Meandering rivers experience fluctuations in width whenever riverbanks migrate in different directions or at different rates, which can be observed after individual floods. However, meandering rivers maintain approximately constant widths over decadal timescales. This implies some timescale below which width fluctuates as banks migrate independently, and above which width is maintained by a bank-coupling process. This coupling is thought to occur either as point bar deposition events induce cutbank erosion (bar-push), or as cutbank erosion events induce point bar deposition (bank-pull). This coupling, however, has been challenging to observe in natural rivers due to limited event-scale field data. We present results from a 4.5-year campaign with 22 drone-based lidar surveys of a single point bar and cutbank (∼0.35 km2 in area) on the White River near Worthington, Indiana, USA. The middle point bar experienced net erosion (5,400 m3), but net aggradation (17,100 m3) between 2019 and 2022 when including perennially submerged regions. This aggradation was less than the 35,700 m3 of cutbank erosion over the same period. Combined, we have observed widening (1.58 m/yr bend-averaged; 3.08 m/yr near apex) over the study period as point bar deposition has not kept up with cutbank erosion. Finally, we suggest that the difference between bar-push and bank-pull as width-maintenance mechanisms may not be resolvable by observing bend widening or narrowing alone without an advancement of current theory, such as determining a long-term equilibrium width and measuring deviations relative thereto.
{"title":"Four Years of Meander-Bend Evolution Captured by Drone-Based Lidar Reveals Lack of Width Maintenance on the White River, Indiana, USA","authors":"H. K. Martin, D. A. Edmonds, Q. W. Lewis","doi":"10.1029/2023JF007574","DOIUrl":"https://doi.org/10.1029/2023JF007574","url":null,"abstract":"<p>Meandering rivers experience fluctuations in width whenever riverbanks migrate in different directions or at different rates, which can be observed after individual floods. However, meandering rivers maintain approximately constant widths over decadal timescales. This implies some timescale below which width fluctuates as banks migrate independently, and above which width is maintained by a bank-coupling process. This coupling is thought to occur either as point bar deposition events induce cutbank erosion (bar-push), or as cutbank erosion events induce point bar deposition (bank-pull). This coupling, however, has been challenging to observe in natural rivers due to limited event-scale field data. We present results from a 4.5-year campaign with 22 drone-based lidar surveys of a single point bar and cutbank (∼0.35 km<sup>2</sup> in area) on the White River near Worthington, Indiana, USA. The middle point bar experienced net erosion (5,400 m<sup>3</sup>), but net aggradation (17,100 m<sup>3</sup>) between 2019 and 2022 when including perennially submerged regions. This aggradation was less than the 35,700 m<sup>3</sup> of cutbank erosion over the same period. Combined, we have observed widening (1.58 m/yr bend-averaged; 3.08 m/yr near apex) over the study period as point bar deposition has not kept up with cutbank erosion. Finally, we suggest that the difference between bar-push and bank-pull as width-maintenance mechanisms may not be resolvable by observing bend widening or narrowing alone without an advancement of current theory, such as determining a long-term equilibrium width and measuring deviations relative thereto.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Tibetan Plateau (TP) serves not only as the “water tower” of Asia but also as an important source in the global atmospheric dust cycle. While our knowledge of modern dust activity and its impacts and interactions with climate change in the TP has greatly advanced in the past decades, the emission, transport, and deposition of dust on the geological time scale remains unclear. This study analyzed a 7.6-m thick sedimentary sequence consisting of loess and sand from the Yarlung Tsangpo River (YTR) valley in the southern TP. The sequence chronology was established using nineteen K-feldspar post-infrared infrared stimulated luminescence (pIRIR) ages, which ranged from 47.11 ± 1.95 to 116.65 ± 5.55 ka in a general stratigraphical order. The dust sedimentation rate and sorting coefficient of grain size were used to reflect dust activity and near-surface wind, respectively. The results indicated that dust activity in the southern TP is mainly regulated by the near-surface wind intensity and follows the variation pattern of precession, although the waxing and waning of mountain glaciers also affect the amplitude of dust activity. This pattern is not consistent with the Greenland dust record, which follows the variation pattern of obliquity. Therefore, dust accumulation in the southern TP is concluded to be primarily controlled by the South Asian winter monsoon (SAWM) forced by precession, whereas dust accumulation in Greenland is closely related to the intensity of the high-level westerlies forced by obliquity.
