F. Conti, A. Williams, H. U. Rahman, V. Fadeev, D. P. Higginson, A. Youmans, N. Aybar, E. Ruskov, F. N. Beg
A study on the neutron production from single and double gas puff Z-pinches on the CESZAR linear transformer driver with ∼0.45 MA current and 170 ns rise time is presented. Total neutron yield measurements made with a LaBr activation detector are compared for three configurations, using a double nozzle setup. When a single, hollow, deuterium gas shell was used, reliable implosions could only be attained at higher load mass than the optimal value to match implosion time with the driver rise time, with neutron yields of ∼106 per pulse. The use of a double gas puff configuration with a deuterium center jet allowed a reduction in the shell density and operation closer to machine-matched conditions, recording up to (4.1 ± 0.3) × 107 neutrons/pulse when either Kr or D2 was used in the shell. For a comparable mass and implosion time, using a higher atomic-number gas in the outer shell results in more unstable plasma surface and smaller plasma radius at the location of instability bubbles, which, however, do not seem to consistently correlate with a higher neutron yield. Comparing implosion dynamics with models and neutron yields with literature scaling suggests that the machine current is not well coupled to the plasma during the final stages of compression. Optimizing current and energy coupling to the pinched plasma is critical to improving performance, particularly in low-impedance drivers.
{"title":"Neutron-producing gas puff Z-pinch experiments on a fast, low-impedance, 0.5 MA linear transformer driver","authors":"F. Conti, A. Williams, H. U. Rahman, V. Fadeev, D. P. Higginson, A. Youmans, N. Aybar, E. Ruskov, F. N. Beg","doi":"10.1063/5.0218390","DOIUrl":"https://doi.org/10.1063/5.0218390","url":null,"abstract":"A study on the neutron production from single and double gas puff Z-pinches on the CESZAR linear transformer driver with ∼0.45 MA current and 170 ns rise time is presented. Total neutron yield measurements made with a LaBr activation detector are compared for three configurations, using a double nozzle setup. When a single, hollow, deuterium gas shell was used, reliable implosions could only be attained at higher load mass than the optimal value to match implosion time with the driver rise time, with neutron yields of ∼106 per pulse. The use of a double gas puff configuration with a deuterium center jet allowed a reduction in the shell density and operation closer to machine-matched conditions, recording up to (4.1 ± 0.3) × 107 neutrons/pulse when either Kr or D2 was used in the shell. For a comparable mass and implosion time, using a higher atomic-number gas in the outer shell results in more unstable plasma surface and smaller plasma radius at the location of instability bubbles, which, however, do not seem to consistently correlate with a higher neutron yield. Comparing implosion dynamics with models and neutron yields with literature scaling suggests that the machine current is not well coupled to the plasma during the final stages of compression. Optimizing current and energy coupling to the pinched plasma is critical to improving performance, particularly in low-impedance drivers.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"43 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although high-temperature superconducting induction motors have a simple structure, they are distinguished by their high efficiency and high power density. However, an accurate theoretical model that defines the primary electrical characteristics controlling the motor has not been established because of the nonlinear characteristics of high-temperature superconducting squirrel-cage rotor winding. As part of establishing such a model, an experiment was conducted to analyze the relationship between the induced voltage of the rotor bar in a high-temperature superconducting squirrel-cage rotor winding and stator-side quantities (voltage and transport current), as well as its rotation characteristics. A subject was a 1.5 kW class induction motor using Bi–Sr–Ca–Cu–O high-temperature superconducting rotor bars and the experiment was performed at a temperature and a frequency of 77 K and 60 Hz, respectively. The induced voltages of the rotor bars were measured by applying a rotating magnetic field and exhibited a distorted waveform characterized by a third-order harmonic in a magnetic flux flow state. Despite the distorted voltage waveform of the rotor bar, the stator transport current responsible for driving the induction motor remained unaffected and the motor initiated rotation in a slip rotation mode. From the above results, it was experimentally clarified that a stator voltage exceeding the critical current of the rotor bar must be applied when starting the induction motor. It was also shown that the rotor bar can be regarded as a constant resistance for a constant effective value of the stator current when transitioning the motor into a slip rotation state.
