首页 > 最新文献

Journal of Applied Physics最新文献

英文 中文
Generating optical vortex needle beams with a flat diffractive lens 用平面衍射透镜产生光学涡流针光束
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0226316
Anita Kumari, Vasu Dev, Tina M. Hayward, Rajesh Menon, Vishwa Pal
We present a novel method for generating optical vortex needle beams (focused optical vortices with extended depth-of-focus) using a compact flat multilevel diffractive lens (MDL). Our experiments demonstrate that the MDL can produce focused optical vortices (FOVs) with topological charges l=1−4 (extendable to other l values), maintaining focus over distances significantly longer than conventional optical vortices. Specifically, FOVs exhibit non-diffracting behavior with a depth-of-focus (DOF) extended beyond 5 cm, compared to conventional optical vortices, which show continuous size increase due to diffraction. When the MDL is illuminated by an optical vortex of 3 mm diameter, it achieves a transmission efficiency of approximately 90% and extends the DOF several times beyond that of traditional lenses. Increasing the size of the input optical vortex further extends the DOF but introduces additional rings, with their number increasing proportionally to the value of l. Our approach, validated by both experimental results and numerical simulations, proves effective for beams such as optical vortex and Hermite-Gaussian modes and holds potential applications in high-resolution imaging, material processing, optical coherence tomography, and three-dimensional optical tweezers, offering a simple and efficient solution for generating non-diffracting beams.
我们提出了一种利用紧凑型平面多级衍射透镜(MDL)产生光学涡针光束(具有扩展焦深的聚焦光学涡流)的新方法。我们的实验证明,MDL 可以产生拓扑电荷为 l=1-4 的聚焦光学涡流 (FOV)(可扩展到其他 l 值),在比传统光学涡流长得多的距离上保持聚焦。具体来说,FOV 在焦深(DOF)超过 5 厘米时表现出无衍射行为,而传统的光学漩涡则由于衍射而显示出持续的尺寸增大。当 MDL 由直径为 3 毫米的光学漩涡照射时,其传输效率约为 90%,DOF 比传统透镜扩展了数倍。实验结果和数值模拟验证了我们的方法,证明它对光学漩涡和赫米特-高斯模式等光束有效,并有望应用于高分辨率成像、材料加工、光学相干断层扫描和三维光学镊子等领域,为产生非衍射光束提供了简单高效的解决方案。
{"title":"Generating optical vortex needle beams with a flat diffractive lens","authors":"Anita Kumari, Vasu Dev, Tina M. Hayward, Rajesh Menon, Vishwa Pal","doi":"10.1063/5.0226316","DOIUrl":"https://doi.org/10.1063/5.0226316","url":null,"abstract":"We present a novel method for generating optical vortex needle beams (focused optical vortices with extended depth-of-focus) using a compact flat multilevel diffractive lens (MDL). Our experiments demonstrate that the MDL can produce focused optical vortices (FOVs) with topological charges l=1−4 (extendable to other l values), maintaining focus over distances significantly longer than conventional optical vortices. Specifically, FOVs exhibit non-diffracting behavior with a depth-of-focus (DOF) extended beyond 5 cm, compared to conventional optical vortices, which show continuous size increase due to diffraction. When the MDL is illuminated by an optical vortex of 3 mm diameter, it achieves a transmission efficiency of approximately 90% and extends the DOF several times beyond that of traditional lenses. Increasing the size of the input optical vortex further extends the DOF but introduces additional rings, with their number increasing proportionally to the value of l. Our approach, validated by both experimental results and numerical simulations, proves effective for beams such as optical vortex and Hermite-Gaussian modes and holds potential applications in high-resolution imaging, material processing, optical coherence tomography, and three-dimensional optical tweezers, offering a simple and efficient solution for generating non-diffracting beams.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"41 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant electro-optic response in transparent rhombohedral ferroelectric Sm-PIN-PMN-PT crystal based on domain engineering 基于畴工程的透明斜方铁电体 Sm-PIN-PMN-PT 晶体的巨大电光响应
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0230598
Yiyang Wen, Hongda Ren, Xiaona Du, Yang Zhang
The relaxor ferroelectric crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), located near the morphotropic phase boundary (MPB), exhibits exceptionally high piezoelectric and electro-optic (EO) responses. Nevertheless, lower optical transparency and phase transition temperature of PMN-PT limit its optical applications. The ternary system Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) holds promise in addressing these challenges with a higher Curie temperature. Additionally, specific ferroelectric domain polarization techniques can eliminate domain scattering, substantially enhancing the transparency of the crystal. In this study, we explore the optical properties of Sm-doped PIN-PMN-PT. We achieve a 2R domain-engineered state by polarizing along the (110) direction of the crystal. The high transparency allows us to extract an effective EO coefficient of up to 431.5 pm/V from the Sm-PIN-PMN-PT crystal at the telecommunications wavelength. Second-harmonic generation (SHG) probing verified the domain-engineered state in Sm-PIN-PMN-PT. The temperature-dependent SHG reveals the ferroelectric phase transition process, laying the groundwork for studying the stability of the EO response. The Sm-PIN-PMN-PT crystal exhibits an exceptionally high EO coefficient, which is crucial for the development of enhanced EO devices with high integration and low driving voltages.
