Pub Date : 2023-01-01DOI: 10.1595/205651324x16963284171824
José R. Serrano, J. Javier López, Jaime Martín, Gabriela Bracho
Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing 0D, mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average YO2 and the effective YO2 (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.
{"title":"Extension of a Zero-Dimensional Mixing-Controlled Combustion Model for the Development of a NOx–Free System Based on the Oxy-Combustion Concept","authors":"José R. Serrano, J. Javier López, Jaime Martín, Gabriela Bracho","doi":"10.1595/205651324x16963284171824","DOIUrl":"https://doi.org/10.1595/205651324x16963284171824","url":null,"abstract":"Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing 0D, mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average YO2 and the effective YO2 (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135913819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651324x16963489202714
José Rodríguez-Fernández, Ángel Ramos, Víctor M. Domínguez, Blanca Giménez, Miriam Reyes, Juan J. Hernández
Recent progress has been made towards decarbonization of transport, which accounts for one quarter of the global carbon dioxide emissions. For the short-medium term, new EU and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression-ignition engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel and hydrotreated vegetable oil-HVO) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher EGR rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of biodiesel dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.
{"title":"Hydrogen Use in a Dual-Fuel Compression-Ignition Engine with Alternative Biofuels","authors":"José Rodríguez-Fernández, Ángel Ramos, Víctor M. Domínguez, Blanca Giménez, Miriam Reyes, Juan J. Hernández","doi":"10.1595/205651324x16963489202714","DOIUrl":"https://doi.org/10.1595/205651324x16963489202714","url":null,"abstract":"Recent progress has been made towards decarbonization of transport, which accounts for one quarter of the global carbon dioxide emissions. For the short-medium term, new EU and national energy and climate plans agree on a strategy based on the combination of increasing shares of electric vehicles with the promotion of sustainable fuels, especially if produced from residual feedstock and routes with low or zero net carbon emission. Hydrogen stands out among these fuels for its unique properties. This work analyses the potential of using hydrogen in a dual-fuel, compression-ignition engine running with three diesel-like fuels (conventional fossil diesel, advanced biodiesel and hydrotreated vegetable oil-HVO) and different hydrogen energy substitution ratios. The results were confronted with conventional diesel operation, revealing that dual-fuel combustion with hydrogen demands higher EGR rates and more advance combustion, leading to a remarked reduction of NOx emission at the expense of a penalty in energy consumption due mainly to unburnt hydrogen and wall heat losses. Unreacted hydrogen was ameliorated at high load. At low load, the use of biodiesel dual combustion permitted higher hydrogen substitution ratios and higher efficiencies than diesel and HVO.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"290 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135914177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651324x16964141254874
Bowen Zhang, Rencheng Zhu, Yunjing Wang
The article places emphasis on the latest advancements in this field, particularly focusing on indoor and outdoor microplastic (MP) pollution, including their emission, behavior, and potential health hazards. Gaining an in-depth understanding of these factors is crucial for devising effective strategies to mitigate the impact of microplastics (MPs) on human health and the environment. Indoor MP abundance is generally higher than outdoor levels, with textiles serving as a primary source of indoor airborne MPs. Traffic-derived MP particles, MP fibers in residential areas, agricultural plastic mulch, marine MPs, and landfill sites appear to be contributors to outdoor atmospheric MP pollution. Factors such as wind direction, wind speed, precipitation, and snowfall, along with the physical characteristics and secondary suspension of MPs, collectively influence their behavior, distribution, and fate. Inhalation and ingestion constitute the main exposure pathways for airborne MPs, potentially leading to health issues like respiratory inflammation. Therefore, gaining a deeper insight into the behavior and impact mechanisms of atmospheric MPs aids in formulating effective risk management strategies to safeguard human health and maintain environmental sustainability.
