首页 > 最新文献

Journal of Basic Microbiology最新文献

英文 中文
Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects 细菌胞外囊泡:潜在的治疗应用、挑战和未来前景》(Potential Therapeutic Applications, Challenges, and Future Prospects.
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-15 DOI: 10.1002/jobm.202400221
Humaira, Irfan Ahmad, Hafiz Abdullah Shakir, Muhammad Khan, Marcelo Franco, Muhammad Irfan

Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, “bacterial extracellular vesicles” (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30–150 nm), microvesicles (100–1000 nm), apoptotic bodies (1000–5000 nm), and oncosomes (1000–10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.

几乎所有类型的细胞都会在细胞外空间自然分泌细胞外囊泡 (EVs),其中含有促进细胞内交流的可变代谢货物,具有免疫调节能力。因此,"细菌胞外囊泡"(BEVs)以其巨大的免疫调节、免疫反应刺激和改变疾病状况的潜力,在医疗和治疗领域受到重视。文献中观察到并报道了各种亚型的 BEV,如外泌体(30-150 nm)、微囊泡(100-1000 nm)、凋亡体(1000-5000 nm)和 oncosomes(1000-10000 nm)。由于生物系统是复杂的实体,因此插入 BEV 需要极高的纯度。人们已经单独或与其他策略一起采用了各种分离 BEV 的技术,如超离心法、沉淀法、大小排阻色谱法、亲和分离法、超滤法和场流分馏法。但迄今为止,没有一种 BEV 分离方法被认为是完美的,因为缺乏标准协议限制了其规模化应用。医学研究一直关注 BEV,以探索其多种治疗潜力。本综述特别关注 BEV 在潜在医疗应用方面的最新进展、当前面临的挑战以及与其规模化相关的前景。
{"title":"Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects","authors":"Humaira,&nbsp;Irfan Ahmad,&nbsp;Hafiz Abdullah Shakir,&nbsp;Muhammad Khan,&nbsp;Marcelo Franco,&nbsp;Muhammad Irfan","doi":"10.1002/jobm.202400221","DOIUrl":"10.1002/jobm.202400221","url":null,"abstract":"<div>\u0000 \u0000 <p>Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, “bacterial extracellular vesicles” (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30–150 nm), microvesicles (100–1000 nm), apoptotic bodies (1000–5000 nm), and oncosomes (1000–10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanobacterial Silver Nanoparticles and Their Potential Utility—Recent Progress and Prospects: A Review 蓝藻银纳米粒子及其潜在用途--最新进展与前景:综述。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-07 DOI: 10.1002/jobm.202400256
Maheswari Behera, Prateek Ranjan Behera, Gangadhar Sethi, Biswajita Pradhan, Varanasi Adarsh, Omar Abdurahman Alkilayh, Devi Prasad Samantaray, Lakshmi Singh

The current situation involves an increase in interest in nanotechnology, in particular the ways in which it can be applied in the commercial and medical fields. However, traditional methods of synthesizing nanoparticles have some drawbacks, including the generation of harmful byproducts, high energy consumption, and cost. As a result, researchers have shifted their focus to “green” nanoparticle synthesis to circumvent these drawbacks. Because of their exceptional physiochemical properties, silver nanoparticles (Ag Nps) are the noble metal nanoparticles that are used most frequently. The green approach to Ag NP synthesis is environmentally friendly, non-toxic, and cost-effective, and it makes use of a variety of biological entities. Cyanobacteria, in particular, have garnered the most attention because of the abundance of bioactive substances that they contain, which serve both as reducing agents and as stabilizing agents during the process of biosynthesis. This review article discusses the current state of cyanobacteria-mediated Ag NP synthesis, the potential mechanisms that are involved, nanoparticle characterization, the various applications of Ag NP in different fields, and their prospects.

