首页 > 最新文献

Journal of Basic Microbiology最新文献

英文 中文
Assessment of Lethal, Sublethal, Transgenerational, and Biochemical Effects of Isaria fumosorosea on Mythimna separata. 评估 Isaria fumosorosea 对 Mythimna separata 的致死、亚致死、跨代和生化影响。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1002/jobm.202400548
Mudasar Raza, Shoaib Freed, Rizwan Ahmed, Afifa Naeem

Mythimna separata is a destructive polyphagous pest of field crops. Insecticides are generally applied for its control which not only negatively affect natural enemies and the environment and cause resistance in the insect pests. There is a need for the friendly method which is safe for the environment and life. Currently, entomopathogenic fungi are being used as biological control agents for different insects. The influence of Isaria fumosorosea on survival, life table parameters, and enzymatic activities of M. separata were assessed. On the seventh day post-treatment, the highest concentration 3 × 108 spores/mL-1 caused the 92.5% larval mortality. The effect of LC15 and LC50 of I. fumosorosea were recorded on parental generation (F0) and first filial generation (F1) of M. separata. The life table parameters of F1 showed a decreasing trend in the intrinsic rate (r), net reproductive rate (Ro), mean generational time (T), total larval duration, and fecundity ratio in treated groups. In LC15 and LC50, groups the average fecundity ratio was 319.2 and 191.18 eggs/female, respectively. The activities of detoxifying enzymes were concentration-dependent and highest activities were recorded on the third day. I. fumosorosea negatively affected the growth parameters of M. separata and can be included in M. separata management program.

Mythimna separata 是一种田间作物的毁灭性多食性害虫。通常使用杀虫剂来控制它,这不仅会对天敌和环境造成负面影响,还会导致害虫产生抗药性。因此需要一种对环境和生命安全的友好方法。目前,昆虫病原真菌被用作不同昆虫的生物防治剂。本研究评估了 Isaria fumosorosea 对 M. separata 的存活率、生命表参数和酶活性的影响。在处理后第七天,最高浓度 3 × 108 个孢子/毫升-1 会导致 92.5% 的幼虫死亡。记录了 I. fumosorosea 的 LC15 和 LC50 对 M. separata 亲代(F0)和第一代子代(F1)的影响。F1 的生命表参数显示,处理组的固有率 (r)、净生殖率 (Ro)、平均世代时间 (T)、总幼虫存活时间和繁殖率均呈下降趋势。在 LC15 和 LC50 组中,平均繁殖率分别为 319.2 和 191.18 个卵/雌虫。解毒酶的活性与浓度有关,第三天的活性最高。I. fumosorosea 对分离姬鼠的生长参数有负面影响,可将其纳入分离姬鼠管理计划。
{"title":"Assessment of Lethal, Sublethal, Transgenerational, and Biochemical Effects of Isaria fumosorosea on Mythimna separata.","authors":"Mudasar Raza, Shoaib Freed, Rizwan Ahmed, Afifa Naeem","doi":"10.1002/jobm.202400548","DOIUrl":"https://doi.org/10.1002/jobm.202400548","url":null,"abstract":"<p><p>Mythimna separata is a destructive polyphagous pest of field crops. Insecticides are generally applied for its control which not only negatively affect natural enemies and the environment and cause resistance in the insect pests. There is a need for the friendly method which is safe for the environment and life. Currently, entomopathogenic fungi are being used as biological control agents for different insects. The influence of Isaria fumosorosea on survival, life table parameters, and enzymatic activities of M. separata were assessed. On the seventh day post-treatment, the highest concentration 3 × 10<sup>8</sup> spores/mL<sup>-1</sup> caused the 92.5% larval mortality. The effect of LC<sub>15</sub> and LC<sub>50</sub> of I. fumosorosea were recorded on parental generation (F<sub>0</sub>) and first filial generation (F<sub>1</sub>) of M. separata. The life table parameters of F<sub>1</sub> showed a decreasing trend in the intrinsic rate (r), net reproductive rate (R<sub>o</sub>), mean generational time (T), total larval duration, and fecundity ratio in treated groups. In LC<sub>15</sub> and LC<sub>50</sub>, groups the average fecundity ratio was 319.2 and 191.18 eggs/female, respectively. The activities of detoxifying enzymes were concentration-dependent and highest activities were recorded on the third day. I. fumosorosea negatively affected the growth parameters of M. separata and can be included in M. separata management program.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400548"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peanut-Colonized Piriformospora indica Enhanced Drought Tolerance by Modulating the Enzymes and Expression of Drought-Related Genes. 通过调节与干旱相关的基因的酶和表达,花生套种的 Piriformospora indica 增强了耐旱性。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1002/jobm.202400305
Jie Gao, Chen Wang, Pei-Cong Tian, Chuang Liu, Taswar Ahsan, Yi Wei, Yu-Qian Huang, Shi-Hong Zhang

Peanut (Arachis hypogaea L.) is an important cash and oil seed crop, mostly distributed in arid and semi-arid areas. In recent years, due to the influence of atmospheric circulation anomalies and other factors, drought has become frequent and increasingly serious in China. This has posed serious challenges to peanut production. The objective of this study was to investigate the potential of the endophytic fungus Piriformospora indica to form a symbiotic relationship with peanut plants and to evaluate the drought tolerance of P. indica-colonized peanut plants subjected to a simulated drought stress treatment using 20% polyethylene glycol 6000 (PEG6000). The endophytic fungus P. indica affected the physiological characteristics of the host plant by colonizing the plant roots, thereby conferring greater resistance to drought stress. This fungus strongly colonized the roots of peanuts and was found to enhance root activity after 24 h of P. indica colonization under PEG6000. Catalase (CAT) and peroxidase (POD) activities were increased at 24 h in peanut leaves colonized with P. indica. Expression of drought-related genes, such as AhNCED1, AhP5CS, and DREB2A was upregulated at 24 h of P. indica colonization. In addition, after PEG6000 treatment, proline, soluble protein, and abscisic acid (ABA) concentrations in plants were increased, while the accumulation of malondialdehyde (MDA), and hydrogen peroxide (H2O2) was decreased in P. indica colonized peanut. In conclusion, P. indica mediated peanut plant protection against the detrimental effects of drought resulted from enhanced antioxidant enzyme activities, and the upregulated expression of drought-related genes for lower membrane damage.