{"title":"A Review of the Sources, Environmental Behaviors, and Human Health of Atmospheric Microplastics","authors":"Bowen Zhang, Rencheng Zhu, Yunjing Wang","doi":"10.1595/205651324x16964141254874","DOIUrl":"https://doi.org/10.1595/205651324x16964141254874","url":null,"abstract":"The article places emphasis on the latest advancements in this field, particularly focusing on indoor and outdoor microplastic (MP) pollution, including their emission, behavior, and potential health hazards. Gaining an in-depth understanding of these factors is crucial for devising effective strategies to mitigate the impact of microplastics (MPs) on human health and the environment. Indoor MP abundance is generally higher than outdoor levels, with textiles serving as a primary source of indoor airborne MPs. Traffic-derived MP particles, MP fibers in residential areas, agricultural plastic mulch, marine MPs, and landfill sites appear to be contributors to outdoor atmospheric MP pollution. Factors such as wind direction, wind speed, precipitation, and snowfall, along with the physical characteristics and secondary suspension of MPs, collectively influence their behavior, distribution, and fate. Inhalation and ingestion constitute the main exposure pathways for airborne MPs, potentially leading to health issues like respiratory inflammation. Therefore, gaining a deeper insight into the behavior and impact mechanisms of atmospheric MPs aids in formulating effective risk management strategies to safeguard human health and maintain environmental sustainability.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135954183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651323x16933888986996
Maila Danielis, Sara Colussi, Núria J. Divins, Lluís Soler, Alessandro Trovarelli, Jordi Llorca
In this review, we report on recent advances in the use of mechanochemistry to synthesize new catalytic materials. We report recent results obtained by our groups where a rational design of the milling parameters led to the synthesis of advanced materials with novel properties such as unconventional arrangements of metals on the surface of oxide support materials, highly dispersed metals or the stabilization of species in particular oxidation states. These properties resulted in superior catalytic performances of the mechanochemically-synthesized catalysts compared to their counterparts prepared by traditional impregnation methods. To illustrate these advances, we review the progress made in two important fields of catalysis where noble metals are used: (i) emission-control catalysis using Pd-based materials, and (ii) the development of photocatalysts to produce hydrogen based on Au and Pd materials.
{"title":"Mechanochemistry: A Green and Fast Method to Prepare A New Generation of Metal Supported Catalysts","authors":"Maila Danielis, Sara Colussi, Núria J. Divins, Lluís Soler, Alessandro Trovarelli, Jordi Llorca","doi":"10.1595/205651323x16933888986996","DOIUrl":"https://doi.org/10.1595/205651323x16933888986996","url":null,"abstract":"In this review, we report on recent advances in the use of mechanochemistry to synthesize new catalytic materials. We report recent results obtained by our groups where a rational design of the milling parameters led to the synthesis of advanced materials with novel properties such as unconventional arrangements of metals on the surface of oxide support materials, highly dispersed metals or the stabilization of species in particular oxidation states. These properties resulted in superior catalytic performances of the mechanochemically-synthesized catalysts compared to their counterparts prepared by traditional impregnation methods. To illustrate these advances, we review the progress made in two important fields of catalysis where noble metals are used: (i) emission-control catalysis using Pd-based materials, and (ii) the development of photocatalysts to produce hydrogen based on Au and Pd materials.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135057166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651323x16686891950941
Drasti Patel, H. Reid, Sarah Ball, D. Brett, P. Shearing
In Part I (1), the failure response of a 1 Ah layered pouch cell with a commercially available nickel manganese cobalt (NMC) cathode and graphite anode at 100% state of charge (SOC) (4.2 V) was investigated for two failure mechanisms: thermal and mechanical. The architectural changes to the whole-cell and deformations of the electrode layers are analysed after failure for both mechanisms. A methodology for post-mortem cell disassembly and sample preparation is proposed and demonstrated to effectively analyse the changes to the electrode surfaces, bulk microstructures and particle morphologies. Furthermore, insights into critical architectural weak points in LIB pouch cells, electrode behaviours and particle cracking are provided using invasive and non-invasive X-ray computed tomography techniques. The findings in this work demonstrate methods by which LIB failure can be investigated and assessed.