高温超导感应电机虽然结构简单,但却具有高效率和高功率密度的特点。然而,由于高温超导鼠笼式转子绕组的非线性特性,目前还没有建立一个精确的理论模型来定义控制电机的主要电气特性。为了建立这样一个模型,我们进行了一项实验,分析高温超导鼠笼式转子绕组中转子杆的感应电压与定子侧数量(电压和传输电流)之间的关系,以及其旋转特性。实验对象是一台使用 Bi-Sr-Ca-Cu-O 高温超导转子棒的 1.5 千瓦级感应电机,实验温度和频率分别为 77 K 和 60 Hz。转子棒的感应电压是通过施加旋转磁场测量的,在磁通流状态下呈现出以三阶谐波为特征的畸变波形。尽管转子磁栅的电压波形发生了畸变,但负责驱动感应电机的定子传输电流仍未受到影响,电机以滑移旋转模式启动旋转。根据上述结果,实验证明,在启动感应电机时,必须施加超过转子线棒临界电流的定子电压。实验还表明,当电机过渡到滑差旋转状态时,转子杆可被视为定子电流有效值恒定的恒定电阻。
{"title":"Relationship between the induced voltage of a rotor bar and the rotation characteristics of a high-temperature superconducting induction motor","authors":"T. Nakamura, Y. Ogama","doi":"10.1063/5.0219918","DOIUrl":"https://doi.org/10.1063/5.0219918","url":null,"abstract":"Although high-temperature superconducting induction motors have a simple structure, they are distinguished by their high efficiency and high power density. However, an accurate theoretical model that defines the primary electrical characteristics controlling the motor has not been established because of the nonlinear characteristics of high-temperature superconducting squirrel-cage rotor winding. As part of establishing such a model, an experiment was conducted to analyze the relationship between the induced voltage of the rotor bar in a high-temperature superconducting squirrel-cage rotor winding and stator-side quantities (voltage and transport current), as well as its rotation characteristics. A subject was a 1.5 kW class induction motor using Bi–Sr–Ca–Cu–O high-temperature superconducting rotor bars and the experiment was performed at a temperature and a frequency of 77 K and 60 Hz, respectively. The induced voltages of the rotor bars were measured by applying a rotating magnetic field and exhibited a distorted waveform characterized by a third-order harmonic in a magnetic flux flow state. Despite the distorted voltage waveform of the rotor bar, the stator transport current responsible for driving the induction motor remained unaffected and the motor initiated rotation in a slip rotation mode. From the above results, it was experimentally clarified that a stator voltage exceeding the critical current of the rotor bar must be applied when starting the induction motor. It was also shown that the rotor bar can be regarded as a constant resistance for a constant effective value of the stator current when transitioning the motor into a slip rotation state.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiou Wang, Fuxiao Dong, Haochen Wang, Bojun Zhao, Yan Wang, Weishi Tan
Magnetic characteristics, magnetocaloric effect, and critical behavior of Nd1−xSrxMnO3 compounds by Sr doping (x = 0.2, 0.3, 0.4, 0.5) were studied. All samples maintained orthorhombic structures, but the space group changed from Pnma (No. 62) for x = 0.2, 0.3 to Imma (No. 74) for x = 0.4, 0.5. As Sr doping increased, the Curie temperature (TC), Curie–Weiss temperature (TCW), and magnetization increased, attributed to the double exchange (DE) interaction. A discrepancy between TCW and TC was observed due to the competition between polarons and DE interaction. The critical behavior was investigated systematically using the self-consistent (modified Arrott plots, MAP) method and the Kouvel–Fisher (KF) relation. The KF relation was suitable for the samples with x = 0.2 and 0.5, while the MAP method was suitable for the samples with x = 0.3 and 0.4. Among the Ising, XY, Heisenberg, and mean-field models, the samples with x = 0.2, 0.3, and 0.4 aligned more closely with the mean-field model, except for the x = 0.5 sample. Entropy change (−ΔSM) of Nd1−xSrxMnO3 (0.2 ≤ x ≤ 0.5) increased with the applied field, with the maximum value observed around TC. For the sample with x = 0.3, (−ΔSM) reached 4.315 J/kg K at μ0ΔH = 50 kOe, corresponding to a relative cooling power (RCP) of 280.48 J/kg. Remarkably, the x = 0.4 sample displayed (−ΔSM) of 3.298 J/kg K at μ0ΔH = 50 kOe near room temperature, with the RCP of 283.64 J/kg. These findings underscore the role of Sr doping in tuning the magnetic properties, critical behavior, and magnetocaloric effect of NdMnO3.