位于各向形态相边界(MPB)附近的弛豫铁电晶体 Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT)具有极高的压电和电光(EO)响应。然而,PMN-PT 较低的光学透明度和相变温度限制了其光学应用。三元系统 Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIN-PMN-PT)的居里温度较高,有望解决这些难题。此外,特定的铁电畴极化技术可以消除畴散射,大大提高晶体的透明度。在本研究中,我们探索了掺杂 Sm 的 PIN-PMN-PT 的光学特性。我们通过沿晶体的(110)方向极化,实现了 2R 畴工程状态。高透明度使我们能够在电信波长下从 Sm-PIN-PMN-PT 晶体中提取出高达 431.5 pm/V 的有效 EO 系数。二次谐波发生(SHG)探测验证了 Sm-PIN-PMN-PT 中的畴工程状态。随温度变化的 SHG 揭示了铁电相变过程,为研究 EO 响应的稳定性奠定了基础。Sm-PIN-PMN-PT 晶体具有极高的环氧乙烷系数,这对于开发高集成度和低驱动电压的增强型环氧乙烷器件至关重要。
{"title":"Giant electro-optic response in transparent rhombohedral ferroelectric Sm-PIN-PMN-PT crystal based on domain engineering","authors":"Yiyang Wen, Hongda Ren, Xiaona Du, Yang Zhang","doi":"10.1063/5.0230598","DOIUrl":"https://doi.org/10.1063/5.0230598","url":null,"abstract":"The relaxor ferroelectric crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), located near the morphotropic phase boundary (MPB), exhibits exceptionally high piezoelectric and electro-optic (EO) responses. Nevertheless, lower optical transparency and phase transition temperature of PMN-PT limit its optical applications. The ternary system Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) holds promise in addressing these challenges with a higher Curie temperature. Additionally, specific ferroelectric domain polarization techniques can eliminate domain scattering, substantially enhancing the transparency of the crystal. In this study, we explore the optical properties of Sm-doped PIN-PMN-PT. We achieve a 2R domain-engineered state by polarizing along the (110) direction of the crystal. The high transparency allows us to extract an effective EO coefficient of up to 431.5 pm/V from the Sm-PIN-PMN-PT crystal at the telecommunications wavelength. Second-harmonic generation (SHG) probing verified the domain-engineered state in Sm-PIN-PMN-PT. The temperature-dependent SHG reveals the ferroelectric phase transition process, laying the groundwork for studying the stability of the EO response. The Sm-PIN-PMN-PT crystal exhibits an exceptionally high EO coefficient, which is crucial for the development of enhanced EO devices with high integration and low driving voltages.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TEM investigation of the interface formation during transfer of 3C-SiC(001) layer onto 6H-SiC(0001) wafer 在 6H-SiC(0001) 晶圆上转移 3C-SiC(001) 层时界面形成的 TEM 研究
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0227316
A. V. Myasoedov, M. G. Mynbaeva, S. P. Lebedev, S. Iu. Priobrazhenskii, D. G. Amelchuk, D. A. Kirilenko, A. A. Lebedev
At present, intensive research is underway in the field of vacuum-sublimation growth of 3C-SiC. Transfer of a thin (001)3C-SiC layer onto a 6H-SiC wafer is a promising way to fabricate a 3C-SiC/6H-SiC substrate for growing device-quality homoepitaxial films of low defect density. The article presents the results of the structural characterization of an interface formed during the transfer of a 3C-SiC layer onto a 6H-SiC(0001) wafer, performed with transmission electron microscopy (TEM). A 3C-SiC film with a thickness of about 10 μm, grown by chemical vapor deposition (CVD) on a Si(001) substrate, was utilized in the study. Silicon acted as a bonding material in the transfer process. The morphology and microstructure of the interface between a 6H-SiC substrate and a 3C-SiC (001)-oriented layer are under consideration. TEM investigation reveals an effect of “self”-orientation of the layer with respect to the wafer during the transfer process: an interaction between the molten silicon layer and silicon carbide throughout crystallization results in the generation of defined orientation relationships with respect to substrate axes. An analysis of selected area electron diffraction patterns taken from interfaces showed the relationships to be 3C-SiC{001}‖ 6H-SiC(0001) and 3C-SiC⟨11¯0⟩∼‖ 6H-SiC⟨112¯0⟩.