{"title":"X-Ray Computed Tomography for Failure Mechanism Characterisation within Layered Pouch Cells: Part II","authors":"Drasti Patel, H. Reid, Sarah Ball, D. Brett, P. Shearing","doi":"10.1595/205651323x16686891950941","DOIUrl":"https://doi.org/10.1595/205651323x16686891950941","url":null,"abstract":"In Part I (1), the failure response of a 1 Ah layered pouch cell with a commercially available nickel manganese cobalt (NMC) cathode and graphite anode at 100% state of charge (SOC) (4.2 V) was investigated for two failure mechanisms: thermal and mechanical. The architectural changes to the whole-cell and deformations of the electrode layers are analysed after failure for both mechanisms. A methodology for post-mortem cell disassembly and sample preparation is proposed and demonstrated to effectively analyse the changes to the electrode surfaces, bulk microstructures and particle morphologies. Furthermore, insights into critical architectural weak points in LIB pouch cells, electrode behaviours and particle cracking are provided using invasive and non-invasive X-ray computed tomography techniques. The findings in this work demonstrate methods by which LIB failure can be investigated and assessed.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67351502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651324x16965074891718
Seung Woo Lee, Hong-kil Baek, Kyeonghyeon Lee
CO2 regulations are becoming very stringent due to the goal of reducing greenhouse gases and achieving carbon neutrality. It has already become a common situation that electric vehicles are emerging as eco-friendly power systems rather than vehicles equipped with conventional internal combustion engines, and their share in the market is increasing. However, even with an internal combustion engine, CO2 can be drastically reduced if a carbon-free fuel such as hydrogen is used. Raw NOx emissions can be overcome to a certain level through ultra-lean burn operation, but in order to balance the amount of hydrogen and air in the limited space of combustion chamber, a drop in the engine's maximum output should be accepted. Hyundai Motor Company also previously developed an engine using hydrogen fuel, but was unable to progress to mass production. Since then, hybrid technology has become popular, and with the development of hydrogen injection devices, an era has arrived where the possibility of mass production can be increased. and for this reason, various studies on internal combustion engines using hydrogen fuel based on existing SI engines or CI engines are rapidly increasing recently. In this study, a hydrogen fuel engine was designed and manufactured based on the mass produced gasoline spark ignition engine. CO2 level was confirmed from initial performance evaluation, and it is found that raw NOx levels and maximum power were in a trade-off relationship with each other under same air-charging system application. In addition, the method to improve maximum engine torque was verified while maintaining the raw NOx level, and the maximum engine power improvement level was confirmed when raw NOx emissions were allowed to increase. Thereby it was shown that the potential of the carbon-neutral internal combustion engine.
{"title":"Potential of Hydrogen Internal Combustion Engine for the Decarbonized Passenger Vehicle","authors":"Seung Woo Lee, Hong-kil Baek, Kyeonghyeon Lee","doi":"10.1595/205651324x16965074891718","DOIUrl":"https://doi.org/10.1595/205651324x16965074891718","url":null,"abstract":"CO2 regulations are becoming very stringent due to the goal of reducing greenhouse gases and achieving carbon neutrality. It has already become a common situation that electric vehicles are emerging as eco-friendly power systems rather than vehicles equipped with conventional internal combustion engines, and their share in the market is increasing. However, even with an internal combustion engine, CO2 can be drastically reduced if a carbon-free fuel such as hydrogen is used. Raw NOx emissions can be overcome to a certain level through ultra-lean burn operation, but in order to balance the amount of hydrogen and air in the limited space of combustion chamber, a drop in the engine's maximum output should be accepted. Hyundai Motor Company also previously developed an engine using hydrogen fuel, but was unable to progress to mass production. Since then, hybrid technology has become popular, and with the development of hydrogen injection devices, an era has arrived where the possibility of mass production can be increased. and for this reason, various studies on internal combustion engines using hydrogen fuel based on existing SI engines or CI engines are rapidly increasing recently. In this study, a hydrogen fuel engine was designed and manufactured based on the mass produced gasoline spark ignition engine. CO2 level was confirmed from initial performance evaluation, and it is found that raw NOx levels and maximum power were in a trade-off relationship with each other under same air-charging system application. In addition, the method to improve maximum engine torque was verified while maintaining the raw NOx level, and the maximum engine power improvement level was confirmed when raw NOx emissions were allowed to increase. Thereby it was shown that the potential of the carbon-neutral internal combustion engine.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135953834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651323x16679225966590
J. Pearce
Temperature is a fundamental quantity relevant to almost all spheres of human endeavour. It is measured and controlled in a very wide range of applications, for example in combustion (engines, heating), heat treatment of high value components, healthcare (fever screening), meteorology and climate monitoring. Measurement and control of industrial process temperature in particular is key to maximising product quality, optimising energy efficiency, reducing waste and minimising carbon dioxide and other harmful emissions. It is also essential for ensuring safety; an accurate measure of temperature minimises the risk of operating outside the required process envelope (for example in nuclear power generation). There are several settings in which recent innovations have brought about significant improvements in thermometry, and these are described in this themed issue. Also discussed in this issue is the assessment and optimisation of safety in lithium-ion batteries, which is also a very important topic given the ubiquity of those devices, and testing for corrosion in chemical process plants, again a widespread issue of great relevance to many practitioners.