当前,人们对纳米技术的兴趣与日俱增,尤其是纳米技术在商业和医疗领域的应用方式。然而,合成纳米粒子的传统方法存在一些缺点,包括产生有害副产品、能耗高和成本高。因此,研究人员将重点转向 "绿色 "纳米粒子合成,以规避这些缺点。银纳米粒子(Ag Nps)因其特殊的物理化学特性,成为最常用的贵金属纳米粒子。合成银纳米粒子的绿色方法对环境友好、无毒、成本效益高,而且可以利用多种生物实体。其中,蓝藻最受关注,因为它们含有丰富的生物活性物质,在生物合成过程中既可作为还原剂,也可作为稳定剂。这篇综述文章讨论了蓝藻介导的银氧化物(Ag NP)合成的现状、其中涉及的潜在机制、纳米粒子的表征、银氧化物在不同领域的各种应用及其前景。
{"title":"Cyanobacterial Silver Nanoparticles and Their Potential Utility—Recent Progress and Prospects: A Review","authors":"Maheswari Behera,&nbsp;Prateek Ranjan Behera,&nbsp;Gangadhar Sethi,&nbsp;Biswajita Pradhan,&nbsp;Varanasi Adarsh,&nbsp;Omar Abdurahman Alkilayh,&nbsp;Devi Prasad Samantaray,&nbsp;Lakshmi Singh","doi":"10.1002/jobm.202400256","DOIUrl":"10.1002/jobm.202400256","url":null,"abstract":"<div>\u0000 \u0000 <p>The current situation involves an increase in interest in nanotechnology, in particular the ways in which it can be applied in the commercial and medical fields. However, traditional methods of synthesizing nanoparticles have some drawbacks, including the generation of harmful byproducts, high energy consumption, and cost. As a result, researchers have shifted their focus to “green” nanoparticle synthesis to circumvent these drawbacks. Because of their exceptional physiochemical properties, silver nanoparticles (Ag Nps) are the noble metal nanoparticles that are used most frequently. The green approach to Ag NP synthesis is environmentally friendly, non-toxic, and cost-effective, and it makes use of a variety of biological entities. Cyanobacteria, in particular, have garnered the most attention because of the abundance of bioactive substances that they contain, which serve both as reducing agents and as stabilizing agents during the process of biosynthesis. This review article discusses the current state of cyanobacteria-mediated Ag NP synthesis, the potential mechanisms that are involved, nanoparticle characterization, the various applications of Ag NP in different fields, and their prospects.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Integrated Nutrient Management on Soil Health, Soil Quality, and Production of Cowpea (Vigna unguiculata L.) 综合养分管理对土壤健康、土壤质量和豇豆产量的影响。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-07 DOI: 10.1002/jobm.202400225
Gurpreet Kaur, Jupinder Kaur, Sohan Singh Walia

The integrated application of inorganic fertilizers, organic fertilizers, and biofertilizers helps sustain the nutrient pool and benefits the soil quality, thereby boosting plant health. The effect of different combinations of biofertilizers (consortium biofertilizer [CBF]—non-rhizobial PGPR), inorganic fertilizers, and organic fertilizers on soil health, growth, and yield of cowpea was evaluated by conducting a field experiment. The application of N100 FYM + CBF resulted in significantly higher populations of bacteria, fungi, PSB, and diazotroph, as well as soil dehydrogenase and alkaline phosphatase enzyme activities. However, the application of N100 FYM recorded a significantly higher actinomycetes population. The application of N100 FYM + CBF resulted in significantly higher soil OC, available nitrogen, phosphorus, and potassium. The soil pH was recorded to be highest in control, and soil EC was recorded to be lowest in control. The plant uptake of nitrogen, phosphorus, and potassium was significantly higher with N50 FYM + NP50 + CBF. The root–shoot biomass, number of leaves, nodules/plant, number of pods/plants, pod biomass, pod length, and pod width were significantly higher in treatment having N50 FYM + NP50 + CBF. However, the height of the plant, number of branches, and biomass of leaves were highest in treatment with N25 FYM + NP75 + CBF. The pod and stover yield were significantly higher in treatment with N50 FYM + NP50 + CBF. The results showed that the integrated application of non-rhizobial PGPR along with organic and inorganic fertilizer helps to improve overall soil health, quality, and plant growth of forage cowpea contributing to an increase in crop yield.