花生(Arachis hypogaea L.)是一种重要的经济作物和油料作物,主要分布在干旱和半干旱地区。近年来,受大气环流异常等因素的影响,我国干旱频发,且日趋严重。这给花生生产带来了严峻挑战。本研究旨在探讨内生真菌 Piriformospora indica 与花生植株形成共生关系的潜力,并评估 P. indica 定殖的花生植株在 20% 聚乙二醇 6000(PEG6000)的模拟干旱胁迫处理下的耐旱性。内生真菌 P. indica 通过在寄主植物根部定殖影响了寄主植物的生理特性,从而增强了对干旱胁迫的抵抗力。在 PEG6000 条件下,这种真菌在花生根部的定殖作用很强,在 P. indica 定殖 24 小时后,根系活性得到增强。用 P. indica 定殖的花生叶片在 24 小时后过氧化氢酶(CAT)和过氧化物酶(POD)活性增加。在 P. indica 定殖 24 小时后,干旱相关基因(如 AhNCED1、AhP5CS 和 DREB2A)的表达上调。此外,经过 PEG6000 处理后,植株中的脯氨酸、可溶性蛋白和脱落酸(ABA)浓度增加,而 P. indica 定殖花生中丙二醛(MDA)和过氧化氢(H2O2)的积累减少。总之,P. indica 能增强抗氧化酶的活性,并上调干旱相关基因的表达,从而降低膜损伤,从而保护花生植物免受干旱的不利影响。
{"title":"Peanut-Colonized Piriformospora indica Enhanced Drought Tolerance by Modulating the Enzymes and Expression of Drought-Related Genes.","authors":"Jie Gao, Chen Wang, Pei-Cong Tian, Chuang Liu, Taswar Ahsan, Yi Wei, Yu-Qian Huang, Shi-Hong Zhang","doi":"10.1002/jobm.202400305","DOIUrl":"https://doi.org/10.1002/jobm.202400305","url":null,"abstract":"<p><p>Peanut (Arachis hypogaea L.) is an important cash and oil seed crop, mostly distributed in arid and semi-arid areas. In recent years, due to the influence of atmospheric circulation anomalies and other factors, drought has become frequent and increasingly serious in China. This has posed serious challenges to peanut production. The objective of this study was to investigate the potential of the endophytic fungus Piriformospora indica to form a symbiotic relationship with peanut plants and to evaluate the drought tolerance of P. indica-colonized peanut plants subjected to a simulated drought stress treatment using 20% polyethylene glycol 6000 (PEG6000). The endophytic fungus P. indica affected the physiological characteristics of the host plant by colonizing the plant roots, thereby conferring greater resistance to drought stress. This fungus strongly colonized the roots of peanuts and was found to enhance root activity after 24 h of P. indica colonization under PEG6000. Catalase (CAT) and peroxidase (POD) activities were increased at 24 h in peanut leaves colonized with P. indica. Expression of drought-related genes, such as AhNCED1, AhP5CS, and DREB2A was upregulated at 24 h of P. indica colonization. In addition, after PEG6000 treatment, proline, soluble protein, and abscisic acid (ABA) concentrations in plants were increased, while the accumulation of malondialdehyde (MDA), and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was decreased in P. indica colonized peanut. In conclusion, P. indica mediated peanut plant protection against the detrimental effects of drought resulted from enhanced antioxidant enzyme activities, and the upregulated expression of drought-related genes for lower membrane damage.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400305"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenicity of Bacillus subtilis Against Symbiotic Fungus of Euwallacea fornicates (Coleoptera: Scolytidae) From South India. 枯草芽孢杆菌对南印度 Euwallacea fornicates (Coleoptera: Scolytidae) 共生真菌的致病性。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1002/jobm.202400455
Kammatterikunnu Ashif, Thattanteparambil Rabeesh

In India, the shot-hole borer, Euwallacea fornicates, commonly known as the tea borer, infests the galleries of tea plant twigs under natural conditions and is a major pest of tea. The current investigation focuses on the antagonistic ability of Bacillus subtilis to directly inhibit the growth of plant pathogens in two different climatic regions of tea-growing area. The evaluation reveals that (a) B. subtilis can directly suppress the growth of plant pathogens (b) in the in vitro evaluation; the B. subtilis suppressed the growth of the Fusarium ambrossium, which is the nourishment for the ambrosia beetle, (c) it also revealed that the antagonistic microbes and the entomopathogens are able to control the pest population of the shot hole borer of tea. The impact of B. subtilis on mycelial growth, sporulation, and spore germination of F. ambrosium in agar medium was observed. In the field condition on the post-treatment assessments shows an average decline of 40% in both foliar and soil drenching. Hence, we recommend the antagonistic bacterium B. subtilis for including as an IPM for the management of shot hole borer in tea.