目前,3C-SiC 真空升华生长领域正在进行深入研究。将(001)3C-SiC薄层转移到6H-SiC晶片上是制造3C-SiC/6H-SiC衬底的一种很有前景的方法,可用于生长器件质量的低缺陷密度同向外延薄膜。文章介绍了利用透射电子显微镜(TEM)对 3C-SiC 层转移到 6H-SiC(0001) 晶圆过程中形成的界面进行结构表征的结果。研究采用的是在硅(001)基底上通过化学气相沉积(CVD)生长的厚度约为 10 μm 的 3C-SiC 薄膜。硅在转移过程中充当粘合材料。研究考虑了 6H-SiC 基底和 3C-SiC (001) 取向层之间的界面形态和微观结构。TEM 研究揭示了层在转移过程中相对于晶片的 "自 "取向效应:熔融硅层和碳化硅在整个结晶过程中的相互作用导致了相对于基片轴线的确定取向关系的产生。对界面上选定区域电子衍射图案的分析表明,这种关系是 3C-SiC{001}‖ 6H-SiC(0001) 和 3C-SiC⟨11¯0⟩∼‖6H-SiC⟨112¯0⟩。
{"title":"TEM investigation of the interface formation during transfer of 3C-SiC(001) layer onto 6H-SiC(0001) wafer","authors":"A. V. Myasoedov, M. G. Mynbaeva, S. P. Lebedev, S. Iu. Priobrazhenskii, D. G. Amelchuk, D. A. Kirilenko, A. A. Lebedev","doi":"10.1063/5.0227316","DOIUrl":"https://doi.org/10.1063/5.0227316","url":null,"abstract":"At present, intensive research is underway in the field of vacuum-sublimation growth of 3C-SiC. Transfer of a thin (001)3C-SiC layer onto a 6H-SiC wafer is a promising way to fabricate a 3C-SiC/6H-SiC substrate for growing device-quality homoepitaxial films of low defect density. The article presents the results of the structural characterization of an interface formed during the transfer of a 3C-SiC layer onto a 6H-SiC(0001) wafer, performed with transmission electron microscopy (TEM). A 3C-SiC film with a thickness of about 10 μm, grown by chemical vapor deposition (CVD) on a Si(001) substrate, was utilized in the study. Silicon acted as a bonding material in the transfer process. The morphology and microstructure of the interface between a 6H-SiC substrate and a 3C-SiC (001)-oriented layer are under consideration. TEM investigation reveals an effect of “self”-orientation of the layer with respect to the wafer during the transfer process: an interaction between the molten silicon layer and silicon carbide throughout crystallization results in the generation of defined orientation relationships with respect to substrate axes. An analysis of selected area electron diffraction patterns taken from interfaces showed the relationships to be 3C-SiC{001}‖ 6H-SiC(0001) and 3C-SiC⟨11¯0⟩∼‖ 6H-SiC⟨112¯0⟩.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"29 9 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface 冲击倾斜介质表面的氦大气压等离子体射流的数值模拟
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0232639
Lijun Wang, Huan Zhao, Zhongji Han, Jie Liu
The target surface to be treated in reality is often not smooth and horizontal and may also be in different tilting angles. The treatment of the tilted dielectric surface by the atmospheric pressure plasma jet (APPJ) undoubtedly increases the complexity of surface modification. Therefore, a two-dimensional fluid model is established to reveal the internal mechanism of the interaction between the He APPJ and the tilted dielectric surface by means of numerical simulation. The distribution of the gas flow in a small angular range (0°, 3°, 5°, 8°, 10°, and 15°) is studied. In addition, the effects of the tilt angle on the jet morphology, discharge dynamic properties, and species distribution of the He APPJ are emphatically discussed. It is found that the jet morphology and parameters are no longer symmetrical under the tilted surface. With the increase in the tilt angle, the enhanced electric field in the upper surface region leads to the increase in the ionization rate and electron density here, and also accelerates the propagation speed of the jet to the dielectric surface in the atmospheric environment. Driven by the electric field force, the jet is closer to the dielectric surface, resulting in a decrease in the thickness of the cathode sheath and an increase in the surface charge density in the area to the right of the central axis. The influence of the gas flow structure leads to the shortening of the jet development distance and a decrease in the jet velocity on the upper surface. N and O also form higher fluxes on the upper surface due to the increase in the electron density.