研究了掺杂 Sr(x = 0.2、0.3、0.4、0.5)的 Nd1-xSrxMnO3 化合物的磁特性、磁致效应和临界行为。所有样品都保持正方体结构,但空间群从 x = 0.2、0.3 时的 Pnma(62 号)变为 x = 0.4、0.5 时的 Imma(74 号)。随着锶掺杂量的增加,居里温度(TC)、居里-韦斯温度(TCW)和磁化率也随之增加,这归因于双交换(DE)相互作用。由于极子和 DE 相互作用之间的竞争,观察到 TCW 和 TC 之间存在差异。利用自洽(修正阿罗特图,MAP)方法和库维尔-费舍(KF)关系对临界行为进行了系统研究。KF 关系适用于 x = 0.2 和 0.5 的样品,而 MAP 方法适用于 x = 0.3 和 0.4 的样品。在 Ising、XY、Heisenberg 和均场模型中,除 x = 0.5 样本外,x = 0.2、0.3 和 0.4 样本更接近均场模型。Nd1-xSrxMnO3(0.2 ≤ x ≤ 0.5)的熵变(-ΔSM)随施加的磁场而增加,在 TC 附近观察到最大值。对于 x = 0.3 的样品,在 μ0ΔH = 50 kOe 时,(-ΔSM) 达到 4.315 J/kg K,相当于 280.48 J/kg 的相对冷却功率 (RCP)。值得注意的是,x = 0.4 样品在接近室温的 μ0ΔH = 50 kOe 时显示出 3.298 J/kg K 的 (-ΔSM),相对冷却功率为 283.64 J/kg。这些发现强调了掺杂硒在调整 NdMnO3 的磁性能、临界行为和磁致效应方面的作用。
{"title":"Magnetic properties, critical behavior, and magnetocaloric effect of Nd1−xSrxMnO3 (0.2 ≤ x ≤ 0.5): The role of Sr doping concentration","authors":"Haiou Wang, Fuxiao Dong, Haochen Wang, Bojun Zhao, Yan Wang, Weishi Tan","doi":"10.1063/5.0229032","DOIUrl":"https://doi.org/10.1063/5.0229032","url":null,"abstract":"Magnetic characteristics, magnetocaloric effect, and critical behavior of Nd1−xSrxMnO3 compounds by Sr doping (x = 0.2, 0.3, 0.4, 0.5) were studied. All samples maintained orthorhombic structures, but the space group changed from Pnma (No. 62) for x = 0.2, 0.3 to Imma (No. 74) for x = 0.4, 0.5. As Sr doping increased, the Curie temperature (TC), Curie–Weiss temperature (TCW), and magnetization increased, attributed to the double exchange (DE) interaction. A discrepancy between TCW and TC was observed due to the competition between polarons and DE interaction. The critical behavior was investigated systematically using the self-consistent (modified Arrott plots, MAP) method and the Kouvel–Fisher (KF) relation. The KF relation was suitable for the samples with x = 0.2 and 0.5, while the MAP method was suitable for the samples with x = 0.3 and 0.4. Among the Ising, XY, Heisenberg, and mean-field models, the samples with x = 0.2, 0.3, and 0.4 aligned more closely with the mean-field model, except for the x = 0.5 sample. Entropy change (−ΔSM) of Nd1−xSrxMnO3 (0.2 ≤ x ≤ 0.5) increased with the applied field, with the maximum value observed around TC. For the sample with x = 0.3, (−ΔSM) reached 4.315 J/kg K at μ0ΔH = 50 kOe, corresponding to a relative cooling power (RCP) of 280.48 J/kg. Remarkably, the x = 0.4 sample displayed (−ΔSM) of 3.298 J/kg K at μ0ΔH = 50 kOe near room temperature, with the RCP of 283.64 J/kg. These findings underscore the role of Sr doping in tuning the magnetic properties, critical behavior, and magnetocaloric effect of NdMnO3.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"16 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantitative schlieren analysis is extended here to optically transparent solids in quasi-static and dynamic experiments to measure stress distributions. The quasi-static experiments in polymethyl methacrylate (PMMA) compared refraction angles and stress gradients calculated from schlieren images to the analytical Flamant solution of a line load on a half-space. The quantitative schlieren measurements of the stress field in the thin sample with a load compared well to the analytical solution. The analysis method was