% by volume of jojoba oil.
{"title":"IMPROVISATION OF COMBUSTION BEHAVIOUR OF JOJOBA OIL DIESEL BLEND FUELLED DI DIESEL ENGINE BY ENGINE MODIFICATIONS SUCH AS MOP AND TBC","authors":"K. DevanP, C. Ramakrishnan, Bibin Chidambaranathan, S. Gopinath","doi":"10.30492/IJCCE.2021.138262.4393","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.138262.4393","url":null,"abstract":"To reduce the importance of fossil fuels, the identification of biofuels plays a vital role. The plant oil chosen for this study is novel plant oil named Jojoba oil (the botanical name is Simmondsia Chinensis). To utilise this type of oil in higher proportion with diesel, engine modifications were carried. The engine modifications include optimising salient operating parameters with Thermal Barrier Coating (TBC). Taguchi and Gray relational methods were used for finding the optimised values of salient operating parameters like injection pressure, compression ratio, injection timing and intake air temperature as 275 bar, 19.5 CR, 27.5 bTDC and 65˚C, respectively [1]. This has helped to combust the higher blends of jojoba oil, namely 60J, 70J and 80J, without adverse performance and emission characteristics. The fundamental aim of coating Aluminium oxide, Molybdenum and Titanium oxide (40%, 30% and 30%) on the inner surface of the piston crown and the cylinder head is to retain heat and thereby achieve higher thermal efficiency. Combustion, performance and emission analysis were done and found that 60% by volume of jojoba oil can be applied in a TBC engine which offers 11.5% higher BTE, 74.3% lower CO, 31.2% lower HC, 8.6% higher NOx and 25.9% lower smoke than 70% and 80% by volume of jojoba oil.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"16 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83395245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.114496.3761
Abdulkader Mohammed Awol, K. Waghray, P. P.G., R. Math
Abstract Films were prepared using casting method from enset starch, as a filler material, glycerol & sorbitol as plasticizers at different concentrations (15, 25 and 35%). And glucose, fructose and sucrose were added to enhance flexibility. The films were characterized and compared the effect of plasticizer type (glycerol and sorbitol) and concentration some physicochemical properties of ES based films. The films were analyzed for moisture content, film density, and thickness, swelling capacity, tensile strength and percentage elongation. The study indicated that moisture content, film thickness, film density, swelling capacity, tensile strength and percentage elongation are dependent on the type of plasticizer and its concentration. Increasing the plasticizer concentration from 15 to 35 % increases moisture content, film thickness; decreases the film density, water swelling capacity and tensile strength of films, regardless of the plasticizer type used.
{"title":"Preparation and characterization of Enset starch (ES) based films: plasticized by glycerol and sorbitol","authors":"Abdulkader Mohammed Awol, K. Waghray, P. P.G., R. Math","doi":"10.30492/IJCCE.2021.114496.3761","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.114496.3761","url":null,"abstract":"Abstract\u0000Films were prepared using casting method from enset starch, as a filler material, glycerol & sorbitol as plasticizers at different concentrations (15, 25 and 35%). And glucose, fructose and sucrose were added to enhance flexibility. The films were characterized and compared the effect of plasticizer type (glycerol and sorbitol) and concentration some physicochemical properties of ES based films. The films were analyzed for moisture content, film density, and thickness, swelling capacity, tensile strength and percentage elongation. The study indicated that moisture content, film thickness, film density, swelling capacity, tensile strength and percentage elongation are dependent on the type of plasticizer and its concentration. Increasing the plasticizer concentration from 15 to 35 % increases moisture content, film thickness; decreases the film density, water swelling capacity and tensile strength of films, regardless of the plasticizer type used.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"54 71 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77932147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.127597.4127
Y. Javed, S. Rehman, N. A. Shad, M. M. Sajid, K. Ali, Y. Jamil, M. Sajjad, A. Nawaz, S. Sharma