现实中需要处理的目标表面往往不是光滑和水平的,也可能处于不同的倾斜角度。用常压等离子体射流(APPJ)处理倾斜的介质表面无疑增加了表面改性的复杂性。因此,本文建立了一个二维流体模型,通过数值模拟揭示 He APPJ 与倾斜介质表面相互作用的内部机理。研究了气体流在较小角度范围(0°、3°、5°、8°、10°和 15°)内的分布。此外,还重点讨论了倾斜角对 He APPJ 的射流形态、放电动态特性和物种分布的影响。研究发现,在倾斜表面下,射流形态和参数不再对称。随着倾斜角的增大,上表面区域的电场增强导致这里的电离率和电子密度增加,同时也加快了大气环境中射流向介质表面的传播速度。在电场力的驱动下,射流更接近介质表面,导致阴极鞘厚度减小,中心轴右侧区域的表面电荷密度增大。气流结构的影响导致射流发展距离缩短,上表面的射流速度降低。由于电子密度的增加,N 和 O 在上表面也形成了较高的通量。
{"title":"Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface","authors":"Lijun Wang, Huan Zhao, Zhongji Han, Jie Liu","doi":"10.1063/5.0232639","DOIUrl":"https://doi.org/10.1063/5.0232639","url":null,"abstract":"The target surface to be treated in reality is often not smooth and horizontal and may also be in different tilting angles. The treatment of the tilted dielectric surface by the atmospheric pressure plasma jet (APPJ) undoubtedly increases the complexity of surface modification. Therefore, a two-dimensional fluid model is established to reveal the internal mechanism of the interaction between the He APPJ and the tilted dielectric surface by means of numerical simulation. The distribution of the gas flow in a small angular range (0°, 3°, 5°, 8°, 10°, and 15°) is studied. In addition, the effects of the tilt angle on the jet morphology, discharge dynamic properties, and species distribution of the He APPJ are emphatically discussed. It is found that the jet morphology and parameters are no longer symmetrical under the tilted surface. With the increase in the tilt angle, the enhanced electric field in the upper surface region leads to the increase in the ionization rate and electron density here, and also accelerates the propagation speed of the jet to the dielectric surface in the atmospheric environment. Driven by the electric field force, the jet is closer to the dielectric surface, resulting in a decrease in the thickness of the cathode sheath and an increase in the surface charge density in the area to the right of the central axis. The influence of the gas flow structure leads to the shortening of the jet development distance and a decrease in the jet velocity on the upper surface. N and O also form higher fluxes on the upper surface due to the increase in the electron density.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"19 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the diffusion and depletion capacitances of a silicon pn diode in forward bias with impedance spectroscopy 利用阻抗谱模拟正向偏置硅 pn 二极管的扩散和耗尽电容
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0230008
P. Casolaro, V. Izzo, G. Giusi, N. Wyrsch, A. Aloisio
We investigated the capacitance of a forward-biased silicon pn diode using impedance spectroscopy. Despite extensive research spanning decades, no single model in the literature adequately describes the impedance behavior for bias up to the built-in voltage. By employing the 1N4007 diode as a case study, we analyzed the impedance over a wide frequency range, from 1 Hz to 1 MHz. Our analysis reveals that impedance can be effectively studied by combining two models. In both models, the depletion capacitance is assumed to be an ideal capacitor with a value independent of frequency. One model accounts for diffusion processes, while the other addresses interfacial effects, as well as potential and capacitance distributions across the junction. This approach offers valuable insights into the complex capacitance behavior of pn junctions as a function of the bias voltage. Measurements of depletion and diffusion capacitances, as well as of the diode transit time can be achieved from a set of impedance spectroscopy data.
我们利用阻抗光谱学研究了正向偏压硅 pn 二极管的电容。尽管经过几十年的广泛研究,但文献中没有一个模型能充分描述偏压达到内置电压时的阻抗行为。我们以 1N4007 二极管为例,分析了 1 Hz 至 1 MHz 宽频率范围内的阻抗。我们的分析表明,结合两个模型可以有效地研究阻抗。在这两个模型中,耗尽电容都被假定为理想电容,其值与频率无关。其中一个模型考虑了扩散过程,而另一个模型则考虑了界面效应以及结点上的电势和电容分布。这种方法为了解 pn 结作为偏置电压函数的复杂电容行为提供了宝贵的见解。通过一组阻抗光谱数据,可以测量耗尽电容和扩散电容以及二极管的传输时间。
{"title":"Modeling the diffusion and depletion capacitances of a silicon pn diode in forward bias with impedance spectroscopy","authors":"P. Casolaro, V. Izzo, G. Giusi, N. Wyrsch, A. Aloisio","doi":"10.1063/5.0230008","DOIUrl":"https://doi.org/10.1063/5.0230008","url":null,"abstract":"We investigated the capacitance of a forward-biased silicon pn diode using impedance spectroscopy. Despite extensive research spanning decades, no single model in the literature adequately describes the impedance behavior for bias up to the built-in voltage. By employing the 1N4007 diode as a case study, we analyzed the impedance over a wide frequency range, from 1 Hz to 1 MHz. Our analysis reveals that impedance can be effectively studied by combining two models. In both models, the depletion capacitance is assumed to be an ideal capacitor with a value independent of frequency. One model accounts for diffusion processes, while the other addresses interfacial effects, as well as potential and capacitance distributions across the junction. This approach offers valuable insights into the complex capacitance behavior of pn junctions as a function of the bias voltage. Measurements of depletion and diffusion capacitances, as well as of the diode transit time can be achieved from a set of impedance spectroscopy data.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"215 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the strain rate sensitivity of the flow stress of copper: Theory and experiment 重新审视铜流动应力的应变率敏感性:理论与实验
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0225090
Songlin Yao, Jidong Yu, Xiaoyang Pei, Kai Guo, Enling Tang, Guiji Wang, Qiang Wu
One of the most important issues related to the strength of metals is the strain rate sensitivity of the flow stress. In this study, an analytical model of the flow stress as a function of strain rate is derived theoretically. The model can reproduce the strain rate sensitivity of the flow stress of copper over a wide range of strain rates (up to 109 s−1) quantitatively. Our theoretical derivations indicate that the strain rate sensitivity of the flow stress, especially that above 103 s−1, is a result of both the variation of the dislocation mobility mechanism with stress and the particular stress dependence of dislocation density but is not a result of each single mechanism. In particular, the stress dependence of the dislocation density and the initial dislocation density are critical to the quantitative relation of the flow stress–strain rate at high strain rate and the strain rate threshold, under which the upturn of the flow stress occurs, respectively. Moreover, experiments with copper of different initial dislocation densities at moderate and high strain rate are performed. The strain rate threshold of the flow stress upturn observed in the experiments grows considerably as initial dislocation density increases, which is in accordance with theoretical prediction by our model.