then extended to explosive induced shock waves in PMMA. The explosive induced response of PMMA was experimentally studied using high-speed schlieren to visualize the shock propagation in conjunction with Photon Doppler Velocimetry (PDV) to record surface velocity histories. The stress state estimated from the schlieren images was compared to the stress calculated from the PDV measurements. High-speed imaging limitations caused the shock wave to not be fully resolved in the images, but was resolved in the PDV measurement. The stress state behind the shock calculated from the high-speed images followed a similar trend to the stress calculated from the PDV measurements.
{"title":"Stress field measurements using quantitative schlieren","authors":"S. M. Torres, J. Kimberley, M. J. Hargather","doi":"10.1063/5.0223560","DOIUrl":"https://doi.org/10.1063/5.0223560","url":null,"abstract":"Quantitative schlieren analysis is extended here to optically transparent solids in quasi-static and dynamic experiments to measure stress distributions. The quasi-static experiments in polymethyl methacrylate (PMMA) compared refraction angles and stress gradients calculated from schlieren images to the analytical Flamant solution of a line load on a half-space. The quantitative schlieren measurements of the stress field in the thin sample with a load compared well to the analytical solution. The analysis method was then extended to explosive induced shock waves in PMMA. The explosive induced response of PMMA was experimentally studied using high-speed schlieren to visualize the shock propagation in conjunction with Photon Doppler Velocimetry (PDV) to record surface velocity histories. The stress state estimated from the schlieren images was compared to the stress calculated from the PDV measurements. High-speed imaging limitations caused the shock wave to not be fully resolved in the images, but was resolved in the PDV measurement. The stress state behind the shock calculated from the high-speed images followed a similar trend to the stress calculated from the PDV measurements.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Heon Lee, Hee-Jung Yeom, Gwang-Seok Chae, Jung-Hyung Kim, Hyo-Chang Lee
In this study, we examined the potential errors in plasma-density measurements using the cutoff probe method under various structural conditions, such as tip distance and length. Our studies indicate that under conditions of thin sheath thickness, the length or distance of the metal tips on the cutoff probe has a slight effect on the plasma transmission spectrum or cutoff frequency. However, under conditions with a notably thick sheath, the structure of the probe tip can cause an error of up to 2% between the measured cutoff frequency and actual plasma frequency. Consequently, for precise measurements of plasma density using the cutoff probe method, it is imperative to maintain a probe tip distance exceeding five times the sheath width and utilize a sufficiently long probe tip length. This finding is anticipated to provide essential guidelines for the design and fabrication of effective cutoff probes and enhance the accuracy of plasma-density measurements using a cutoff probe.
