Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870277
Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev
In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC
{"title":"A Fast and Compact Hybrid CNN for Hyperspectral Imaging-based Bloodstain Classification","authors":"Muhammad Hassaan Farooq Butt, Hamail Ayaz, Muhammad Ahmad, J. Li, R. Kuleev","doi":"10.1109/CEC55065.2022.9870277","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870277","url":null,"abstract":"In forensic sciences, blood is a shred of essential evidence for reconstructing crime scenes. Blood identification and classification may help to confirm a suspect, although several chemical processes are used to recreate the crime scene. However, these approaches can have an impact on DNA analysis. A potential application of bloodstain identification and classification using Hyperspectral Imaging (HSI) can be used as substance clas-sification in forensic science for crime scene analysis. Therefore, this work proposes the use of a fast and compact Hybrid CNN to process HSI data for bloodstain identification and classification. For experimental and validation purposes, we perform exper-iments on a publicly available Hyperspectral-based Bloodstain dataset. This dataset has different types of substances i.e., blood and blood-like compounds, for instance, ketchup, artificial blood, beetroot juice, poster paint, tomato concentrate, acrylic paint, uncertain blood. We compare the results with state-of-the-art 3D CNN model and examine the results in detail and present a discussion of each tested architecture with limited availability of the training samples (e.g., only 5 % (792 samples) of the data samples are used to train the model, and validated on 5 % (792 samples) data samples and finally blindly tested on 90 % (14260 samples) of the data samples). The source code can be access on https://github.com/MHassaanButt/FCHCNN-for-HSIC","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125644706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870378
Patrik Kolenovsky, P. Bujok
In this paper, new strategy options are developed for the adaptive jSO algorithm. The proposed variant of jSO is based on the competition of a binomial and exponential crossover. Moreover, an Eigen transformation approach is employed in the selected crossover with a given probability. The proposed variant of jSO is applied to the CEC 2022 benchmark set, which contains 12 functions with dimensionality $D=10$, 20. The proposed algorithm found the optima values in seven problems out of 24. When comparing the new variant of jSO with the original jSO algorithm, nine functions were improved, where two of them significantly.
{"title":"An adaptive variant of jSO with multiple crossover strategies employing Eigen transformation","authors":"Patrik Kolenovsky, P. Bujok","doi":"10.1109/CEC55065.2022.9870378","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870378","url":null,"abstract":"In this paper, new strategy options are developed for the adaptive jSO algorithm. The proposed variant of jSO is based on the competition of a binomial and exponential crossover. Moreover, an Eigen transformation approach is employed in the selected crossover with a given probability. The proposed variant of jSO is applied to the CEC 2022 benchmark set, which contains 12 functions with dimensionality $D=10$, 20. The proposed algorithm found the optima values in seven problems out of 24. When comparing the new variant of jSO with the original jSO algorithm, nine functions were improved, where two of them significantly.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122623590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multimodal optimization problems (MMOPs) are sorts of optimization problems that have many global optima. To discover as many peaks as possible and increase the accuracy of the solutions, MMOP requires algorithms with great exploration and exploitation abilities. However, exploration and exploitation are in an adversarial relationship, since exploration aims to locate more optima via searching the global space rather than small regions, whereas exploitation targets to enhance the accuracy of solutions via searching in small areas. The key to efficiently solving MMOPs lies in striking a balance between exploration and exploitation. To achieve the goal, this paper proposes an adversarial differential evolution (ADE), containing an adversarial reproduction strategy and an adversarial selection strategy. Firstly, adversarial reproduction strategy generates offspring for exploration and offspring for exploitation and lets these two types of offspring compete for survival. Secondly, adversarial selection strategy employs a diversity-optimization-based selection and a crowding-based selection to select the offspring with both good diversity and good fitness. Diversity-optimization-based selection transforms the problem of selecting diverse individuals into an optimizing problem and solves it via an extra genetic algorithm to get the offspring with optimal diversity. Extensive experiments are conducted on CEC2013 MMOP benchmark to verify the effectiveness and efficiency of the proposed ADE. Experimental results show that ADE has advantages over the state-of-the-art MMOP algorithms.