与金属强度有关的最重要问题之一是流动应力的应变率敏感性。本研究从理论上推导出了流动应力与应变速率关系的分析模型。该模型可在较宽的应变速率范围内(高达 109 s-1)定量再现铜流动应力的应变速率敏感性。我们的理论推导表明,流动应力的应变速率敏感性,尤其是高于 103 s-1 的应变速率敏感性,是位错移动机制随应力变化和位错密度的特定应力依赖性共同作用的结果,而不是单一机制作用的结果。特别是,位错密度的应力依赖性和初始位错密度对高应变速率下流动应力-应变速率的定量关系和应变速率阈值至关重要,在应变速率阈值下流动应力会发生上行。此外,在中等应变速率和高应变速率下,对不同初始位错密度的铜进行了实验。实验中观察到的流动应力上升的应变速率阈值随着初始位错密度的增加而显著增大,这与我们模型的理论预测一致。
{"title":"Revisiting the strain rate sensitivity of the flow stress of copper: Theory and experiment","authors":"Songlin Yao, Jidong Yu, Xiaoyang Pei, Kai Guo, Enling Tang, Guiji Wang, Qiang Wu","doi":"10.1063/5.0225090","DOIUrl":"https://doi.org/10.1063/5.0225090","url":null,"abstract":"One of the most important issues related to the strength of metals is the strain rate sensitivity of the flow stress. In this study, an analytical model of the flow stress as a function of strain rate is derived theoretically. The model can reproduce the strain rate sensitivity of the flow stress of copper over a wide range of strain rates (up to 109 s−1) quantitatively. Our theoretical derivations indicate that the strain rate sensitivity of the flow stress, especially that above 103 s−1, is a result of both the variation of the dislocation mobility mechanism with stress and the particular stress dependence of dislocation density but is not a result of each single mechanism. In particular, the stress dependence of the dislocation density and the initial dislocation density are critical to the quantitative relation of the flow stress–strain rate at high strain rate and the strain rate threshold, under which the upturn of the flow stress occurs, respectively. Moreover, experiments with copper of different initial dislocation densities at moderate and high strain rate are performed. The strain rate threshold of the flow stress upturn observed in the experiments grows considerably as initial dislocation density increases, which is in accordance with theoretical prediction by our model.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement bias in self-heating x-ray free electron laser experiments from diffraction studies of phase transformation in titanium 从钛相变的衍射研究看自加热 X 射线自由电子激光实验中的测量偏差
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0215908
O. B. Ball, R. J. Husband, J. D. McHardy, M. I. McMahon, C. Strohm, Z. Konôpková, K. Appel, V. Cerantola, A. L. Coleman, H. Cynn, A. Dwivedi, A. F. Goncharov, H. Graafsma, L. Q. Huston, H. Hwang, J. Kaa, J.-Y. Kim, E. Koemets, T. Laurus, X. Li, H. Marquardt, A. S. J. Méndez, S. Merkel, A. Mondal, G. Morard, V. B. Prakapenka, C. Prescher, T. R. Preston, S. Speziale, S. Stern, B. T. Sturtevant, J. Sztuk-Dambietz, N. Velisavljevic, C.-S. Yoo, U. Zastrau, Zs. Jenei, H. P. Liermann, R. S. McWilliams
X-ray self-heating is a common by-product of X-ray Free Electron Laser (XFEL) techniques that can affect targets, optics, and other irradiated materials. Diagnosis of heating and induced changes in samples may be performed using the x-ray beam itself as a probe. However, the relationship between conditions created by and inferred from x-ray irradiation is unclear and may be highly dependent on the material system under consideration. Here, we report on a simple case study of a titanium foil irradiated, heated, and probed by a MHz XFEL pulse train at 18.1 keV delivered by the European XFEL using measured x-ray diffraction to determine temperature and finite element analysis to interpret the experimental data. We find a complex relationship between apparent temperatures and sample temperature distributions that must be accounted for to adequately interpret the data, including beam averaging effects, multivalued temperatures due to sample phase transitions, and jumps and gaps in the observable temperature near phase transformations. The results have implications for studies employing x-ray probing of systems with large temperature gradients, particularly where these gradients are produced by the beam itself. Finally, this study shows the potential complexity of studying nonlinear sample behavior, such as phase transformations, where biasing effects of temperature gradients can become paramount, precluding clear observation of true transformation conditions.