在印度,射孔蛀虫(Euwallacea fornicates)俗称茶螟,在自然条件下侵染茶树枝干的廊道,是茶叶的主要害虫。本次研究的重点是枯草芽孢杆菌在两个不同气候条件的茶叶种植区直接抑制植物病原体生长的拮抗能力。评价结果表明:(a)枯草芽孢杆菌能直接抑制植物病原菌的生长;(b)在离体评价中,枯草芽孢杆菌抑制了伏甲镰刀菌的生长,而伏甲镰刀菌是伏甲的营养物;(c)还发现拮抗微生物和昆虫病原菌能控制茶叶射孔螟的害虫种群数量。在琼脂培养基中,观察了枯草芽孢杆菌对 F. ambrosium 的菌丝生长、孢子和孢子萌发的影响。在田间条件下进行的处理后评估显示,叶面和土壤淋洗平均减少了 40%。因此,我们建议将拮抗细菌枯草芽孢杆菌作为一种 IPM 用于茶叶射孔螟的管理。
{"title":"Pathogenicity of Bacillus subtilis Against Symbiotic Fungus of Euwallacea fornicates (Coleoptera: Scolytidae) From South India.","authors":"Kammatterikunnu Ashif, Thattanteparambil Rabeesh","doi":"10.1002/jobm.202400455","DOIUrl":"https://doi.org/10.1002/jobm.202400455","url":null,"abstract":"<p><p>In India, the shot-hole borer, Euwallacea fornicates, commonly known as the tea borer, infests the galleries of tea plant twigs under natural conditions and is a major pest of tea. The current investigation focuses on the antagonistic ability of Bacillus subtilis to directly inhibit the growth of plant pathogens in two different climatic regions of tea-growing area. The evaluation reveals that (a) B. subtilis can directly suppress the growth of plant pathogens (b) in the in vitro evaluation; the B. subtilis suppressed the growth of the Fusarium ambrossium, which is the nourishment for the ambrosia beetle, (c) it also revealed that the antagonistic microbes and the entomopathogens are able to control the pest population of the shot hole borer of tea. The impact of B. subtilis on mycelial growth, sporulation, and spore germination of F. ambrosium in agar medium was observed. In the field condition on the post-treatment assessments shows an average decline of 40% in both foliar and soil drenching. Hence, we recommend the antagonistic bacterium B. subtilis for including as an IPM for the management of shot hole borer in tea.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400455"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Acetic Acid on Biofilm Formation in Paracidovorax citrulli, Causal Agent of Bacterial Fruit Blotch. 醋酸对果实细菌性斑点病病原菌 Paracidovorax citrulli 生物膜形成的影响
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1002/jobm.202400188
Jincheng Yang, Liang Mao, Yousaf Gulfam, Muhammad Zeeshan, Xiaodong Wang, Ting Fan

The unique tissue structure of pathogenic bacteria biofilm plays an important role in its pathogenicity and bactericide resistance. Inhibition or destruction of biofilm formation of pathogenic bacteria is of great significance for the control of plant bacterial diseases. In this study, Paracidovorax citrulli was inoculated into KB medium containing acetic acid, and after shaking at 28°C and 55 r/min for 48 h, it was found that the content of extracellular polysaccharide, extracellular protein and extracellular DNA (eDNA) decreased with the increase of acetic acid concentration, which resulted in the decrease of biofilm formation, it is not even possible to form biofilms on plastic slides. When the final concentration of acetic acid in the culture medium was greater than or equal to 0.5 mg/mL, there was no biofilm on the plastic slides. Therefore, the use of acetic acid as an inhibitor of P. citrulli has a good potential for control of bacterial fruit blotch.

病原菌生物膜独特的组织结构对其致病性和对杀菌剂的抗性起着重要作用。抑制或破坏病原菌生物膜的形成对植物细菌病害的防治具有重要意义。本研究将 Paracidovorax citrulli 接种到含醋酸的 KB 培养基中,在 28℃、55 r/min 条件下振荡 48 h 后发现,随着醋酸浓度的增加,胞外多糖、胞外蛋白和胞外 DNA(eDNA)含量减少,导致生物膜形成减少,甚至无法在塑料载玻片上形成生物膜。当培养基中醋酸的最终浓度大于或等于 0.5 毫克/毫升时,塑料载玻片上没有生物膜。因此,使用醋酸作为柠檬褐斑病菌的抑制剂在控制细菌性果斑病方面具有良好的潜力。
{"title":"Effect of Acetic Acid on Biofilm Formation in Paracidovorax citrulli, Causal Agent of Bacterial Fruit Blotch.","authors":"Jincheng Yang, Liang Mao, Yousaf Gulfam, Muhammad Zeeshan, Xiaodong Wang, Ting Fan","doi":"10.1002/jobm.202400188","DOIUrl":"https://doi.org/10.1002/jobm.202400188","url":null,"abstract":"<p><p>The unique tissue structure of pathogenic bacteria biofilm plays an important role in its pathogenicity and bactericide resistance. Inhibition or destruction of biofilm formation of pathogenic bacteria is of great significance for the control of plant bacterial diseases. In this study, Paracidovorax citrulli was inoculated into KB medium containing acetic acid, and after shaking at 28°C and 55 r/min for 48 h, it was found that the content of extracellular polysaccharide, extracellular protein and extracellular DNA (eDNA) decreased with the increase of acetic acid concentration, which resulted in the decrease of biofilm formation, it is not even possible to form biofilms on plastic slides. When the final concentration of acetic acid in the culture medium was greater than or equal to 0.5 mg/mL, there was no biofilm on the plastic slides. Therefore, the use of acetic acid as an inhibitor of P. citrulli has a good potential for control of bacterial fruit blotch.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400188"},"PeriodicalIF":3.5,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Diversity, Root Colonization, and Morphology of Arbuscular Mycorrhizal Fungi in Lamiaceae. 探索唇形科植物中丛生菌根真菌的多样性、根部定殖和形态。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1002/jobm.202400379
Kalpana Sharma, Meenakshi Singh, Devendra Kumar Srivastava, Pradeep Kumar Singh