{"title":"Adversarial Differential Evolution for Multimodal Optimization Problems","authors":"Yiyi Jiang, Chun-Hua Chen, Zhi-hui Zhan, Yunjie Li, Jinchao Zhang","doi":"10.1109/CEC55065.2022.9870298","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870298","url":null,"abstract":"Multimodal optimization problems (MMOPs) are sorts of optimization problems that have many global optima. To discover as many peaks as possible and increase the accuracy of the solutions, MMOP requires algorithms with great exploration and exploitation abilities. However, exploration and exploitation are in an adversarial relationship, since exploration aims to locate more optima via searching the global space rather than small regions, whereas exploitation targets to enhance the accuracy of solutions via searching in small areas. The key to efficiently solving MMOPs lies in striking a balance between exploration and exploitation. To achieve the goal, this paper proposes an adversarial differential evolution (ADE), containing an adversarial reproduction strategy and an adversarial selection strategy. Firstly, adversarial reproduction strategy generates offspring for exploration and offspring for exploitation and lets these two types of offspring compete for survival. Secondly, adversarial selection strategy employs a diversity-optimization-based selection and a crowding-based selection to select the offspring with both good diversity and good fitness. Diversity-optimization-based selection transforms the problem of selecting diverse individuals into an optimizing problem and solves it via an extra genetic algorithm to get the offspring with optimal diversity. Extensive experiments are conducted on CEC2013 MMOP benchmark to verify the effectiveness and efficiency of the proposed ADE. Experimental results show that ADE has advantages over the state-of-the-art MMOP algorithms.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116372597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870306
G. Filippi, M. Vasile, E. Patelli, M. Fossati
This paper presents a novel approach to the gener-ative design optimisation of a resilient Drone Logistic Network (DLN) for the delivery of medical equipment in Scotland. A DLN is a complex system composed of a high number of different classes of drones and ground infrastructures. The corresponding DLN model is composed of a number of interconnected digital twins of each one of these infrastructures and vehicles, forming a single digital twin of the whole logistic network. The paper proposes a multi-agent bio-inspired optimisation approach based on the analogy with the Physarum Policefalum slime mould that incrementally generates and optimise the DLN. A graph theory methodology is also employed to evaluate the network resilience where random failures, and their cascade effect, are simulated. The different conflicting objectives are aggregated into a single global performance index by using Pascoletti-Serafini scalarisation.
{"title":"Generative Optimisation of Resilient Drone Logistic Networks","authors":"G. Filippi, M. Vasile, E. Patelli, M. Fossati","doi":"10.1109/CEC55065.2022.9870306","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870306","url":null,"abstract":"This paper presents a novel approach to the gener-ative design optimisation of a resilient Drone Logistic Network (DLN) for the delivery of medical equipment in Scotland. A DLN is a complex system composed of a high number of different classes of drones and ground infrastructures. The corresponding DLN model is composed of a number of interconnected digital twins of each one of these infrastructures and vehicles, forming a single digital twin of the whole logistic network. The paper proposes a multi-agent bio-inspired optimisation approach based on the analogy with the Physarum Policefalum slime mould that incrementally generates and optimise the DLN. A graph theory methodology is also employed to evaluate the network resilience where random failures, and their cascade effect, are simulated. The different conflicting objectives are aggregated into a single global performance index by using Pascoletti-Serafini scalarisation.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132545347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870396
Yi-Feng Chang, Chuan-Kang Ting
Floorplanning is a crucial process in the early stage of VLSI physical design. It determines the performance, reliability, and size of chips. B*-tree is a simple yet efficient representation that encodes the layout of modules in a compact and non-slicing structure. Several B*-tree variants and corresponding operators have been proposed to deal with non-slicing floorplanning. However, these operators are considered and applied individually. A collective manipulation of them remains missing. This study proposes a genetic algorithm (GA) that enables multiple crossover and mutation operators for solving the non-slicing floorplanning problem. In particular, the GA selects one crossover operator and one mutation operator from the pool of operators whenever reproducing an offspring. The probability for an operator to be selected is based on its empirical performance. This study conducts experiments on two well-known benchmarks to examine the effectiveness of the proposed method. The experimental results show that the GA can achieve superior solution quality and efficiency on the non-slicing VLSI floorplanning.
{"title":"Multiple Crossover and Mutation Operators Enabled Genetic Algorithm for Non-slicing VLSI Floorplanning","authors":"Yi-Feng Chang, Chuan-Kang Ting","doi":"10.1109/CEC55065.2022.9870396","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870396","url":null,"abstract":"Floorplanning is a crucial process in the early stage of VLSI physical design. It determines the performance, reliability, and size of chips. B*-tree is a simple yet efficient representation that encodes the layout of modules in a compact and non-slicing structure. Several B*-tree variants and corresponding operators have been proposed to deal with non-slicing floorplanning. However, these operators are considered and applied individually. A collective manipulation of them remains missing. This study proposes a genetic algorithm (GA) that enables multiple crossover and mutation operators for solving the non-slicing floorplanning problem. In particular, the GA selects one crossover operator and one mutation operator from the pool of operators whenever reproducing an offspring. The probability for an operator to be selected is based on its empirical performance. This study conducts experiments on two well-known benchmarks to examine the effectiveness of the proposed method. The experimental results show that the GA can achieve superior solution quality and efficiency on the non-slicing VLSI floorplanning.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133534282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870341
Arisa Toda, S. Hiwa, Kensuke Tanioka, Tomoyuki Hiroyasu
Topological Data Analysis (TDA) is an analytical technique that can reveal the skeletal structure inherent in complex or high-dimensional data. In this study, we considered the optimization search trajectories obtained from multiple trials of evolutionary computation as a single data set and challenged to represent the similarities and differences of each search trajectory as a topological network. Mapper is one of TDA tools and it includes the dimensionality reduction of data and clustering during graph generation. We modified Mapper to apply into this problem. The proposed framework is Mapper for evolutionary computation (EvoMapper). In the numerical experiments, multiple searches were conducted at different initial points to provide a basic review of the effectiveness of EvoMapper. The test functions were the One-max and Rastrigin function. A graph providing intuitive insights on the analysis results was constructed and visualized. In addition, the trials that reached the optimal solution and those that did not were clustered and found to have similar topology.