X 射线自热是 X 射线自由电子激光(XFEL)技术的常见副产品,会影响目标、光学器件和其他辐照材料。可以使用 X 射线束本身作为探针,对样品中的加热和诱导变化进行诊断。然而,X 射线辐照所产生的条件与推断出的条件之间的关系尚不明确,而且可能在很大程度上取决于所考虑的材料系统。在此,我们报告了一个简单的案例研究,即欧洲 XFEL 发射的 18.1 千伏的 MHz XFEL 脉冲串对钛箔进行辐照、加热和探测,利用测量的 X 射线衍射确定温度,并利用有限元分析解释实验数据。我们发现表观温度和样品温度分布之间存在复杂的关系,必须考虑到这些因素才能充分解释数据,包括光束平均效应、样品相变引起的多值温度以及相变附近可观测温度的跳跃和间隙。这些结果对采用 X 射线探测具有较大温度梯度的系统的研究具有重要意义,特别是当这些梯度是由光束本身产生的时候。最后,这项研究显示了研究非线性样品行为(如相变)的潜在复杂性,在这种情况下,温度梯度的偏差效应可能变得至关重要,从而阻碍了对真实转变条件的清晰观测。
{"title":"Measurement bias in self-heating x-ray free electron laser experiments from diffraction studies of phase transformation in titanium","authors":"O. B. Ball, R. J. Husband, J. D. McHardy, M. I. McMahon, C. Strohm, Z. Konôpková, K. Appel, V. Cerantola, A. L. Coleman, H. Cynn, A. Dwivedi, A. F. Goncharov, H. Graafsma, L. Q. Huston, H. Hwang, J. Kaa, J.-Y. Kim, E. Koemets, T. Laurus, X. Li, H. Marquardt, A. S. J. Méndez, S. Merkel, A. Mondal, G. Morard, V. B. Prakapenka, C. Prescher, T. R. Preston, S. Speziale, S. Stern, B. T. Sturtevant, J. Sztuk-Dambietz, N. Velisavljevic, C.-S. Yoo, U. Zastrau, Zs. Jenei, H. P. Liermann, R. S. McWilliams","doi":"10.1063/5.0215908","DOIUrl":"https://doi.org/10.1063/5.0215908","url":null,"abstract":"X-ray self-heating is a common by-product of X-ray Free Electron Laser (XFEL) techniques that can affect targets, optics, and other irradiated materials. Diagnosis of heating and induced changes in samples may be performed using the x-ray beam itself as a probe. However, the relationship between conditions created by and inferred from x-ray irradiation is unclear and may be highly dependent on the material system under consideration. Here, we report on a simple case study of a titanium foil irradiated, heated, and probed by a MHz XFEL pulse train at 18.1 keV delivered by the European XFEL using measured x-ray diffraction to determine temperature and finite element analysis to interpret the experimental data. We find a complex relationship between apparent temperatures and sample temperature distributions that must be accounted for to adequately interpret the data, including beam averaging effects, multivalued temperatures due to sample phase transitions, and jumps and gaps in the observable temperature near phase transformations. The results have implications for studies employing x-ray probing of systems with large temperature gradients, particularly where these gradients are produced by the beam itself. Finally, this study shows the potential complexity of studying nonlinear sample behavior, such as phase transformations, where biasing effects of temperature gradients can become paramount, precluding clear observation of true transformation conditions.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"29 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibration of Jones–Wilkins–Lee equation of state for unreacted explosives with shock Hugoniot relationship and optimization algorithm 用冲击休格尼奥关系和优化算法校准未反应炸药的琼斯-威尔金斯-李状态方程
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0230362
Hao Cui, Junan Wu, Yuxin Xu, Hao Zhou, Rui Guo
The unreacted equation of state (EOS) for an unreacted explosive can provide fundamental information to understand any analytical model for the shock and initiation process. Based on the Hugoniot expression in Jones–Wilkins–Lee (JWL) form derived from the Mie–Grüneisen EOS and conservation equation across the shock wave, a three-point calibrating method to determine the JWL EOS parameters for unreacted explosives was developed using intelligent algorithms and shock Hugoniot relationship of the explosives considered. The calibration method proposed utilizes the back propagation neural network to predict the nonlinear system composed of different JWL parameter sets; the genetic algorithm is then used to find the optimal solution of the JWL parameter set. Unreacted JWL EOS parameters of eight typical explosives were calibrated using the calibrating method developed, and an excellent agreement can be observed between JWL EOS and experimental p–v curves for all eight explosives selected, indicating the high accuracy of the three-point calibrating method. However, the effectiveness of the three-point calibrating method was experimentally validated with the experimental data measured from the shock tests of the dihydroxylammonium 5,5′-bitetrazole-1,1′-dioxide (TKX-50)-based explosive, where the JWL p–v curve derived from the three-point calibrating method is in good agreement with the experimental curve.