This study aimed to explore the diversity, root morphology, and colonization of arbuscular mycorrhizal fungi (AMF) associated with eight medicinal plants of the Lamiaceae family. Rhizospheric soil and root samples were collected from eight species of Lamiaceae plants for AMF analysis. The results indicate that root colonization was not directly related to the number of AMF spores in the rhizosphere. However, a significant correlation was found between the percentage of root colonization and the number of AMF species present in the individual plants. The highest percentage of colonization (86.67 ± 1.92%) and the greatest number of AMF species were observed in Micromeria fructicosa, while the lowest colonization (27.67 ± 6.22%) was recorded in Mentha arvensis. The highest spore count was recorded in Thymus vulgaris (120 ± 27.01), whereas the lowest was found in Melissa officinalis (84 ± 17.20). Among the identified AMF species, Glomus was the most dominant, representing 35.7% of all AMF species across the eight medicinal plants. The maximum AMF spore density was observed in M. fructicosa and lowest in M. arvensis. The study suggests that AMF can significantly enhance medicinal plant growth by ensuring a consistent supply of nutrients and water, thereby supporting the sustainable cultivation of medicinal plants to meet the growing demand.

本研究旨在探索与拉米亚科八种药用植物相关的丛枝菌根真菌(AMF)的多样性、根系形态和定植情况。研究人员采集了八种拉米亚科植物的根瘤土壤和根部样本,对其进行了AMF分析。结果表明,根部定殖与根圈中的 AMF 孢子数量没有直接关系。不过,根部定殖率与单株植物中存在的 AMF 种类数量之间存在明显的相关性。果小蓟的定殖率最高(86.67 ± 1.92%),AMF 种类数量也最多,而薄荷的定殖率最低(27.67 ± 6.22%)。百里香的孢子数量最多(120 ± 27.01),而香蜂草的孢子数量最少(84 ± 17.20)。在已鉴定的 AMF 物种中,Glomus 是最主要的,占八种药用植物所有 AMF 物种的 35.7%。在果味草中观察到的 AMF 孢子密度最大,而在 arvensis 中最低。这项研究表明,AMF 可以通过确保稳定的养分和水分供应,显著促进药用植物的生长,从而支持药用植物的可持续栽培,满足日益增长的需求。
{"title":"Exploring the Diversity, Root Colonization, and Morphology of Arbuscular Mycorrhizal Fungi in Lamiaceae.","authors":"Kalpana Sharma, Meenakshi Singh, Devendra Kumar Srivastava, Pradeep Kumar Singh","doi":"10.1002/jobm.202400379","DOIUrl":"https://doi.org/10.1002/jobm.202400379","url":null,"abstract":"<p><p>This study aimed to explore the diversity, root morphology, and colonization of arbuscular mycorrhizal fungi (AMF) associated with eight medicinal plants of the Lamiaceae family. Rhizospheric soil and root samples were collected from eight species of Lamiaceae plants for AMF analysis. The results indicate that root colonization was not directly related to the number of AMF spores in the rhizosphere. However, a significant correlation was found between the percentage of root colonization and the number of AMF species present in the individual plants. The highest percentage of colonization (86.67 ± 1.92%) and the greatest number of AMF species were observed in Micromeria fructicosa, while the lowest colonization (27.67 ± 6.22%) was recorded in Mentha arvensis. The highest spore count was recorded in Thymus vulgaris (120 ± 27.01), whereas the lowest was found in Melissa officinalis (84 ± 17.20). Among the identified AMF species, Glomus was the most dominant, representing 35.7% of all AMF species across the eight medicinal plants. The maximum AMF spore density was observed in M. fructicosa and lowest in M. arvensis. The study suggests that AMF can significantly enhance medicinal plant growth by ensuring a consistent supply of nutrients and water, thereby supporting the sustainable cultivation of medicinal plants to meet the growing demand.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400379"},"PeriodicalIF":3.5,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polysaccharides and Peptides With Wound Healing Activity From Bacteria and Fungi. 细菌和真菌中具有伤口愈合活性的多糖和肽。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-16 DOI: 10.1002/jobm.202400510
Nazli Pinar Arslan, Tugba Orak, Aysenur Ozdemir, Ramazan Altun, Nevzat Esim, Elvan Eroglu, Sinem Ilayda Karaagac, Cigdem Aktas, Mesut Taskin

Bacteria and fungi are natural sources of metabolites exhibiting diverse bioactive properties such as wound healing, antioxidative, antibacterial, antifungal, anti-inflammatory, antidiabetic, and anticancer activities. Two important groups of bacteria or fungi-derived metabolites with wound-healing potential are polysaccharides and peptides. In addition to bacteria-derived cellulose and hyaluronic acid and fungi-derived chitin and chitosan, these organisms also produce different polysaccharides (e.g., exopolysaccharides) with wound-healing potential. The most commonly used bacterial peptides in wound healing studies are bacteriocins and lipopeptides. Bacteria or fungi-derived polysaccharides and peptides exhibit both the in vitro and the in vivo wound healing potency. In the in vivo models, including animals and humans, these metabolites positively affect wound healing by inhibiting pathogens, exhibiting antioxidant activity, modulating inflammatory response, moisturizing the wound environment, promoting the proliferation and migration of fibroblasts and keratinocytes, increasing collagen synthesis, re-epithelialization, and angiogenesis. Therefore, peptides and polysaccharides derived from bacteria and fungi have medicinal importance. This study aims to overview current literature knowledge (especially within the past 5 years) on the in vitro and in vivo wound repair potentials of polysaccharides and peptides obtained from bacteria (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria) and fungi (yeasts, filamentous microfungi, and mushrooms).