综合施用无机肥料、有机肥料和生物肥料有助于维持养分库,有益于土壤质量,从而促进植物健康。通过进行田间试验,评估了生物肥料(复合生物肥料 [CBF] - 非根瘤菌 PGPR)、无机肥料和有机肥料的不同组合对豇豆的土壤健康、生长和产量的影响。施用 N100 FYM + CBF 后,细菌、真菌、PSB 和重氮营养体的数量以及土壤脱氢酶和碱性磷酸酶的活性都显著提高。然而,施用 N100 FYM 记录的放线菌数量明显较高。施用 N100 FYM + CBF 后,土壤 OC、可利用氮、磷和钾含量明显提高。对照组的土壤 pH 值最高,对照组的土壤 EC 值最低。N50 FYM + NP50 + CBF 的植物对氮、磷、钾的吸收率明显更高。N50 FYM + NP50 + CBF 处理的根-芽生物量、叶片数、结节数/株、豆荚数/株、豆荚生物量、豆荚长度和豆荚宽度都明显高于 N50 FYM + NP50 + CBF 处理。然而,N25 FYM + NP75 + CBF 处理的株高、分枝数和叶片生物量最高。N50 FYM + NP50 + CBF 处理的豆荚和秸秆产量明显更高。研究结果表明,在施用有机肥和无机肥的同时,综合施用非根瘤菌 PGPR 有助于改善土壤的整体健康、质量和牧草豇豆的植株生长,从而提高作物产量。
{"title":"Effect of Integrated Nutrient Management on Soil Health, Soil Quality, and Production of Cowpea (Vigna unguiculata L.)","authors":"Gurpreet Kaur,&nbsp;Jupinder Kaur,&nbsp;Sohan Singh Walia","doi":"10.1002/jobm.202400225","DOIUrl":"10.1002/jobm.202400225","url":null,"abstract":"<div>\u0000 \u0000 <p>The integrated application of inorganic fertilizers, organic fertilizers, and biofertilizers helps sustain the nutrient pool and benefits the soil quality, thereby boosting plant health. The effect of different combinations of biofertilizers (consortium biofertilizer [CBF]—non-rhizobial PGPR), inorganic fertilizers, and organic fertilizers on soil health, growth, and yield of cowpea was evaluated by conducting a field experiment. The application of N<sub>100 </sub>FYM + CBF resulted in significantly higher populations of bacteria, fungi, PSB, and diazotroph, as well as soil dehydrogenase and alkaline phosphatase enzyme activities. However, the application of N<sub>100</sub> FYM recorded a significantly higher actinomycetes population. The application of N<sub>100</sub> FYM + CBF resulted in significantly higher soil OC, available nitrogen, phosphorus, and potassium. The soil pH was recorded to be highest in control, and soil EC was recorded to be lowest in control. The plant uptake of nitrogen, phosphorus, and potassium was significantly higher with N<sub>50</sub> FYM + NP<sub>50</sub> + CBF. The root–shoot biomass, number of leaves, nodules/plant, number of pods/plants, pod biomass, pod length, and pod width were significantly higher in treatment having N<sub>50</sub> FYM + NP<sub>50</sub> + CBF. However, the height of the plant, number of branches, and biomass of leaves were highest in treatment with N<sub>25</sub> FYM + NP<sub>75</sub> + CBF. The pod and stover yield were significantly higher in treatment with N<sub>50</sub> FYM + NP<sub>50</sub> + CBF. The results showed that the integrated application of non-rhizobial PGPR along with organic and inorganic fertilizer helps to improve overall soil health, quality, and plant growth of forage cowpea contributing to an increase in crop yield.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 11","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review 了解抗生素耐药性基因的进化和传播动态:全面回顾。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-07 DOI: 10.1002/jobm.202400259
A. K. M. Zakir Hossain, A. M. Masudul Azad Chowdhury

Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.

抗生素耐药性对全球公共卫生构成了严峻挑战,需要全面了解并采取战略性干预措施。本综述以孟加拉国为重点,探讨抗生素耐药性基因的演变和传播动态。抗生素的滥用,加上不合格的配方和临床误诊,加剧了该国抗药性的出现和传播。研究显示,常见病原体的抗药性发生率很高,因此迫切需要采取有针对性的干预措施并合理使用抗生素。分子评估揭示了环境储库中抗生素耐药性基因的多样性,凸显了人类活动与耐药性传播之间复杂的相互作用。水平基因转移机制,尤其是质粒介导的共轭作用,促进了细菌种群间耐药性决定因素的交换,推动了耐多药菌株的进化。综述讨论了临床影响,强调了耐药性动态中环境和临床环境的相互关联性。此外,生物信息学和实验证据阐明了耐药基因转移的新机制,强调了耐药性进化的动态性质。总之,抗击抗生素耐药性需要多管齐下,将监测、管理和创新研究结合起来,以保持抗菌药物的疗效,保障公众健康。
{"title":"Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review","authors":"A. K. M. Zakir Hossain,&nbsp;A. M. Masudul Azad Chowdhury","doi":"10.1002/jobm.202400259","DOIUrl":"10.1002/jobm.202400259","url":null,"abstract":"<div>\u0000 \u0000 <p>Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Journal of Basic Microbiology. 8/2024 期刊信息:基础微生物学杂志》。8/2024
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-05 DOI: 10.1002/jobm.202470072
{"title":"Issue Information: Journal of Basic Microbiology. 8/2024","authors":"","doi":"10.1002/jobm.202470072","DOIUrl":"10.1002/jobm.202470072","url":null,"abstract":"","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jobm.202470072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover: Journal of Basic Microbiology. 8/2024 封面:基础微生物学杂志》。8/2024
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-05 DOI: 10.1002/jobm.202470071