未反应炸药的未反应状态方程(EOS)可为理解冲击和起爆过程的任何分析模型提供基本信息。根据从 Mie-Grüneisen EOS 和整个冲击波守恒方程导出的琼斯-威尔金斯-李(JWL)形式的休伊特表达式,利用智能算法和所考虑的爆炸物的冲击休伊特关系,开发了一种三点校准方法,以确定未反应爆炸物的 JWL EOS 参数。所提出的校准方法利用反向传播神经网络预测由不同 JWL 参数集组成的非线性系统,然后利用遗传算法找到 JWL 参数集的最优解。利用所开发的校准方法对八种典型炸药的未反应 JWL EOS 参数进行了校准,结果表明所选八种炸药的 JWL EOS 与实验 p-v 曲线之间具有极好的一致性,表明三点校准法具有很高的准确性。不过,三点校准法的有效性要通过实验验证,实验数据来自 5,5′-二羟基四唑-1,1′-二氧化物(TKX-50)基二羟基铵炸药的冲击试验,三点校准法得出的 JWL p-v 曲线与实验曲线吻合良好。
{"title":"Calibration of Jones–Wilkins–Lee equation of state for unreacted explosives with shock Hugoniot relationship and optimization algorithm","authors":"Hao Cui, Junan Wu, Yuxin Xu, Hao Zhou, Rui Guo","doi":"10.1063/5.0230362","DOIUrl":"https://doi.org/10.1063/5.0230362","url":null,"abstract":"The unreacted equation of state (EOS) for an unreacted explosive can provide fundamental information to understand any analytical model for the shock and initiation process. Based on the Hugoniot expression in Jones–Wilkins–Lee (JWL) form derived from the Mie–Grüneisen EOS and conservation equation across the shock wave, a three-point calibrating method to determine the JWL EOS parameters for unreacted explosives was developed using intelligent algorithms and shock Hugoniot relationship of the explosives considered. The calibration method proposed utilizes the back propagation neural network to predict the nonlinear system composed of different JWL parameter sets; the genetic algorithm is then used to find the optimal solution of the JWL parameter set. Unreacted JWL EOS parameters of eight typical explosives were calibrated using the calibrating method developed, and an excellent agreement can be observed between JWL EOS and experimental p–v curves for all eight explosives selected, indicating the high accuracy of the three-point calibrating method. However, the effectiveness of the three-point calibrating method was experimentally validated with the experimental data measured from the shock tests of the dihydroxylammonium 5,5′-bitetrazole-1,1′-dioxide (TKX-50)-based explosive, where the JWL p–v curve derived from the three-point calibrating method is in good agreement with the experimental curve.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"17 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal demodulation domain for microwave SQUID multiplexers in presence of readout system noise 存在读出系统噪声时微波 SQUID 多路复用器的最佳解调域
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0222656
M. E. García Redondo, N. A. Müller, J. M. Salum, L. P. Ferreyro, J. D. Bonilla-Neira, J. M. Geria, J. J. Bonaparte, T. Muscheid, R. Gartmann, A. Almela, M. R. Hampel, A. E. Fuster, L. E. Ardila-Perez, M. Wegner, M. Platino, O. Sander, S. Kempf, M. Weber
The Microwave SQUID Multiplexer (μMUX) is the device of choice for the readout of a large number of low-temperature detectors in a wide variety of experiments within the fields of astronomy and particle physics. While it offers large multiplexing factors, the system noise performance is highly dependent on the cold- and warm-readout electronic systems used to read it out, as well as the demodulation domain and parameters chosen. In order to understand the impact of the readout systems in the overall detection system noise performance, first, we extended the available μMUX simulation frameworks, including additive and multiplicative noise sources in the probing tones (i.e., phase and amplitude noise), along with the capability of demodulating the scientific data, either in the resonator’s phase or the scattering amplitude. Then, considering the additive noise as a dominant noise source, the optimum readout parameters to achieve minimum system noise were found for both open-loop and flux-ramp demodulation schemes in the aforementioned domains. Later, we evaluated the system noise sensitivity to multiplicative noise sources under the optimum readout parameters. Finally, as a case study, we evaluated the optimal demodulation domain and the expected system noise level for a typical software-defined radio readout system. This work leads to an improved system performance prediction and noise engineering based on the available readout electronics and the selected demodulation domain.
微波 SQUID 多路复用器(μMUX)是天文学和粒子物理学领域各种实验中大量低温探测器读出的首选设备。虽然它具有很大的复用系数,但系统噪声性能在很大程度上取决于用于读出它的冷读出和暖读出电子系统,以及所选择的解调域和参数。为了了解读出系统对整个探测系统噪声性能的影响,首先,我们扩展了现有的 μMUX 仿真框架,包括探测音调中的加性和乘性噪声源(即相位和振幅噪声),以及在谐振器相位或散射振幅中解调科学数据的能力。然后,考虑到加性噪声是主要噪声源,我们为上述领域的开环和通量斜坡解调方案找到了实现最小系统噪声的最佳读出参数。随后,我们评估了最佳读出参数下系统噪声对乘法噪声源的敏感性。最后,作为案例研究,我们评估了典型软件定义无线电读出系统的最佳解调域和预期系统噪声水平。这项工作基于可用的读出电子设备和选定的解调域,改进了系统性能预测和噪声工程。