青藏高原不仅是亚洲的 "水塔",也是全球大气尘埃循环的重要来源。在过去的几十年中,我们对青藏高原现代尘埃活动及其与气候变化的影响和相互作用的认识有了很大的进步,但尘埃在地质时间尺度上的排放、迁移和沉积情况仍不清楚。本研究分析了大洋洲南部雅鲁藏布江(YTR)河谷的一个 7.6 米厚的沉积序列,该序列由黄土和砂土组成。利用 19 个 K 长石红外后激发发光(pIR)年龄建立了序列年代学,这些年龄按一般地层顺序介于 47.11 ± 1.95 ka 至 116.65 ± 5.55 ka 之间。尘埃沉积速率和粒度分选系数分别用来反映尘埃活动和近地表风。结果表明,南部TP地区的沙尘活动主要受近地面风力强弱的调节,并遵循前震变化规律,但山地冰川的消长也会影响沙尘活动的幅度。这一模式与格陵兰岛的尘埃记录不一致,后者遵循的是斜度变化规律。因此,可以得出结论,南部大洋洲的沙尘累积主要受南亚冬季季风的控制,而格陵兰岛的沙尘累积则与高纬度西风的强度密切相关。
{"title":"Changes in Late Pleistocene Dust Activity in the Southern Tibetan Plateau in Response to Orbital Precession and Mountain Glaciers","authors":"Liangqing Cheng, Hao Long, Zhi Zhang, Jingran Zhang, Zhong Chen, Yougui Song, Yubin Wu, Pingcuo Luobu, Linhai Yang, Zhibao Dong","doi":"10.1029/2023JF007615","DOIUrl":"https://doi.org/10.1029/2023JF007615","url":null,"abstract":"<p>The Tibetan Plateau (TP) serves not only as the “water tower” of Asia but also as an important source in the global atmospheric dust cycle. While our knowledge of modern dust activity and its impacts and interactions with climate change in the TP has greatly advanced in the past decades, the emission, transport, and deposition of dust on the geological time scale remains unclear. This study analyzed a 7.6-m thick sedimentary sequence consisting of loess and sand from the Yarlung Tsangpo River (YTR) valley in the southern TP. The sequence chronology was established using nineteen K-feldspar post-infrared infrared stimulated luminescence (pIRIR) ages, which ranged from 47.11 ± 1.95 to 116.65 ± 5.55 ka in a general stratigraphical order. The dust sedimentation rate and sorting coefficient of grain size were used to reflect dust activity and near-surface wind, respectively. The results indicated that dust activity in the southern TP is mainly regulated by the near-surface wind intensity and follows the variation pattern of precession, although the waxing and waning of mountain glaciers also affect the amplitude of dust activity. This pattern is not consistent with the Greenland dust record, which follows the variation pattern of obliquity. Therefore, dust accumulation in the southern TP is concluded to be primarily controlled by the South Asian winter monsoon (SAWM) forced by precession, whereas dust accumulation in Greenland is closely related to the intensity of the high-level westerlies forced by obliquity.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Sedaghatkish, Claudio Pastore, Frédéric Doumenc, Pierre-Yves Jeannin, Marc Luetscher
The present study focuses on heat transfer in ventilated caves for which the airflow is driven by the temperature contrast between the cave and the external atmosphere. We use a numerical model that couples the convective heat transfer due to the airflow in a single karst conduit with the conductive heat transfer in the rock mass. Assuming dry air and a simplified geometry, we investigate the propagation of thermal perturbations inside the karst massif. We perform a parametric study to identify general trends regarding the effect of the air flowrate and conduit size on the amplitude and spatial extent of thermal perturbations. Numerical results support the partition of a cave into three regions: (a) a short (few meters) diffusive region, where heat mainly propagates from the external atmosphere by conduction in the rock mass; (b) a convective region where heat is mainly transported by the air flow; (c) a deep karst region characterized by quasi-constant temperatures throughout the year. Numerical simulations show that the length of the convective region is approximately proportional to the amplitude of the flowrate annual fluctuations divided by the square root of the cave radius. This result is tested against field data from a mine tunnel and two caves. Our study provides first estimates to identify climate sensitive regions for speleothem science and/or ecosystemic studies.