{"title":"Visualization, Clustering, and Graph Generation of Optimization Search Trajectories for Evolutionary Computation Through Topological Data Analysis: Application of the Mapper","authors":"Arisa Toda, S. Hiwa, Kensuke Tanioka, Tomoyuki Hiroyasu","doi":"10.1109/CEC55065.2022.9870341","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870341","url":null,"abstract":"Topological Data Analysis (TDA) is an analytical technique that can reveal the skeletal structure inherent in complex or high-dimensional data. In this study, we considered the optimization search trajectories obtained from multiple trials of evolutionary computation as a single data set and challenged to represent the similarities and differences of each search trajectory as a topological network. Mapper is one of TDA tools and it includes the dimensionality reduction of data and clustering during graph generation. We modified Mapper to apply into this problem. The proposed framework is Mapper for evolutionary computation (EvoMapper). In the numerical experiments, multiple searches were conducted at different initial points to provide a basic review of the effectiveness of EvoMapper. The test functions were the One-max and Rastrigin function. A graph providing intuitive insights on the analysis results was constructed and visualized. In addition, the trials that reached the optimal solution and those that did not were clustered and found to have similar topology.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134100853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870303
J. C. Garbelini, D. Sanches, A. Pozo
Finding transcription factor binding sites plays an important role inside bioinformatics. Its correct identification in the promoter regions of co-expressed genes is a crucial step for understanding gene expression mechanisms and creating new drugs and vaccines. The problem of finding motifs consists in seeking conserved patterns in biological datasets of sequences, through using unsupervised learning algorithms. This problem is considered one of the open problems of computational biology, which in its simplest formulation has been proven to be np-hard. Moreover, heuristics and meta-heuristics algorithms have been shown to be very promising in solving combinatorial problems with very large search spaces. In this paper we propose a new algorithm called Biomapp (Biological Motif Application) based on canonical Expectation Maximization that uses the Kullback-Leibler divergence to re-estimate the parameters of statistical model. Furthermore, the algorithm is embedded in an Iterated Local Search, as the local search step and then, we use a hierarchical perturbation operator in order to escape from local optima. The results obtained by this new approach were compared with the state-of-the-art algorithm MEME (Multiple EM Motif Elicitation) showing that Biomapp outperformed this classical technique in several datasets.
寻找转录因子结合位点在生物信息学中起着重要的作用。在共表达基因的启动子区域正确识别它是理解基因表达机制和创造新药和疫苗的关键一步。寻找基序的问题在于通过使用无监督学习算法在序列的生物数据集中寻找保守模式。这个问题被认为是计算生物学的开放问题之一,其最简单的表述已被证明是np困难的。此外,启发式和元启发式算法已被证明在解决具有非常大搜索空间的组合问题方面非常有前途。本文提出了一种基于典型期望最大化的新算法Biomapp (Biological Motif Application),该算法利用Kullback-Leibler散度对统计模型的参数进行重新估计。此外,将算法嵌入到迭代局部搜索中,作为局部搜索步骤,然后使用层次摄动算子来避免局部最优。通过这种新方法获得的结果与最先进的算法MEME (Multiple EM Motif Elicitation)进行了比较,表明Biomapp在几个数据集中优于这种经典技术。
{"title":"Expectation Maximization based algorithm applied to DNA sequence motif finder","authors":"J. C. Garbelini, D. Sanches, A. Pozo","doi":"10.1109/CEC55065.2022.9870303","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870303","url":null,"abstract":"Finding transcription factor binding sites plays an important role inside bioinformatics. Its correct identification in the promoter regions of co-expressed genes is a crucial step for understanding gene expression mechanisms and creating new drugs and vaccines. The problem of finding motifs consists in seeking conserved patterns in biological datasets of sequences, through using unsupervised learning algorithms. This problem is considered one of the open problems of computational biology, which in its simplest formulation has been proven to be np-hard. Moreover, heuristics and meta-heuristics algorithms have been shown to be very promising in solving combinatorial problems with very large search spaces. In this paper we propose a new algorithm called Biomapp (Biological Motif Application) based on canonical Expectation Maximization that uses the Kullback-Leibler divergence to re-estimate the parameters of statistical model. Furthermore, the algorithm is embedded in an Iterated Local Search, as the local search step and then, we use a hierarchical perturbation operator in order to escape from local optima. The results obtained by this new approach were compared with the state-of-the-art algorithm MEME (Multiple EM Motif Elicitation) showing that Biomapp outperformed this classical technique in several datasets.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131795880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870241
Igor L. S. Russo, H. Barbosa
Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.