{"title":"Optimal demodulation domain for microwave SQUID multiplexers in presence of readout system noise","authors":"M. E. García Redondo, N. A. Müller, J. M. Salum, L. P. Ferreyro, J. D. Bonilla-Neira, J. M. Geria, J. J. Bonaparte, T. Muscheid, R. Gartmann, A. Almela, M. R. Hampel, A. E. Fuster, L. E. Ardila-Perez, M. Wegner, M. Platino, O. Sander, S. Kempf, M. Weber","doi":"10.1063/5.0222656","DOIUrl":"https://doi.org/10.1063/5.0222656","url":null,"abstract":"The Microwave SQUID Multiplexer (μMUX) is the device of choice for the readout of a large number of low-temperature detectors in a wide variety of experiments within the fields of astronomy and particle physics. While it offers large multiplexing factors, the system noise performance is highly dependent on the cold- and warm-readout electronic systems used to read it out, as well as the demodulation domain and parameters chosen. In order to understand the impact of the readout systems in the overall detection system noise performance, first, we extended the available μMUX simulation frameworks, including additive and multiplicative noise sources in the probing tones (i.e., phase and amplitude noise), along with the capability of demodulating the scientific data, either in the resonator’s phase or the scattering amplitude. Then, considering the additive noise as a dominant noise source, the optimum readout parameters to achieve minimum system noise were found for both open-loop and flux-ramp demodulation schemes in the aforementioned domains. Later, we evaluated the system noise sensitivity to multiplicative noise sources under the optimum readout parameters. Finally, as a case study, we evaluated the optimal demodulation domain and the expected system noise level for a typical software-defined radio readout system. This work leads to an improved system performance prediction and noise engineering based on the available readout electronics and the selected demodulation domain.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"62 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing n-type carbon nanotubes via halide perovskite nanowires Cs4MX5 inner filling 通过卤化物过氧化物纳米线 Cs4MX5 内部填充实现 n 型碳纳米管
IF 3.2 3区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1063/5.0225284
Sisi Cao, Qiyao Yang, Juexian Cao, Wangping Xu
N-type carbon nanotubes (CNTs)-based field-effect transistors (FETs) have huge potential applications in low-power consumption tunnel FETs. However, the low-work function metal electrodes can achieve n-type CNTs, but they are easily oxidized due to poor environmental stability. Therefore, based on first-principles calculations, we proposed halide perovskite nanowires Cs4MX5 (M = Pb, Sn; X = Cl, Br, I) inner filling to achieve n-type single-walled CNTs (SWCNTs). The results indicated that all the perovskite nanowires located at the center of the SWCNTs possess high stability. Moreover, the diameter of SWCNTs is a crucial factor affecting the inner filling of perovskite nanowires with an optimal diameter of about 1.4 nm. Furthermore, all the perovskite nanowires Cs4MX5 are excellent electron donors, and the largest charge transfer is up to 1.72 e/nm for Cs4SnI5. Their interaction mechanism reveals that the low work function and the large internal bandgap are two important factors for cubic-phase nanowires to realize the n-type CNTs. Our findings provide some candidate materials and a feasible way to achieve n-type CNTs for applying CNTs-based FETs.
基于 N 型碳纳米管(CNT)的场效应晶体管(FET)在低功耗隧道 FET 中具有巨大的应用潜力。然而,低功函数金属电极可以实现 N 型 CNT,但由于环境稳定性差,很容易被氧化。因此,我们在第一原理计算的基础上,提出了卤化物包晶纳米线 Cs4MX5(M = Pb、Sn;X = Cl、Br、I)内部填充来实现 n 型单壁 CNT(SWCNT)。结果表明,位于 SWCNT 中心的所有过氧化物纳米线都具有很高的稳定性。此外,SWCNTs 的直径是影响包晶纳米线内部填充的关键因素,其最佳直径约为 1.4 nm。此外,所有的包晶纳米线 Cs4MX5 都是出色的电子供体,其中 Cs4SnI5 的最大电荷转移量高达 1.72 e/nm。它们的相互作用机理揭示了低功函数和大内带隙是立方相纳米线实现 n 型 CNT 的两个重要因素。我们的发现为应用基于 CNTs 的 FET 提供了一些候选材料和实现 n 型 CNTs 的可行方法。
{"title":"Realizing n-type carbon nanotubes via halide perovskite nanowires Cs4MX5 inner filling","authors":"Sisi Cao, Qiyao Yang, Juexian Cao, Wangping Xu","doi":"10.1063/5.0225284","DOIUrl":"https://doi.org/10.1063/5.0225284","url":null,"abstract":"N-type carbon nanotubes (CNTs)-based field-effect transistors (FETs) have huge potential applications in low-power consumption tunnel FETs. However, the low-work function metal electrodes can achieve n-type CNTs, but they are easily oxidized due to poor environmental stability. Therefore, based on first-principles calculations, we proposed halide perovskite nanowires Cs4MX5 (M = Pb, Sn; X = Cl, Br, I) inner filling to achieve n-type single-walled CNTs (SWCNTs). The results indicated that all the perovskite nanowires located at the center of the SWCNTs possess high stability. Moreover, the diameter of SWCNTs is a crucial factor affecting the inner filling of perovskite nanowires with an optimal diameter of about 1.4 nm. Furthermore, all the perovskite nanowires Cs4MX5 are excellent electron donors, and the largest charge transfer is up to 1.72 e/nm for Cs4SnI5. Their interaction mechanism reveals that the low work function and the large internal bandgap are two important factors for cubic-phase nanowires to realize the n-type CNTs. Our findings provide some candidate materials and a feasible way to achieve n-type CNTs for applying CNTs-based FETs.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Applied Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1