细菌和真菌是多种代谢物的天然来源,它们具有多种生物活性,如伤口愈合、抗氧化、抗菌、抗真菌、消炎、抗糖尿病和抗癌活性。多糖和肽是细菌或真菌产生的具有伤口愈合潜力的两类重要代谢物。除了细菌产生的纤维素和透明质酸以及真菌产生的几丁质和壳聚糖外,这些生物还产生不同的具有伤口愈合潜能的多糖(如外多糖)。伤口愈合研究中最常用的细菌肽是细菌素和脂肽。细菌或真菌衍生的多糖和肽具有体外和体内伤口愈合能力。在包括动物和人体在内的体内模型中,这些代谢物通过抑制病原体、抗氧化、调节炎症反应、保湿伤口环境、促进成纤维细胞和角质细胞的增殖和迁移、增加胶原蛋白合成、再上皮化和血管生成,对伤口愈合产生积极影响。因此,从细菌和真菌中提取的肽和多糖具有重要的药用价值。本研究旨在概述目前有关从细菌(放线菌、类杆菌、蓝藻菌、真菌和蛋白菌)和真菌(酵母菌、丝状微真菌和蘑菇)中提取的多糖和肽的体外和体内伤口修复潜力的文献知识(尤其是过去 5 年内的知识)。
{"title":"Polysaccharides and Peptides With Wound Healing Activity From Bacteria and Fungi.","authors":"Nazli Pinar Arslan, Tugba Orak, Aysenur Ozdemir, Ramazan Altun, Nevzat Esim, Elvan Eroglu, Sinem Ilayda Karaagac, Cigdem Aktas, Mesut Taskin","doi":"10.1002/jobm.202400510","DOIUrl":"https://doi.org/10.1002/jobm.202400510","url":null,"abstract":"<p><p>Bacteria and fungi are natural sources of metabolites exhibiting diverse bioactive properties such as wound healing, antioxidative, antibacterial, antifungal, anti-inflammatory, antidiabetic, and anticancer activities. Two important groups of bacteria or fungi-derived metabolites with wound-healing potential are polysaccharides and peptides. In addition to bacteria-derived cellulose and hyaluronic acid and fungi-derived chitin and chitosan, these organisms also produce different polysaccharides (e.g., exopolysaccharides) with wound-healing potential. The most commonly used bacterial peptides in wound healing studies are bacteriocins and lipopeptides. Bacteria or fungi-derived polysaccharides and peptides exhibit both the in vitro and the in vivo wound healing potency. In the in vivo models, including animals and humans, these metabolites positively affect wound healing by inhibiting pathogens, exhibiting antioxidant activity, modulating inflammatory response, moisturizing the wound environment, promoting the proliferation and migration of fibroblasts and keratinocytes, increasing collagen synthesis, re-epithelialization, and angiogenesis. Therefore, peptides and polysaccharides derived from bacteria and fungi have medicinal importance. This study aims to overview current literature knowledge (especially within the past 5 years) on the in vitro and in vivo wound repair potentials of polysaccharides and peptides obtained from bacteria (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria) and fungi (yeasts, filamentous microfungi, and mushrooms).</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400510"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sporosarcina hypophthalmichthys sp. nov. Isolated From Gastrointestinal Tract of Fish Hypophthalmichthys molitrix (Valenciennes, 1844). Sporosarcina hypophthalmichthys sp.
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-13 DOI: 10.1002/jobm.202400226
Meghali Bharti, Monika Sharma, Stanzin Choksket, Himani Khurana, Sneha Siwach, Sonakshi Modeel, Suresh Korpole, Ram Krishan Negi

A rod-shaped, motile, Gram-stain-positive bacterial strain RKN2T, was isolated from gut of silver carp (Hypophthalmichthys molitrix) residing in Gobindsagar reservoir, Himachal Pradesh, India. Having the greatest sequence similarity to Sporosarcina koreensis F73T (98.51%), Sporosarcina luteola Y1T (98.4%) and Sporosarcina aquimarina SW28T (98.36%), the 16S rRNA gene phylogeny confirmed the belonging of strain RKN2T to genus Sporosarcina. Digital DNA-DNA hybridization values were 21.7%, 20.6%, and 19.2%, and average nucleotide identity values were 76.42%, 80.16%, 76.51%, of strain RKN2T with Sporosarcina koreensis F73T, Sporosarcina luteola Y1T, and Sporosarcina aquimarina SW28T, respectively. The genomic analysis of strain RKN2T showed various biological properties including nitrate reduction, genes responsible for carbohydrate-active enzymes production, antimicrobial compounds, as well as potential metabolism of aromatic compounds and heavy metals. G+C composition of RKN2T genome was 52.7%. This strain can grow in temperatures between 10°C and 40°C (optimum, 28°C-30°C), NaCl concentrations up to 6.0% (w/v), and 6.0-8.0 (optimum, 6.5-7.5) pH range. MK-7 was the dominant respiratory quinone, A-4 type cell wall peptidoglycan was present with anteiso-C15:0, iso-C15: 0, and anteiso-C17:0 being the major fatty acids and Lys-Glu being main amino acids. Diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine were the strain RKN2T's three main polar lipids. The strain is a novel species under genus Sporosarcina based on polyphasic approach and the name Sporosarcina hypophthalmichthys sp. nov. is given for strain RKN2T. RKN2T is a type strain (= MCC 4365T = JCM34522T = CCM9112T).