In this study, Copper oxide (CuO) nanoparticles (NPs) were prepared using the chemical co-precipitation method and treated at different calcination temperatures. The synthesized CuO NPs have been calcinated at 300 °C, 500 °C, and 700 °C. The X-ray Diffraction (XRD) results exhibited a decrease in the width of the principle diffraction peak with the temperature rise. Crystallite size was determined by Scherrer’s formula, whereas, Williamson-Hall method presented drastic variation in size indicating the creation of lattice strain with the rise in calcination temperature. Scanning Electron Microscopy (SEM) images showed an increase in grain size and vary from 170 nm – 430 nm. X-ray Energy Dispersive Spectroscopy (EDS) results indicate the formation of CuO NPs and relative Cu contents increased (52.9 to 72.5 Atomic percentage) with temperature. Optical properties are also affected by the calcination temperature and a reduction in bandgap is observed with the increase in temperature. Fourier Transform Infra-red spectroscopy (FTIR) spectra of different samples showed identical bonding behavior and no apparent change in bonding was observed. Photo-degradation of Congo Red dye was performed with CuO NPs treated at different temperatures and NPs treated at 500 °C, have shown maximum degradation efficiency in 75 min under visible light.
{"title":"Tuning structural and optical properties of copper oxide nanomaterials by thermal heating and its effect on photocatalytic degradation of Congo Red dye","authors":"Y. Javed, S. Rehman, N. A. Shad, M. M. Sajid, K. Ali, Y. Jamil, M. Sajjad, A. Nawaz, S. Sharma","doi":"10.30492/IJCCE.2021.127597.4127","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.127597.4127","url":null,"abstract":"In this study, Copper oxide (CuO) nanoparticles (NPs) were prepared using the chemical co-precipitation method and treated at different calcination temperatures. The synthesized CuO NPs have been calcinated at 300 °C, 500 °C, and 700 °C. The X-ray Diffraction (XRD) results exhibited a decrease in the width of the principle diffraction peak with the temperature rise. Crystallite size was determined by Scherrer’s formula, whereas, Williamson-Hall method presented drastic variation in size indicating the creation of lattice strain with the rise in calcination temperature. Scanning Electron Microscopy (SEM) images showed an increase in grain size and vary from 170 nm – 430 nm. X-ray Energy Dispersive Spectroscopy (EDS) results indicate the formation of CuO NPs and relative Cu contents increased (52.9 to 72.5 Atomic percentage) with temperature. Optical properties are also affected by the calcination temperature and a reduction in bandgap is observed with the increase in temperature. Fourier Transform Infra-red spectroscopy (FTIR) spectra of different samples showed identical bonding behavior and no apparent change in bonding was observed. Photo-degradation of Congo Red dye was performed with CuO NPs treated at different temperatures and NPs treated at 500 °C, have shown maximum degradation efficiency in 75 min under visible light.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"7 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79637339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.122511.4002
V. Myneni, N. Kanidarapu, F. Shaik, Meena Vangalapati
In this work, the chitosan-based magnesium oxide nanoparticles (CS-MgONP) composite was used as an adsorbent for the removal of organic dye methyl orange (MO). The adsorbent characterization was carried out using X-ray diffraction (XRD), Field emission scanning electron scanning microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectroscopy. The faster equilibrium, i.e. at an agitation time of 30 min, indicated the faster adsorption capability of the prepared adsorbent CS-MgONP. The central composite design (CCD) of response surface methodology (RSM) was used to evaluate the impact of process parameters in the range of pH (6-10), CS-MgONP dosage (0.1-0.5g/L), MO concentration (10-30mg/L), and temperature (283-323K) at an optimal agitation period of 30 min. Under optimum conditions of pH=7.93, CS-MgONP dosage=0.4g/L, initial MO concentration=15mg/L and temperature=313 K, 96.42% removal of MO was achieved with a desirability of 0.805. The adsorption of MO onto CS-MgONP was best fitted with the Langmuir adsorption isotherm, with an uptake capacity of 237.5 mg/g and followed the pseudo-second order kinetics. The thermodynamic studies showed positive enthalpy and negative Gibbs free energy that confirmed the spontaneous and endothermic process. Due to the fast equilibrium agitation period, i.e.30 min and high adsorption capacity, the adsorbent CS-MgONP proved to be an excellent choice for dye removal.