{"title":"Effect of probe structure on wave transmission spectra of microwave cutoff probe","authors":"Jae-Heon Lee, Hee-Jung Yeom, Gwang-Seok Chae, Jung-Hyung Kim, Hyo-Chang Lee","doi":"10.1063/5.0221290","DOIUrl":"https://doi.org/10.1063/5.0221290","url":null,"abstract":"In this study, we examined the potential errors in plasma-density measurements using the cutoff probe method under various structural conditions, such as tip distance and length. Our studies indicate that under conditions of thin sheath thickness, the length or distance of the metal tips on the cutoff probe has a slight effect on the plasma transmission spectrum or cutoff frequency. However, under conditions with a notably thick sheath, the structure of the probe tip can cause an error of up to 2% between the measured cutoff frequency and actual plasma frequency. Consequently, for precise measurements of plasma density using the cutoff probe method, it is imperative to maintain a probe tip distance exceeding five times the sheath width and utilize a sufficiently long probe tip length. This finding is anticipated to provide essential guidelines for the design and fabrication of effective cutoff probes and enhance the accuracy of plasma-density measurements using a cutoff probe.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"8 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Pezeshki, P. Li, R. Lavrijsen, M. Heck, B. Koopmans
We present an integrated magneto-photonic device for all-optical switching of non-volatile multi-bit spintronic memory. The bits are based on stand-alone magneto-tunnel junctions, which are perpendicularly magnetized with all-optically switchable free layers, coupled onto photonic crystal nanobeam cavities on an indium phosphide based platform. This device enables switching of the magnetization state of the bits by locally increasing the power absorption of light at resonance with the cavity. We design an add/drop network of cavities to grant random access to multiple bits via a wavelength-division multiplexing scheme. Based on a three-dimensional finite-difference time-domain method, we numerically illustrate a compact device capable of switching and accessing at least eight bits in different cavities with a 5 nm wavelength spacing in the conventional (C) telecommunication band. Our multi-bit device holds promise as a new paradigm for developing an ultrafast photonically addressable spintronic memory and may also empower novel opportunities for photonically driven spintronic-based neuromorphic computing.
{"title":"Integrated magneto-photonic non-volatile multi-bit memory","authors":"H. Pezeshki, P. Li, R. Lavrijsen, M. Heck, B. Koopmans","doi":"10.1063/5.0221825","DOIUrl":"https://doi.org/10.1063/5.0221825","url":null,"abstract":"We present an integrated magneto-photonic device for all-optical switching of non-volatile multi-bit spintronic memory. The bits are based on stand-alone magneto-tunnel junctions, which are perpendicularly magnetized with all-optically switchable free layers, coupled onto photonic crystal nanobeam cavities on an indium phosphide based platform. This device enables switching of the magnetization state of the bits by locally increasing the power absorption of light at resonance with the cavity. We design an add/drop network of cavities to grant random access to multiple bits via a wavelength-division multiplexing scheme. Based on a three-dimensional finite-difference time-domain method, we numerically illustrate a compact device capable of switching and accessing at least eight bits in different cavities with a 5 nm wavelength spacing in the conventional (C) telecommunication band. Our multi-bit device holds promise as a new paradigm for developing an ultrafast photonically addressable spintronic memory and may also empower novel opportunities for photonically driven spintronic-based neuromorphic computing.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"11 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we integrated an Indium Gallium Zinc Oxide (IGZO) channel with a superlattice of HfO2/ZrO2 (HZO) under low-thermal-budget microwave annealing to produce nearly wake-up-free ferroelectric capacitors. To eliminate the impact of trap-charges during the atomic layer deposition process, we conducted H2 plasma treatment to eliminate leak defects induced by carbon contamination and maintain neutrality to achieve high-quality IGZO/HZO interfaces, confirmed by x-ray photoelectron spectroscopy. The H2 plasma treatment improved polarization (Pr) and coercive field (Ec), reaching 2Pr: 40 μC/cm2 and Ec: 2.33 MV/cm, enabling a low-power writing speed of 30 ns with eight states (three bits per cell). The defect engineering method ensures endurance of up to 108 cycles and retains ten-year data storage at 90 °C. This research provides a new avenue for improving emerging oxide interfaces controlled by ferroelectric polarization.