从印度喜马偕尔邦 Gobindsagar 水库中的鲢鱼(Hypophthalmichthys molitrix)肠道中分离出了一株杆状、运动、革兰氏染色阳性细菌 RKN2T。该菌株与 Sporosarcina koreensis F73T(98.51%)、Sporosarcina luteola Y1T(98.4%)和 Sporosarcina aquimarina SW28T(98.36%)的序列相似度最高,16S rRNA 基因系统进化证实 RKN2T 菌株属于 Sporosarcina 属。RKN2T 与 Sporosarcina koreensis F73T、Sporosarcina luteola Y1T 和 Sporosarcina aquimarina SW28T 的数字 DNA-DNA 杂交值分别为 21.7%、20.6% 和 19.2%,平均核苷酸同一性值分别为 76.42%、80.16% 和 76.51%。菌株 RKN2T 的基因组分析表明其具有多种生物特性,包括硝酸盐还原性、产生碳水化合物活性酶的基因、抗菌化合物以及潜在的芳香化合物和重金属代谢。RKN2T 基因组的 G+C 组成为 52.7%。该菌株可在 10°C 至 40°C(最适温度为 28°C-30°C)、NaCl 浓度高达 6.0%(w/v)和 6.0-8.0 (最适温度为 6.5-7.5)的 pH 值范围内生长。MK-7是主要的呼吸醌,细胞壁肽聚糖为A-4型,主要脂肪酸为前-C15:0、异-C15:0和前-C17:0,主要氨基酸为Lys-Glu。二磷脂酰甘油、磷脂酰甘油和磷脂酰乙醇胺是 RKN2T 菌株的三种主要极性脂质。根据多相学方法,该菌株是孢子瓢虫属(Sporosarcina)的一个新物种,并将 RKN2T 菌株命名为 Sporosarcina hypophthalmichthys sp.RKN2T 为模式菌株(= MCC 4365T = JCM34522T = CCM9112T)。
{"title":"Sporosarcina hypophthalmichthys sp. nov. Isolated From Gastrointestinal Tract of Fish Hypophthalmichthys molitrix (Valenciennes, 1844).","authors":"Meghali Bharti, Monika Sharma, Stanzin Choksket, Himani Khurana, Sneha Siwach, Sonakshi Modeel, Suresh Korpole, Ram Krishan Negi","doi":"10.1002/jobm.202400226","DOIUrl":"https://doi.org/10.1002/jobm.202400226","url":null,"abstract":"<p><p>A rod-shaped, motile, Gram-stain-positive bacterial strain RKN2<sup>T</sup>, was isolated from gut of silver carp (Hypophthalmichthys molitrix) residing in Gobindsagar reservoir, Himachal Pradesh, India. Having the greatest sequence similarity to Sporosarcina koreensis F73<sup>T</sup> (98.51%), Sporosarcina luteola Y1<sup>T</sup> (98.4%) and Sporosarcina aquimarina SW28<sup>T</sup> (98.36%), the 16S rRNA gene phylogeny confirmed the belonging of strain RKN2<sup>T</sup> to genus Sporosarcina. Digital DNA-DNA hybridization values were 21.7%, 20.6%, and 19.2%, and average nucleotide identity values were 76.42%, 80.16%, 76.51%, of strain RKN2<sup>T</sup> with Sporosarcina koreensis F73<sup>T</sup>, Sporosarcina luteola Y1<sup>T</sup>, and Sporosarcina aquimarina SW28<sup>T</sup>, respectively. The genomic analysis of strain RKN2<sup>T</sup> showed various biological properties including nitrate reduction, genes responsible for carbohydrate-active enzymes production, antimicrobial compounds, as well as potential metabolism of aromatic compounds and heavy metals. G+C composition of RKN2<sup>T</sup> genome was 52.7%. This strain can grow in temperatures between 10°C and 40°C (optimum, 28°C-30°C), NaCl concentrations up to 6.0% (w/v), and 6.0-8.0 (optimum, 6.5-7.5) pH range. MK-7 was the dominant respiratory quinone, A-4 type cell wall peptidoglycan was present with anteiso-C<sub>15:0</sub>, iso-C<sub>15: 0</sub>, and anteiso-C17:0 being the major fatty acids and Lys-Glu being main amino acids. Diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine were the strain RKN2<sup>T</sup>'s three main polar lipids. The strain is a novel species under genus Sporosarcina based on polyphasic approach and the name Sporosarcina hypophthalmichthys sp. nov. is given for strain RKN2<sup>T</sup>. RKN2<sup>T</sup> is a type strain (= MCC 4365<sup>T</sup> = JCM34522<sup>T</sup> = CCM9112<sup>T</sup>).</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400226"},"PeriodicalIF":3.5,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Anti-Biofilm Strategies: Innovations to Combat Biofilm-Related Challenges and Enhance Efficacy. 推进抗生物膜战略:应对生物膜相关挑战和提高疗效的创新方法。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-11 DOI: 10.1002/jobm.202400271
Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador

Biofilms are complex communities of microorganisms that can cause significant challenges in various settings, including industrial processes, environmental systems, and human health. The protective nature of biofilms makes them resistant to traditional anti-biofilm strategies, such as chemical agents, mechanical interventions, and surface modifications. To address the limitations of conventional anti-biofilm methods, researchers have explored emerging strategies that encompass the use of natural compounds, nanotechnology-based methods, quorum-sensing inhibition, enzymatic degradation, and antimicrobial photodynamic/sonodynamic therapy. There is an increasing focus on combining multiple anti-biofilm strategies to combat resistance and enhance effectiveness. Researchers are continuously investigating the mechanisms of biofilm formation and developing innovative approaches to overcome the limitations of conventional anti-biofilm methods. These efforts aim to improve the management of biofilms and prevent infections while preserving the environment. This study provides a comprehensive overview of the latest advancements in anti-biofilm strategies. Given the dynamic nature of this field, exploring new approaches is essential to stimulate further research and development initiatives. The effective management of biofilms is crucial for maintaining the health of industrial processes, environmental systems, and human populations.