{"title":"Guest Editorial: Facility Process Safety and Control","authors":"J. Pearce","doi":"10.1595/205651323x16679225966590","DOIUrl":"https://doi.org/10.1595/205651323x16679225966590","url":null,"abstract":"Temperature is a fundamental quantity relevant to almost all spheres of human endeavour. It is measured and controlled in a very wide range of applications, for example in combustion (engines, heating), heat treatment of high value components, healthcare (fever screening), meteorology and climate monitoring. Measurement and control of industrial process temperature in particular is key to maximising product quality, optimising energy efficiency, reducing waste and minimising carbon dioxide and other harmful emissions. It is also essential for ensuring safety; an accurate measure of temperature minimises the risk of operating outside the required process envelope (for example in nuclear power generation). There are several settings in which recent innovations have brought about significant improvements in thermometry, and these are described in this themed issue. Also discussed in this issue is the assessment and optimisation of safety in lithium-ion batteries, which is also a very important topic given the ubiquity of those devices, and testing for corrosion in chemical process plants, again a widespread issue of great relevance to many practitioners.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67351354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651323x16856083453770
A. Cowley
Johnson Matthey’s annual review of the platinum group metal (pgm) markets was published on 15th May 2023, providing an outlook for pgm supply and demand for 2023. The report contains a comprehensive review of developments in the automotive market, covering production and powertrain trends and their implications for pgm use as well as an update on future emissions legislation. It also features an in-depth discussion of the ruthenium and iridium markets in view of increasing interest in the use of these metals in the net zero transition.
{"title":"“PGM Market Report May 2023”","authors":"A. Cowley","doi":"10.1595/205651323x16856083453770","DOIUrl":"https://doi.org/10.1595/205651323x16856083453770","url":null,"abstract":"Johnson Matthey’s annual review of the platinum group metal (pgm) markets was published on 15th May 2023, providing an outlook for pgm supply and demand for 2023. The report contains a comprehensive review of developments in the automotive market, covering production and powertrain trends and their implications for pgm use as well as an update on future emissions legislation. It also features an in-depth discussion of the ruthenium and iridium markets in view of increasing interest in the use of these metals in the net zero transition.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67351849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1595/205651324x16826780236175
Salwa El Baakili, Patrick Munyensanga, Meriame Bricha, K. El Mabrouk
The improved bulk and surface function of manufactured implants has advanced implantation procedures, leading to a decline in surgical risks. Most of the current techniques discussed in the literature are related to additive manufacturing (AM) of lightweight implants based on reliable, precise, flexible scaffolds and capable of mimicking bone properties while incorporating multi-physics features. Furthermore, these techniques have evolved in the production of a variety of biocompatible materials. AM has progressed beyond prototype to full-scale manufacturing of metals, polymers, and ceramic products. However, metallic implants often fail in vivo due to biocorrosion and deterioration, limiting implant longevity. This study reviewed current trends and approaches to enhancing the surface corrosion resistance of porous metallic implants and the effect of interfacial films on biological activity. The art of porous metallic implants manufactured by additive manufacturing and their biocorrosion behavior are discussed. This review also evaluates future trends and perspectives in additively manufactured synthetic orthopedic implants porous with enhanced surface morphology.
{"title":"Porous Metallic Implants from Additive Manufacturing to Biocorrosion: A Review","authors":"Salwa El Baakili, Patrick Munyensanga, Meriame Bricha, K. El Mabrouk","doi":"10.1595/205651324x16826780236175","DOIUrl":"https://doi.org/10.1595/205651324x16826780236175","url":null,"abstract":"The improved bulk and surface function of manufactured implants has advanced implantation procedures, leading to a decline in surgical risks. Most of the current techniques discussed in the literature are related to additive manufacturing (AM) of lightweight implants based on reliable, precise, flexible scaffolds and capable of mimicking bone properties while incorporating multi-physics features. Furthermore, these techniques have evolved in the production of a variety of biocompatible materials. AM has progressed beyond prototype to full-scale manufacturing of metals, polymers, and ceramic products. However, metallic implants often fail in vivo due to biocorrosion and deterioration, limiting implant longevity. This study reviewed current trends and approaches to enhancing the surface corrosion resistance of porous metallic implants and the effect of interfacial films on biological activity. The art of porous metallic implants manufactured by additive manufacturing and their biocorrosion behavior are discussed. This review also evaluates future trends and perspectives in additively manufactured synthetic orthopedic implants porous with enhanced surface morphology.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}