{"title":"Improvement of memory storage capacity and prolongation of endurance/retention through H2 plasma treatment of IGZO/HZO structure","authors":"Cheng-Rui Liu, Yu-Tzu Tsai, Yu-Ting Chen, Zheng-Kai Chen, Zi-Rong Huang, Sheng-Min Wang, Chia-Shuo Pai, Ying-Tsan Tang","doi":"10.1063/5.0214983","DOIUrl":"https://doi.org/10.1063/5.0214983","url":null,"abstract":"In this study, we integrated an Indium Gallium Zinc Oxide (IGZO) channel with a superlattice of HfO2/ZrO2 (HZO) under low-thermal-budget microwave annealing to produce nearly wake-up-free ferroelectric capacitors. To eliminate the impact of trap-charges during the atomic layer deposition process, we conducted H2 plasma treatment to eliminate leak defects induced by carbon contamination and maintain neutrality to achieve high-quality IGZO/HZO interfaces, confirmed by x-ray photoelectron spectroscopy. The H2 plasma treatment improved polarization (Pr) and coercive field (Ec), reaching 2Pr: 40 μC/cm2 and Ec: 2.33 MV/cm, enabling a low-power writing speed of 30 ns with eight states (three bits per cell). The defect engineering method ensures endurance of up to 108 cycles and retains ten-year data storage at 90 °C. This research provides a new avenue for improving emerging oxide interfaces controlled by ferroelectric polarization.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"8 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie
When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.
{"title":"Recovering particle velocity and size distributions in ejecta with photon Doppler velocimetry","authors":"J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie","doi":"10.1063/5.0220642","DOIUrl":"https://doi.org/10.1063/5.0220642","url":null,"abstract":"When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Venkidu, N. Raja, Vasundharadevi Venkidu, B. Sundarakannan
The generation of above-bandgap photovoltage, referred to as the anomalous photovoltaic effect (APV), is an extraordinary characteristic sought after property in bulk ferroelectric photovoltaic devices. Despite the fact that the relatively narrow bandgap of BiFeO3 (BFO) (2.7 eV) induces a comparatively larger generation of photocurrent than other ferroelectric photovoltaic, it falls short in producing an anomalous photovoltage (Eg ≪ Voc) and exhibits leaky ferroelectric hysteresis due to unavoidable oxygen vacancies. This work revealed a reduction in oxygen vacancies through the substitution of Ba(Fe1/2Nb1/2)O3 in BFO, leading to improved structural, morphological, synchrotron XPS, and electrical properties. This reduction in oxygen vacancies has resulted in an impressive above-bandgap photovoltage (APV) of 4.41 V for 80BFO–20BFN with greater ferroelectric polarization (Pr = 20.45 μC/cm2) observed at the co-existence of polar and non-polar phases. Moreover, both theoretical and experimental optical analyses have demonstrated a significant decrease in the bandgap to 1.92 eV, effectively extending the visible region close to 653 nm. As a result, a larger population of photoexcited charge carriers is generated, enabling the attainment of a high current density (Jsc) of 0.75 μA/cm2 under 100 mW/cm2 light irradiation.