Cover illustration:

The rare pink oyster mushroom (Pleurotus djamor) cultivated on the agricultural residue, wheat straw. These have a distinct deep pink color. This culinary mushroom is high in vitamin C and potassium.

(Photo: Payal Mago, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India)

封面插图:罕见的粉红杏鲍菇(Pleurotus djamor)种植在农业残留物--麦秸上。这些蘑菇呈现出明显的深粉红色。这种烹饪用的蘑菇富含维生素 C 和钾:印度新德里,德里大学沙希德-拉杰古鲁女子应用科学学院,Payal Mago)
{"title":"Cover: Journal of Basic Microbiology. 8/2024","authors":"","doi":"10.1002/jobm.202470071","DOIUrl":"10.1002/jobm.202470071","url":null,"abstract":"<p><b>Cover illustration:</b></p><p>The rare pink oyster mushroom (<i>Pleurotus djamor</i>) cultivated on the agricultural residue, wheat straw. These have a distinct deep pink color. This culinary mushroom is high in vitamin C and potassium.</p><p>(Photo: Payal Mago, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India)\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jobm.202470071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes 探索拉拉病毒 DNA 聚合酶基因中的密码子使用模式和影响因素。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-04 DOI: 10.1002/jobm.202400289
Yeşim Aktürk Dizman

Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.

狂犬病毒是虹彩病毒科狂犬病毒属的成员,由于其对全球两栖动物和其他冷血脊椎动物构成了严重威胁,因此已成为两栖动物种群关注的焦点。我们利用生物信息学工具研究了来自拉纳病毒、淋巴囊病毒、巨细胞病毒和两种未分类的拉纳病毒的61个DNA pol基因的密码子使用模式,因为以前没有进行过这方面的研究。研究结果表明,在拉纳病毒的 DNA pol 基因中存在轻微或较低程度的密码子使用偏差(CUB)。核苷酸含量、第三密码子位置、有效密码子数(ENC)、对应分析(COA)、Aroma值和GRAVY值的相关分析表明,DNA pol基因的CUB可能受到突变压力和自然选择的影响。中性图表明,自然选择是驱动密码子使用的主要因素。此外,对密码子适应指数(CAI)的分析表明,拉尼亚病毒 DNA pol 基因对宿主具有很强的适应性。对相对密码子去优化指数(RCDI)的分析表明,拉尼亚病毒 DNA pol 基因承受了来自宿主的更大选择压力。这些发现将有助于理解影响拉尼亚病毒进化和适应宿主的因素。
{"title":"Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes","authors":"Yeşim Aktürk Dizman","doi":"10.1002/jobm.202400289","DOIUrl":"10.1002/jobm.202400289","url":null,"abstract":"<div>\u0000 \u0000 <p>Ranaviruses, members of the genus <i>Ranavirus</i> within the family <i>Iridoviridae</i>, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from <i>Ranavirus</i>, <i>Lymphocystivirus</i>, <i>Megalocytivirus</i>, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of <i>Ranavirus</i>. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in <i>Ranavirus</i> DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of <i>Ranavirus</i> DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that <i>Ranavirus</i> DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of <i>Ranavirus</i> to its hosts.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering Nit Gene Exploitation to Develop Molecular Diagnostic Assay for Rapid Detection of Cotton Root Rot Incitant, Macrophomina phaseolina (Tassi) Goid, in Field Soil 率先利用尼特基因开发用于快速检测田间土壤中棉花根腐病致病菌--Macrophomina phaseolina (Tassi) Goid 的分子诊断测定法。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-01 DOI: 10.1002/jobm.202400325
Anil Kumar Saini, Mukesh Kumar, Karmal Singh, Mukul Kumar Bhambhu, Rohit Nain,  Garima,  Aakash, Shiwani Mandhania, Shubham Saini