{"title":"Response surface modeling of the Removal of Methyl Orange Dye from Aqueous Solution using Magnesium Oxide Nanoparticles Immobilized on Chitosan","authors":"V. Myneni, N. Kanidarapu, F. Shaik, Meena Vangalapati","doi":"10.30492/IJCCE.2021.122511.4002","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.122511.4002","url":null,"abstract":"In this work, the chitosan-based magnesium oxide nanoparticles (CS-MgONP) composite was used as an adsorbent for the removal of organic dye methyl orange (MO). The adsorbent characterization was carried out using X-ray diffraction (XRD), Field emission scanning electron scanning microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectroscopy. The faster equilibrium, i.e. at an agitation time of 30 min, indicated the faster adsorption capability of the prepared adsorbent CS-MgONP. The central composite design (CCD) of response surface methodology (RSM) was used to evaluate the impact of process parameters in the range of pH (6-10), CS-MgONP dosage (0.1-0.5g/L), MO concentration (10-30mg/L), and temperature (283-323K) at an optimal agitation period of 30 min. Under optimum conditions of pH=7.93, CS-MgONP dosage=0.4g/L, initial MO concentration=15mg/L and temperature=313 K, 96.42% removal of MO was achieved with a desirability of 0.805. The adsorption of MO onto CS-MgONP was best fitted with the Langmuir adsorption isotherm, with an uptake capacity of 237.5 mg/g and followed the pseudo-second order kinetics. The thermodynamic studies showed positive enthalpy and negative Gibbs free energy that confirmed the spontaneous and endothermic process. Due to the fast equilibrium agitation period, i.e.30 min and high adsorption capacity, the adsorbent CS-MgONP proved to be an excellent choice for dye removal.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"27 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90574324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.135890.4317
A. Murugesan
End-of-Life Vehicles (ELVs) in India are often recycled by car breaking yards operating in the informal sector. In the absence of well-established, state-of-the-art ELV mechanisms, their work – ensures crucial recycling of ELVs. Multiple qualitative analysis methods, such as desk study, literature review, and field visits, are utilized. Our study shows the following: car breaking yards frequently work in an inefficient manner causing environmental hazards and health risks; the replacement policy adopted during vehicle servicing by Original Equipment Manufacturers and Authorized Dealers results in inefficient material use; Informal actors such as Private workshop owners and Reconditioning shops enable significant savings in material and costs, partly by substituting capital and energy with labour. We propose an inclusive 3R (reuse, recondition, and recycle) framework, which integrates various informal actors involved in ELV recycling. This sustainability-oriented framework ensures that the components and materials circulate in a closed loop.