{"title":"Tuning bandgap and controlling oxygen vacancy in BiFeO3 via Ba(Fe1/2Nb1/2)O3 substitution for enhanced bulk ferroelectric photovoltaic response in Al/BFO–BFN/Ag solar cell","authors":"L. Venkidu, N. Raja, Vasundharadevi Venkidu, B. Sundarakannan","doi":"10.1063/5.0219513","DOIUrl":"https://doi.org/10.1063/5.0219513","url":null,"abstract":"The generation of above-bandgap photovoltage, referred to as the anomalous photovoltaic effect (APV), is an extraordinary characteristic sought after property in bulk ferroelectric photovoltaic devices. Despite the fact that the relatively narrow bandgap of BiFeO3 (BFO) (2.7 eV) induces a comparatively larger generation of photocurrent than other ferroelectric photovoltaic, it falls short in producing an anomalous photovoltage (Eg ≪ Voc) and exhibits leaky ferroelectric hysteresis due to unavoidable oxygen vacancies. This work revealed a reduction in oxygen vacancies through the substitution of Ba(Fe1/2Nb1/2)O3 in BFO, leading to improved structural, morphological, synchrotron XPS, and electrical properties. This reduction in oxygen vacancies has resulted in an impressive above-bandgap photovoltage (APV) of 4.41 V for 80BFO–20BFN with greater ferroelectric polarization (Pr = 20.45 μC/cm2) observed at the co-existence of polar and non-polar phases. Moreover, both theoretical and experimental optical analyses have demonstrated a significant decrease in the bandgap to 1.92 eV, effectively extending the visible region close to 653 nm. As a result, a larger population of photoexcited charge carriers is generated, enabling the attainment of a high current density (Jsc) of 0.75 μA/cm2 under 100 mW/cm2 light irradiation.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"59 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Kalboussi, S. Dadouch, B. Delatte, F. Miserque, D. Dragoe, F. Eozenou, M. Baudrier, S. Tusseau-Nenez, Y. Zheng, L. Maurice, E. Cenni, Q. Bertrand, P. Sahuquet, E. Fayette, G. Jullien, C. Inguimbert, M. Belhaj, T. Proslier
This study investigates the use of atomic layer deposition (ALD) to mitigate multipacting phenomena inside superconducting radio frequency cavities used in particle accelerators while preserving high quality factors in the 1010 range. The unique ALD capability to control the film thickness down to the atomic level on arbitrary complex shape objects enables the fine-tuning of TiN film resistivity and total electron emission yield (TEEY) from coupons to devices. This level of control allows us to adequately choose a TiN film thickness that provides both high resistivity to prevent Ohmic losses and a low TEEY to mitigate multipacting for the application of interest. The methodology presented in this work can be scaled to other domains and devices subject to RF fields in vacuum and sensitive to multipacting or electron discharge processes with their own requirements in resistivities and TEEY values.
这项研究探讨了如何利用原子层沉积 (ALD) 技术来减轻粒子加速器中使用的超导射频腔内的多压强现象,同时保持 1010 范围内的高质量系数。独特的 ALD 功能可将任意复杂形状物体上的薄膜厚度控制到原子级别,从而实现从试样到设备的 TiN 薄膜电阻率和总电子发射率 (TEEY) 的微调。这种控制水平使我们能够充分选择 TiN 薄膜厚度,既能提供高电阻率以防止欧姆损耗,又能提供低 TEEY 以减轻相关应用中的多孔性。这项工作中介绍的方法可扩展到其他领域和器件,这些领域和器件在真空中会受到射频场的影响,并对电阻率和 TEEY 值有自己的要求,对多压制或电子放电过程敏感。
{"title":"Multipacting mitigation by atomic layer deposition: The case study of titanium nitride","authors":"Y. Kalboussi, S. Dadouch, B. Delatte, F. Miserque, D. Dragoe, F. Eozenou, M. Baudrier, S. Tusseau-Nenez, Y. Zheng, L. Maurice, E. Cenni, Q. Bertrand, P. Sahuquet, E. Fayette, G. Jullien, C. Inguimbert, M. Belhaj, T. Proslier","doi":"10.1063/5.0221943","DOIUrl":"https://doi.org/10.1063/5.0221943","url":null,"abstract":"This study investigates the use of atomic layer deposition (ALD) to mitigate multipacting phenomena inside superconducting radio frequency cavities used in particle accelerators while preserving high quality factors in the 1010 range. The unique ALD capability to control the film thickness down to the atomic level on arbitrary complex shape objects enables the fine-tuning of TiN film resistivity and total electron emission yield (TEEY) from coupons to devices. This level of control allows us to adequately choose a TiN film thickness that provides both high resistivity to prevent Ohmic losses and a low TEEY to mitigate multipacting for the application of interest. The methodology presented in this work can be scaled to other domains and devices subject to RF fields in vacuum and sensitive to multipacting or electron discharge processes with their own requirements in resistivities and TEEY values.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"2 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}