Cotton root rot caused by Macrophomina phaseolina pose a significant threat to cotton production, leading to substantial yield and quality losses. Early and accurate diagnosis of this pathogen in soil is crucial for effective disease management. This study presents a pioneering investigation into the utilization of the nit gene encoding nitrilase for the development of a molecular diagnostic assay aimed at the rapid detection of M. phaseolina in field soils. The methodology involved the design and validation of primers targeting the Nit gene sequence, followed by the optimization of PCR conditions for efficient amplification. Leveraging state-of-the-art molecular techniques, the assay offers a novel protocol to accurately identify the presence of M. phaseolina in soil with high sensitivity and specificity. The specificity of the designed primers was confirmed through PCR amplification using DNA from M. phaseolina and other related fungi. Sensitivity tests demonstrated that the PCR assay reliably detected M. phaseolina DNA at concentrations as low as 1 ng. Furthermore, the performance of the diagnostic assay was rigorously evaluated using field soil samples with a known status of M. phaseolina infection, demonstrating its reliability and efficacy in real-world scenarios. This study introduces a novel molecular marker for the detection of M. phaseolina and offers a rapid and efficient means for screening M. phaseolina in large soil samples with minimal time and manpower.

棉花根腐病是由棉花根腐霉菌(Macrophomina phaseolina)引起的,对棉花生产构成严重威胁,导致产量和质量大幅下降。及早准确地诊断土壤中的这种病原体对有效控制病害至关重要。本研究开创性地利用编码硝化酶的 nit 基因开发了一种分子诊断测定法,旨在快速检测田间土壤中的棉花褐斑病菌。该方法包括设计和验证针对硝基基因序列的引物,然后优化 PCR 条件以实现高效扩增。利用最先进的分子技术,该检测方法提供了一种新的方案,可准确识别土壤中是否存在高灵敏度和高特异性的相思豆菌。通过使用相柄霉和其他相关真菌的 DNA 进行 PCR 扩增,证实了所设计引物的特异性。灵敏度测试表明,PCR 法能可靠地检测出浓度低至 1 纳克的相思豆菌 DNA。此外,该诊断方法的性能还通过已知相思豆菌感染状况的田间土壤样本进行了严格评估,证明了其在实际应用中的可靠性和有效性。这项研究引入了一种用于检测相思豆菌的新型分子标记,并提供了一种快速、高效的方法,能以最少的时间和人力筛查大量土壤样本中的相思豆菌。
{"title":"Pioneering Nit Gene Exploitation to Develop Molecular Diagnostic Assay for Rapid Detection of Cotton Root Rot Incitant, Macrophomina phaseolina (Tassi) Goid, in Field Soil","authors":"Anil Kumar Saini,&nbsp;Mukesh Kumar,&nbsp;Karmal Singh,&nbsp;Mukul Kumar Bhambhu,&nbsp;Rohit Nain,&nbsp; Garima,&nbsp; Aakash,&nbsp;Shiwani Mandhania,&nbsp;Shubham Saini","doi":"10.1002/jobm.202400325","DOIUrl":"10.1002/jobm.202400325","url":null,"abstract":"<div>\u0000 \u0000 <p>Cotton root rot caused by <i>Macrophomina phaseolina</i> pose a significant threat to cotton production, leading to substantial yield and quality losses. Early and accurate diagnosis of this pathogen in soil is crucial for effective disease management. This study presents a pioneering investigation into the utilization of the <i>nit</i> gene encoding nitrilase for the development of a molecular diagnostic assay aimed at the rapid detection of <i>M. phaseolina</i> in field soils. The methodology involved the design and validation of primers targeting the <i>Nit</i> gene sequence, followed by the optimization of PCR conditions for efficient amplification. Leveraging state-of-the-art molecular techniques, the assay offers a novel protocol to accurately identify the presence of <i>M. phaseolina</i> in soil with high sensitivity and specificity. The specificity of the designed primers was confirmed through PCR amplification using DNA from <i>M. phaseolina</i> and other related fungi. Sensitivity tests demonstrated that the PCR assay reliably detected <i>M. phaseolina</i> DNA at concentrations as low as 1 ng. Furthermore, the performance of the diagnostic assay was rigorously evaluated using field soil samples with a known status of <i>M. phaseolina</i> infection, demonstrating its reliability and efficacy in real-world scenarios. This study introduces a novel molecular marker for the detection of <i>M. phaseolina</i> and offers a rapid and efficient means for screening <i>M. phaseolina</i> in large soil samples with minimal time and manpower.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 11","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of Anthocyanin Biosynthesis System Using Chalcone as a Substrate in Lactococcus lactis NZ9000 在乳酸乳球菌 NZ9000 中构建以 Chalcone 为底物的花青素生物合成系统。
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-07-28 DOI: 10.1002/jobm.202400274
Yujing Tian, Na Liu, Xiaowen Zhao, Xuefeng Mei, Lei Zhang, Jinhai Huang, Deping Hua