{"title":"A multitasking surrogate-assisted differential evolution method for solving bi-level optimization problems","authors":"Igor L. S. Russo, H. Barbosa","doi":"10.1109/CEC55065.2022.9870241","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870241","url":null,"abstract":"Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124088359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870359
Ye Tian, Haowen Chen, Xiaoshu Xiang, Hao Jiang, Xing-yi Zhang
Evolutionary algorithms and mathematical programming methods are currently the most popular optimizers for solving continuous optimization problems. Owing to the population based search strategies, evolutionary algorithms can find a set of promising solutions without using any problem-specific information. By contrast, with the assistance of gradient and other information of the functions, mathematical programming methods can quickly converge to a single optimum. While these two types of optimizers have their own advantages and disadvantages, the performance comparison between them is rarely touched. It is known that gradient descent methods generally converge faster than evolutionary algorithms, but when can evolutionary algorithms outperform gradient descent methods? How is the scalability of them? To answer these questions, this paper first gives a review of popular evolutionary algorithms and mathematical programming methods, then conducts several experiments to compare their performance from various aspects, and finally draws some conclusions.
{"title":"A Comparative Study on Evolutionary Algorithms and Mathematical Programming Methods for Continuous Optimization","authors":"Ye Tian, Haowen Chen, Xiaoshu Xiang, Hao Jiang, Xing-yi Zhang","doi":"10.1109/CEC55065.2022.9870359","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870359","url":null,"abstract":"Evolutionary algorithms and mathematical programming methods are currently the most popular optimizers for solving continuous optimization problems. Owing to the population based search strategies, evolutionary algorithms can find a set of promising solutions without using any problem-specific information. By contrast, with the assistance of gradient and other information of the functions, mathematical programming methods can quickly converge to a single optimum. While these two types of optimizers have their own advantages and disadvantages, the performance comparison between them is rarely touched. It is known that gradient descent methods generally converge faster than evolutionary algorithms, but when can evolutionary algorithms outperform gradient descent methods? How is the scalability of them? To answer these questions, this paper first gives a review of popular evolutionary algorithms and mathematical programming methods, then conducts several experiments to compare their performance from various aspects, and finally draws some conclusions.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127949079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.1109/CEC55065.2022.9870257
V. Parque
The quest for the efficient adaptation of multilegged robotic systems to changing conditions is expected to render new insights into robotic control and locomotion. In this paper, we study the performance frontiers of the enumerative (factorial) encoding of hexapod gaits for fast recovery to conditions of leg failures. Our computational studies using five nature-inspired gradient-free optimization heuristics have shown that it is possible to render feasible recovery gait strategies that achieve minimal deviation to desired locomotion directives with a few evaluations (trials). For instance, it is possible to generate viable recovery gait strategies reaching 2.5 cm, (10 cm.) deviation on average with respect to a commanded direction with 40 – 60 (20) evaluations/trials. Our results are the potential to enable efficient adaptation to new conditions and to explore further the canonical representations for adaptation in robotic locomotion problems.
{"title":"Towards Hexapod Gait Adaptation using Enumerative Encoding of Gaits: Gradient-Free Heuristics","authors":"V. Parque","doi":"10.1109/CEC55065.2022.9870257","DOIUrl":"https://doi.org/10.1109/CEC55065.2022.9870257","url":null,"abstract":"The quest for the efficient adaptation of multilegged robotic systems to changing conditions is expected to render new insights into robotic control and locomotion. In this paper, we study the performance frontiers of the enumerative (factorial) encoding of hexapod gaits for fast recovery to conditions of leg failures. Our computational studies using five nature-inspired gradient-free optimization heuristics have shown that it is possible to render feasible recovery gait strategies that achieve minimal deviation to desired locomotion directives with a few evaluations (trials). For instance, it is possible to generate viable recovery gait strategies reaching 2.5 cm, (10 cm.) deviation on average with respect to a commanded direction with 40 – 60 (20) evaluations/trials. Our results are the potential to enable efficient adaptation to new conditions and to explore further the canonical representations for adaptation in robotic locomotion problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128974589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}