生物膜是一种复杂的微生物群落,可在各种环境中造成重大挑战,包括工业流程、环境系统和人类健康。生物膜的保护特性使其对化学制剂、机械干预和表面改造等传统抗生物膜策略具有抵抗力。为了解决传统抗生物膜方法的局限性,研究人员探索了一些新兴策略,包括使用天然化合物、基于纳米技术的方法、法定量感应抑制、酶降解和抗菌光动力/声动力疗法。人们越来越重视将多种抗生物膜策略结合起来,以对抗抗药性并提高有效性。研究人员正在不断研究生物膜的形成机制,并开发创新方法来克服传统抗生物膜方法的局限性。这些努力旨在改善生物膜的管理,预防感染,同时保护环境。本研究全面概述了抗生物膜策略的最新进展。鉴于该领域的动态性质,探索新方法对于促进进一步的研发活动至关重要。有效管理生物膜对于维护工业流程、环境系统和人类健康至关重要。
{"title":"Advancing Anti-Biofilm Strategies: Innovations to Combat Biofilm-Related Challenges and Enhance Efficacy.","authors":"Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador","doi":"10.1002/jobm.202400271","DOIUrl":"https://doi.org/10.1002/jobm.202400271","url":null,"abstract":"<p><p>Biofilms are complex communities of microorganisms that can cause significant challenges in various settings, including industrial processes, environmental systems, and human health. The protective nature of biofilms makes them resistant to traditional anti-biofilm strategies, such as chemical agents, mechanical interventions, and surface modifications. To address the limitations of conventional anti-biofilm methods, researchers have explored emerging strategies that encompass the use of natural compounds, nanotechnology-based methods, quorum-sensing inhibition, enzymatic degradation, and antimicrobial photodynamic/sonodynamic therapy. There is an increasing focus on combining multiple anti-biofilm strategies to combat resistance and enhance effectiveness. Researchers are continuously investigating the mechanisms of biofilm formation and developing innovative approaches to overcome the limitations of conventional anti-biofilm methods. These efforts aim to improve the management of biofilms and prevent infections while preserving the environment. This study provides a comprehensive overview of the latest advancements in anti-biofilm strategies. Given the dynamic nature of this field, exploring new approaches is essential to stimulate further research and development initiatives. The effective management of biofilms is crucial for maintaining the health of industrial processes, environmental systems, and human populations.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400271"},"PeriodicalIF":3.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening Proteins That Interact With AcHog1 and the Functional Analysis of AcSko1 in Aspergillus cristatus. 筛选与 AcHog1 相互作用的蛋白质并对十字花曲霉中的 AcSko1 进行功能分析
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-07 DOI: 10.1002/jobm.202400475
Lei Shao, Zuoyi Liu, Yongxiang Liu, Yumei Tan

Aspergillus cristatus is a dominant fungus formed during the "flowering" process of Fuzhuan brick tea. Previous research has established that the sporulation of Aspergillus nidulans, a model organism of filamentous fungi, is regulated by light. However, the sporulation of A. cristatus is dependent on osmotic stress. In a previous study, we used pull-down and mass spectrometry to identify proteins that interacted with AcHog1 in A. cristatus when cultured under different conditions of osmotic stress. In the present study, we analyzed the proteins we identified previously to investigate their functional role. The AA1E3BER4 protein was located downstream of Hog1 in the HOG branch pathway and was identified that was regulated by AcHog1. Furthermore, yeast two-hybrid analysis showed that AA1E3BER4 interacted with AcHog1. In addition, we knocked out and complemented the Acsko1 gene encoding the AA1E3BER4 protein. We found that the number of sexual and asexual spores were downregulated by 3.81- and 4.57-fold, respectively, in the ΔAcsko1 strain. The sensitivity of the ΔAcsko1 strain to sorbitol and sucrose, as regulators of osmotic stress, increased, and the sensitivity to high sucrose was higher than that of sorbitol. Acsko1 also regulated the response of A. cristatus to oxidative stress, Congo red, and SDS (sodium dodecyl sulfate). In addition, the deletion of Acsko1 significantly increased the pigment of the ΔAcsko1 strain. This is the first study to report the role of the sko1 gene in oxidative stress, stress-induced damage to the cell wall, and pigment in Aspergillus cristatus.