Anthocyanins are high-value natural compounds, but to date, their production still mainly relies on extraction from plants. A five-step metabolic pathway was constructed in probiotic Lactococcus lactis NZ9000 for rapid, stable, and glycosylated anthocyanin biosynthesis using chalcone as a substrate. The genes were cloned from anthocyanin-rich blueberry: chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDPG-flavonoid 3-O-glycosyltransferase (3GT). Using HR, the polysaccharide pellicle (PSP) segment of the cell wall polysaccharide synthesis (cwps) gene cluster from L. lactis NZ9000 was cloned into vector p15A-Cm-repDE. Then, CHI and F3H were placed sequentially under the control of NZProm 3 of this gene cluster in the vector, which was transformed into L. lactis NZ9000 to obtain Strain A. Furthermore, Strain B was constructed by placing F3H-DFR-ANS and 3GT under NZProm 2 and 3, respectively. Using LC-MS/MS analysis, several types of anthocyanins, including callistephin chloride, oenin chloride, malvidin O-hexoside, malvidin 3,5-diglucoside, and pelargonidin 3-O-malonyl-malonylhexoside, increased in the supernatant of the co-culture of Strains A and B compared to that of L. lactis NZ9000. This is the first time that a five-step metabolic pathway has been developed for anthocyanin biosynthesis in probiotic L. lactis NZ9000. This work lays the groundwork for novel anthocyanin production by a process involving the placement of several biosynthesis genes under the control of a gene cluster.

花青素是一种高价值的天然化合物,但迄今为止,其生产仍主要依赖于从植物中提取。我们在益生菌乳酸乳球菌 NZ9000 中构建了一条五步代谢途径,利用查尔酮作为底物,快速、稳定地进行糖基化花青素生物合成。从富含花青素的蓝莓中克隆了以下基因:查尔酮异构酶(CHI)、黄烷酮 3-羟化酶(F3H)、二氢黄酮醇 4-还原酶(DFR)、花青素合成酶(ANS)和 UDPG-类黄酮 3-O-糖基转移酶(3GT)。利用 HR 技术,将来自 L. lactis NZ9000 的细胞壁多糖合成(cwps)基因簇的多糖胶粒(PSP)片段克隆到载体 p15A-Cm-repDE 中。将 F3H-DFR-ANS 和 3GT 分别置于 NZProm 2 和 3 的控制下,构建出菌株 B。通过 LC-MS/MS 分析,与 L. lactis NZ9000 相比,菌株 A 和菌株 B 共培养的上清液中的几种花青素含量有所增加,包括氯化花青素、氯化花青素、麦饭石黄素 O-己糖苷、麦饭石黄素 3,5-二葡萄糖苷、3-O-丙二酰基-丙二酰基己糖苷。这是首次开发出益生菌 L. lactis NZ9000 花青素生物合成的五步代谢途径。这项工作为通过将多个生物合成基因置于一个基因簇控制下的过程生产新型花青素奠定了基础。
{"title":"Construction of Anthocyanin Biosynthesis System Using Chalcone as a Substrate in Lactococcus lactis NZ9000","authors":"Yujing Tian,&nbsp;Na Liu,&nbsp;Xiaowen Zhao,&nbsp;Xuefeng Mei,&nbsp;Lei Zhang,&nbsp;Jinhai Huang,&nbsp;Deping Hua","doi":"10.1002/jobm.202400274","DOIUrl":"10.1002/jobm.202400274","url":null,"abstract":"<div>\u0000 \u0000 <p>Anthocyanins are high-value natural compounds, but to date, their production still mainly relies on extraction from plants. A five-step metabolic pathway was constructed in probiotic <i>Lactococcus lactis</i> NZ9000 for rapid, stable, and glycosylated anthocyanin biosynthesis using chalcone as a substrate. The genes were cloned from anthocyanin-rich blueberry: chalcone isomerase (<i>CHI</i>), flavanone 3-hydroxylase (<i>F3H</i>), dihydroflavonol 4-reductase (<i>DFR</i>), anthocyanin synthase (<i>ANS</i>), and UDPG-flavonoid 3-<i>O</i>-glycosyltransferase (<i>3GT</i>). Using HR, the polysaccharide pellicle (PSP) segment of the cell wall polysaccharide synthesis (<i>cwps</i>) gene cluster from <i>L. lactis</i> NZ9000 was cloned into vector p15A-Cm-repDE. Then, <i>CHI</i> and <i>F3H</i> were placed sequentially under the control of <i>NZProm 3</i> of this gene cluster in the vector, which was transformed into <i>L. lactis</i> NZ9000 to obtain Strain A. Furthermore, Strain B was constructed by placing <i>F3H</i>-<i>DFR</i>-<i>ANS</i> and <i>3GT</i> under <i>NZProm</i> 2 and 3, respectively. Using LC-MS/MS analysis, several types of anthocyanins, including callistephin chloride, oenin chloride, malvidin <i>O</i>-hexoside, malvidin 3,5-diglucoside, and pelargonidin 3-<i>O</i>-malonyl-malonylhexoside, increased in the supernatant of the co-culture of Strains A and B compared to that of <i>L. lactis</i> NZ9000. This is the first time that a five-step metabolic pathway has been developed for anthocyanin biosynthesis in probiotic <i>L. lactis</i> NZ9000. This work lays the groundwork for novel anthocyanin production by a process involving the placement of several biosynthesis genes under the control of a gene cluster.</p></div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonality and Activity of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Endemic Tree Species 特有树种根瘤中丛枝菌根真菌的季节性和活性
IF 3.5 4区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-07-21 DOI: 10.1002/jobm.202400354
Érica Olandini Lambais, Tancredo Augusto Feitosa de Souza, Paloma Késsia, Gislaine dos Santos Nascimento, Rodrigo Macedo, Alexandre Pereira de Bakker, George Rodrigues Lambais, Bruno Oliveira Dias, Vânia da Silva Fraga