{"title":"An Inclusive and Effective End-of-Life Vehicle Recycling System in India: Balancing Economy and Ecology from Grave to Cradle","authors":"A. Murugesan","doi":"10.30492/IJCCE.2021.135890.4317","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.135890.4317","url":null,"abstract":"End-of-Life Vehicles (ELVs) in India are often recycled by car breaking yards operating in the informal sector. In the absence of well-established, state-of-the-art ELV mechanisms, their work – ensures crucial recycling of ELVs. Multiple qualitative analysis methods, such as desk study, literature review, and field visits, are utilized. Our study shows the following: car breaking yards frequently work in an inefficient manner causing environmental hazards and health risks; the replacement policy adopted during vehicle servicing by Original Equipment Manufacturers and Authorized Dealers results in inefficient material use; Informal actors such as Private workshop owners and Reconditioning shops enable significant savings in material and costs, partly by substituting capital and energy with labour. We propose an inclusive 3R (reuse, recondition, and recycle) framework, which integrates various informal actors involved in ELV recycling. This sustainability-oriented framework ensures that the components and materials circulate in a closed loop.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"69 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87512143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.30492/IJCCE.2021.521915.4491
T. Cheng, Chen Chen, Chen-Xi Ye, Weifang Xie, Xiao Zhang, Tian Yuan
In this work, a novel composite photocatalyst, KBiO3/nano-Ag3PO4 (K/Ag catalyst), was synthesized, and efficiently degraded methylene blue (MB) under visible light. The various properties of photocatalyst were measured by modern analytical techniques, such as XRD, FT-IR, SEM, XPS, and UV-Vis. We also utilized Density functional theory calculation (DFT) to investigate the photocatalytic degradation mechanism in this reaction process. The multiple characterization findings demonstrated that K/Ag composite catalyst was successfully synthesized using Ag3PO4 and KBiO3, and it displayed excellent absorption for visible light. The photocatalytic results confirmed that K/Ag catalyst greatly promoted the degradation of MB under visible light. The first-order reaction kinetics model could satisfactorily describe the apparent photocatalytic degradation process in this system. In addition, adding electron capture agents to the photocatalytic system highly decreased the degradation efficiencies of target pollutant. Moreover, K/Ag composite catalyst exhibited perfect photocatalyst stability after recycling three times. Through calculating the band structure, Density of States (DOS) and work function, KBiO3 and Ag3PO4 could be considered as n type and p type semiconductor material, respectively. When the composite catalyst was exposed to light, the light-excited electrons would be appeared in both the conduction bands. Furthermore, the transfer trend of electrons and holes made photogenerated electrons concentrate on the conduction band of n type KBiO3, and photogenerated holes concentrate on the valence band of p type Ag3PO4, and thereby greatly improve the photocatalytic efficiency.
{"title":"Synthesis of KBiO3/Nano-Ag3PO4 Composite Photocatalyst and its Application for Degradation of Organic Pollutant under visible light","authors":"T. Cheng, Chen Chen, Chen-Xi Ye, Weifang Xie, Xiao Zhang, Tian Yuan","doi":"10.30492/IJCCE.2021.521915.4491","DOIUrl":"https://doi.org/10.30492/IJCCE.2021.521915.4491","url":null,"abstract":"In this work, a novel composite photocatalyst, KBiO3/nano-Ag3PO4 (K/Ag catalyst), was synthesized, and efficiently degraded methylene blue (MB) under visible light. The various properties of photocatalyst were measured by modern analytical techniques, such as XRD, FT-IR, SEM, XPS, and UV-Vis. We also utilized Density functional theory calculation (DFT) to investigate the photocatalytic degradation mechanism in this reaction process. The multiple characterization findings demonstrated that K/Ag composite catalyst was successfully synthesized using Ag3PO4 and KBiO3, and it displayed excellent absorption for visible light. The photocatalytic results confirmed that K/Ag catalyst greatly promoted the degradation of MB under visible light. The first-order reaction kinetics model could satisfactorily describe the apparent photocatalytic degradation process in this system. In addition, adding electron capture agents to the photocatalytic system highly decreased the degradation efficiencies of target pollutant. Moreover, K/Ag composite catalyst exhibited perfect photocatalyst stability after recycling three times. Through calculating the band structure, Density of States (DOS) and work function, KBiO3 and Ag3PO4 could be considered as n type and p type semiconductor material, respectively. When the composite catalyst was exposed to light, the light-excited electrons would be appeared in both the conduction bands. Furthermore, the transfer trend of electrons and holes made photogenerated electrons concentrate on the conduction band of n type KBiO3, and photogenerated holes concentrate on the valence band of p type Ag3PO4, and thereby greatly improve the photocatalytic efficiency.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78457701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}