皱缩曲霉是福砖茶 "发花 "过程中形成的优势真菌。先前的研究已经证实,丝状真菌的模式生物黑曲霉的孢子分生受光照调节。然而,冠突散囊菌的孢子生成依赖于渗透胁迫。在之前的一项研究中,我们使用牵引法和质谱法鉴定了在不同渗透胁迫条件下培养十字花科真菌时与 AcHog1 相互作用的蛋白质。在本研究中,我们对之前鉴定出的蛋白质进行了分析,以研究它们的功能作用。AA1E3BER4蛋白位于HOG分支通路中Hog1的下游,并被发现受AcHog1调控。此外,酵母双杂交分析表明,AA1E3BER4 与 AcHog1 相互作用。此外,我们还敲除了编码 AA1E3BER4 蛋白的 Acsko1 基因并对其进行了互补。我们发现,在ΔAcsko1菌株中,有性孢子和无性孢子的数量分别下调了3.81倍和4.57倍。作为渗透胁迫的调节因子,ΔAcsko1菌株对山梨醇和蔗糖的敏感性增加,对高蔗糖的敏感性高于对山梨醇的敏感性。Acsko1 还能调控 A. cristatus 对氧化应激、刚果红和 SDS(十二烷基硫酸钠)的反应。此外,缺失 Acsko1 能显著增加 ΔAcsko1 菌株的色素。这是首次报道 sko1 基因在曲霉氧化应激、应激引起的细胞壁损伤和色素中的作用的研究。
{"title":"Screening Proteins That Interact With AcHog1 and the Functional Analysis of AcSko1 in Aspergillus cristatus.","authors":"Lei Shao, Zuoyi Liu, Yongxiang Liu, Yumei Tan","doi":"10.1002/jobm.202400475","DOIUrl":"https://doi.org/10.1002/jobm.202400475","url":null,"abstract":"<p><p>Aspergillus cristatus is a dominant fungus formed during the \"flowering\" process of Fuzhuan brick tea. Previous research has established that the sporulation of Aspergillus nidulans, a model organism of filamentous fungi, is regulated by light. However, the sporulation of A. cristatus is dependent on osmotic stress. In a previous study, we used pull-down and mass spectrometry to identify proteins that interacted with AcHog1 in A. cristatus when cultured under different conditions of osmotic stress. In the present study, we analyzed the proteins we identified previously to investigate their functional role. The AA1E3BER4 protein was located downstream of Hog1 in the HOG branch pathway and was identified that was regulated by AcHog1. Furthermore, yeast two-hybrid analysis showed that AA1E3BER4 interacted with AcHog1. In addition, we knocked out and complemented the Acsko1 gene encoding the AA1E3BER4 protein. We found that the number of sexual and asexual spores were downregulated by 3.81- and 4.57-fold, respectively, in the ΔAcsko1 strain. The sensitivity of the ΔAcsko1 strain to sorbitol and sucrose, as regulators of osmotic stress, increased, and the sensitivity to high sucrose was higher than that of sorbitol. Acsko1 also regulated the response of A. cristatus to oxidative stress, Congo red, and SDS (sodium dodecyl sulfate). In addition, the deletion of Acsko1 significantly increased the pigment of the ΔAcsko1 strain. This is the first study to report the role of the sko1 gene in oxidative stress, stress-induced damage to the cell wall, and pigment in Aspergillus cristatus.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400475"},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Control of Microbial Pectinolytic Plant Pathogens Causing Soft Rot of Fruits and Vegetables. 对引起水果和蔬菜软腐病的微生物果胶溶解植物病原体的生物防治。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-10-03 DOI: 10.1002/jobm.202400342
Benaissa Asmaa, Bestami Merdia, Fellan Kheira, Ben Malek Rokaia, Djellout Nadine Chahrazade

It is crucial to implement appropriate measures to prevent the spread of plant pathogens that lead to the decay of fruits and vegetables. From this perspective, we evaluated the biocontrol potential of five Bacillus-plant growth promoting rhizobacteria (PGPR) strains against twenty-one pectinolytic phytopathogens causing soft rot in fruits and vegetables. These phytopathogens had been previously studied. Three in vitro methods were utilized to accomplish this objective: competition, extraction of bioactive substances, and direct confrontation. The inhibitory effect of the direct confrontation method resulted in a slower growth of 11 microbial plant pathogens. In addition, it was noted that 11 strains of plant pathogens generated inhibitory constituents, while 15 plant pathogens produced inducible inhibitory substances. Furthermore, volatile inhibitory compounds were detected in the six tested strains. Overall, strains of PGPR-Bacillus demonstrated strong antifungal and antibacterial properties against phytopathogens. These PGPR can be regarded as potential biocontrol agents for soft microbial rot in fruits and vegetables as well as producers of substances that effectively suppress plant diseases.

采取适当措施防止导致水果和蔬菜腐烂的植物病原体传播至关重要。从这个角度出发,我们评估了五种芽孢杆菌-植物生长促进根瘤菌(PGPR)菌株对 21 种导致水果和蔬菜软腐病的果胶溶性植物病原体的生物防治潜力。以前曾对这些植物病原体进行过研究。为实现这一目标,采用了三种体外方法:竞争法、生物活性物质提取法和直接对抗法。直接对抗法的抑制效果使 11 种微生物植物病原体的生长速度减慢。此外,研究还注意到 11 株植物病原体产生了抑制成分,而 15 株植物病原体则产生了诱导性抑制物质。此外,在 6 株受测菌株中还检测到了挥发性抑制化合物。总体而言,PGPR-芽孢杆菌菌株对植物病原体具有很强的抗真菌和抗细菌特性。这些 PGPR 菌株可被视为水果和蔬菜软腐微生物的潜在生物控制剂,以及有效抑制植物病害的物质生产者。
{"title":"Biological Control of Microbial Pectinolytic Plant Pathogens Causing Soft Rot of Fruits and Vegetables.","authors":"Benaissa Asmaa, Bestami Merdia, Fellan Kheira, Ben Malek Rokaia, Djellout Nadine Chahrazade","doi":"10.1002/jobm.202400342","DOIUrl":"https://doi.org/10.1002/jobm.202400342","url":null,"abstract":"<p><p>It is crucial to implement appropriate measures to prevent the spread of plant pathogens that lead to the decay of fruits and vegetables. From this perspective, we evaluated the biocontrol potential of five Bacillus-plant growth promoting rhizobacteria (PGPR) strains against twenty-one pectinolytic phytopathogens causing soft rot in fruits and vegetables. These phytopathogens had been previously studied. Three in vitro methods were utilized to accomplish this objective: competition, extraction of bioactive substances, and direct confrontation. The inhibitory effect of the direct confrontation method resulted in a slower growth of 11 microbial plant pathogens. In addition, it was noted that 11 strains of plant pathogens generated inhibitory constituents, while 15 plant pathogens produced inducible inhibitory substances. Furthermore, volatile inhibitory compounds were detected in the six tested strains. Overall, strains of PGPR-Bacillus demonstrated strong antifungal and antibacterial properties against phytopathogens. These PGPR can be regarded as potential biocontrol agents for soft microbial rot in fruits and vegetables as well as producers of substances that effectively suppress plant diseases.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400342"},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Basic Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1