This study analyzed arbuscular mycorrhizal fungi (AMF) activity and soil chemical properties in Aspidosperma pyrifolium, Bauhinia ungulata, Caesalpinia pyramidalis, and Caesalpinia ferrea. AMF spores, root colonization, total glomalin-related soil protein (T-GRSP), easily extracted GRSP (EE-GRSP), and soil chemical properties were measured four times (July 2019, 2020 and December 2019, 2020). Significant differences were observed in AMF spores, root colonization, T-GRSP, and EE-GRSP among the plant species and across seasons. For soil chemical properties, we observed differences among plant species. During the dry season, B. ungulata and C. pyramidalis had the highest AMF spores and root colonization (57.3 ± 0.27 spores 50 g soil−1 and 48.8 ± 1.05, respectively), whereas during the rainy season, C. pyramidalis and C. ferrea showed the highest AMF spores and root colonization (36.6 ± 0.13 spores 50 g soil−1 and 62.2 ± 1.17, respectively). A. pyrifolium showed the highest T-GRSP in both seasons. On the basis of the soil chemical properties, we found that (i) A. pyrifolium, B. ungulata, and C. ferrea showed the highest soil organic carbon (1.32 ± 0.03 g kg−1), phosphorus (7.01 ± 0.26 mg kg−1), and soil pH (5.85 ± 0.23) and (ii) C. pyramidalis showed the highest Ca2+, Mg2+, Na+, H+ + Al3+, K+, and soil total nitrogen (1.36 ± 0.04, 0.73 ± 0.01, 3.72 ± 0.85, 4.56 ± 0.12 cmolc kg−1, 15.43 ± 1.53 mg kg−1, and 0.16 ± 0.01 g kg−1, respectively). Our results highlight the advantage of AMF spores as perennating structures over other AM fungal propagules in seasonal vegetation like Caatinga.

本研究分析了Aspidosperma pyrifolium、Bauhinia ungulata、Caesalpinia pyramidalis和Caesalpinia ferrea的丛枝菌根真菌(AMF)活性和土壤化学性质。对AMF孢子、根定殖量、总胶蛋白相关土壤蛋白质(T-GRSP)、易提取胶蛋白相关土壤蛋白质(EE-GRSP)和土壤化学性质进行了四次测量(2019年7月、2020年和2019年12月、2020年)。在不同植物种类和不同季节,我们观察到 AMF 孢子、根定殖、T-GRSP 和 EE-GRSP 存在显著差异。在土壤化学性质方面,我们观察到不同植物物种之间存在差异。在旱季,B. ungulata 和 C. pyramidalis 的 AMF 孢子和根定植率最高(分别为 57.3 ± 0.27 孢子 50 克土壤-1 和 48.8 ± 1.05),而在雨季,C. pyramidalis 和 C. ferrea 的 AMF 孢子和根定植率最高(分别为 36.6 ± 0.13 孢子 50 克土壤-1 和 62.2 ± 1.17)。A.pyrifolium在两个季节都表现出最高的T-GRSP。在土壤化学性质方面,我们发现:(i) A. pyrifolium、B. ungulata 和 C. ferrea 的土壤有机碳(1.32 ± 0.03 g kg-1)、磷(7.01 ± 0.26 mg kg-1)和土壤 pH 值(5.85 ± 0.23)最高;(ii) C. pyramidalis 的钙和磷含量最高。Ca2+、Mg2+、Na+、H+ + Al3+、K+ 和土壤全氮(分别为 1.36 ± 0.04、0.73 ± 0.01、3.72 ± 0.85、4.56 ± 0.12 cmolc kg-1、15.43 ± 1.53 mg kg-1 和 0.16 ± 0.01 g kg-1)最高。我们的研究结果突出表明,在卡廷加等季节性植被中,AMF 孢子作为常年结构比其他 AM 真菌繁殖体更具优势。
{"title":"Seasonality and Activity of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Endemic Tree Species","authors":"Érica Olandini Lambais,&nbsp;Tancredo Augusto Feitosa de Souza,&nbsp;Paloma Késsia,&nbsp;Gislaine dos Santos Nascimento,&nbsp;Rodrigo Macedo,&nbsp;Alexandre Pereira de Bakker,&nbsp;George Rodrigues Lambais,&nbsp;Bruno Oliveira Dias,&nbsp;Vânia da Silva Fraga","doi":"10.1002/jobm.202400354","DOIUrl":"10.1002/jobm.202400354","url":null,"abstract":"<div>\u0000 \u0000 <p>This study analyzed arbuscular mycorrhizal fungi (AMF) activity and soil chemical properties in <i>Aspidosperma pyrifolium</i>, <i>Bauhinia ungulata</i>, <i>Caesalpinia pyramidalis</i>, and <i>Caesalpinia ferrea</i>. AMF spores, root colonization, total glomalin-related soil protein (T-GRSP), easily extracted GRSP (EE-GRSP), and soil chemical properties were measured four times (July 2019, 2020 and December 2019, 2020). Significant differences were observed in AMF spores, root colonization, T-GRSP, and EE-GRSP among the plant species and across seasons. For soil chemical properties, we observed differences among plant species. During the dry season, <i>B. ungulata</i> and <i>C. pyramidalis</i> had the highest AMF spores and root colonization (57.3 ± 0.27 spores 50 g soil<sup>−1 </sup>and 48.8 ± 1.05, respectively), whereas during the rainy season, <i>C. pyramidalis</i> and <i>C. ferrea</i> showed the highest AMF spores and root colonization (36.6 ± 0.13 spores 50 g soil<sup>−1</sup> and 62.2 ± 1.17, respectively). <i>A. pyrifolium</i> showed the highest T-GRSP in both seasons. On the basis of the soil chemical properties, we found that (i) <i>A. pyrifolium</i>, <i>B. ungulata</i>, and <i>C. ferrea</i> showed the highest soil organic carbon (1.32 ± 0.03 g kg<sup>−1</sup>), phosphorus (7.01 ± 0.26 mg kg<sup>−1</sup>), and soil pH (5.85 ± 0.23) and (ii) <i>C. pyramidalis</i> showed the highest Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, H<sup>+</sup> + Al<sup>3+</sup>, K<sup>+</sup>, and soil total nitrogen (1.36 ± 0.04, 0.73 ± 0.01, 3.72 ± 0.85, 4.56 ± 0.12 cmol<sub>c</sub> kg<sup>−1</sup>, 15.43 ± 1.53 mg kg<sup>−1</sup>, and 0.16 ± 0.01 g kg<sup>−1</sup>, respectively). Our results highlight the advantage of AMF spores as perennating structures over other AM fungal propagules in seasonal vegetation like Caatinga.</p>\u0000 </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 11","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Basic Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1