{"title":"Modeling Heat Transfer for Assessing the Convection Length in Ventilated Caves","authors":"Amir Sedaghatkish, Claudio Pastore, Frédéric Doumenc, Pierre-Yves Jeannin, Marc Luetscher","doi":"10.1029/2024JF007646","DOIUrl":"https://doi.org/10.1029/2024JF007646","url":null,"abstract":"<p>The present study focuses on heat transfer in ventilated caves for which the airflow is driven by the temperature contrast between the cave and the external atmosphere. We use a numerical model that couples the convective heat transfer due to the airflow in a single karst conduit with the conductive heat transfer in the rock mass. Assuming dry air and a simplified geometry, we investigate the propagation of thermal perturbations inside the karst massif. We perform a parametric study to identify general trends regarding the effect of the air flowrate and conduit size on the amplitude and spatial extent of thermal perturbations. Numerical results support the partition of a cave into three regions: (a) a short (few meters) diffusive region, where heat mainly propagates from the external atmosphere by conduction in the rock mass; (b) a convective region where heat is mainly transported by the air flow; (c) a deep karst region characterized by quasi-constant temperatures throughout the year. Numerical simulations show that the length of the convective region is approximately proportional to the amplitude of the flowrate annual fluctuations divided by the square root of the cave radius. This result is tested against field data from a mine tunnel and two caves. Our study provides first estimates to identify climate sensitive regions for speleothem science and/or ecosystemic studies.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. P. Li, Y. M. Wu, X. Gao, W. M. Wang, Z. H. Yang, H. J. Liu
Major earthquakes can cause extensive landsliding that poses a major threat to both property and human lives. In addition to co-seismically triggered ground failure, the earthquake-affected region remains vulnerable to landslides due to loosened and unstable materials and structures. Many researchers have studied landslide distributions and their controlling factors after earthquakes, but the function of ground motion is unclear. To investigate the connection in a strike-slip earthquake, we analyzed the 5 September 2022 Luding earthquake (Mw 6.6) in Sichuan Province, China. We interpreted remote-sensing images to obtain the landslide distribution before and after the earthquake, calculated surface deformation from D-InSAR data (pre- and post-earthquake), utilized a point-source model for the focal mechanism inversion, and then constructed a finite fault model for the rupture slip. There are clear differences in the landslide distributions on the two sides of the fault before and after the earthquake. The density of co-seismic landslides on the west side of the fault exceeded that on the east side. The patterns of surface deformation and ground motion indicated that the areas with larger deformation and motion were associated with more landslides. Furthermore, the landslide size decreased with distance from the fault. A new finding is that co-seismic landslides induced by strike-slip earthquakes result in high landslide concentration on both sides of the fault, while previous studies find that co-seismic landslides triggered by thrust earthquakes present a hanging wall concentrated distribution pattern. These findings contribute to a more comprehensive understanding of the connection between ground movement patterns and landslide distributions.
{"title":"The Distribution Pattern of Ground Movement and Co-Seismic Landslides: A Case Study of the 5 September 2022 Luding Earthquake, China","authors":"W. P. Li, Y. M. Wu, X. Gao, W. M. Wang, Z. H. Yang, H. J. Liu","doi":"10.1029/2023JF007534","DOIUrl":"https://doi.org/10.1029/2023JF007534","url":null,"abstract":"<p>Major earthquakes can cause extensive landsliding that poses a major threat to both property and human lives. In addition to co-seismically triggered ground failure, the earthquake-affected region remains vulnerable to landslides due to loosened and unstable materials and structures. Many researchers have studied landslide distributions and their controlling factors after earthquakes, but the function of ground motion is unclear. To investigate the connection in a strike-slip earthquake, we analyzed the 5 September 2022 Luding earthquake (<i>M</i><sub><i>w</i></sub> 6.6) in Sichuan Province, China. We interpreted remote-sensing images to obtain the landslide distribution before and after the earthquake, calculated surface deformation from D-InSAR data (pre- and post-earthquake), utilized a point-source model for the focal mechanism inversion, and then constructed a finite fault model for the rupture slip. There are clear differences in the landslide distributions on the two sides of the fault before and after the earthquake. The density of co-seismic landslides on the west side of the fault exceeded that on the east side. The patterns of surface deformation and ground motion indicated that the areas with larger deformation and motion were associated with more landslides. Furthermore, the landslide size decreased with distance from the fault. A new finding is that co-seismic landslides induced by strike-slip earthquakes result in high landslide concentration on both sides of the fault, while previous studies find that co-seismic landslides triggered by thrust earthquakes present a hanging wall concentrated distribution pattern. These findings contribute to a more comprehensive understanding of the connection between ground movement patterns and landslide distributions.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Zhang, Yuanwei Lin, Nan He, Xin Gao, Bin Yang
Aeolian barchan dunes on Earth and other planets have been widely investigated. Much of the understanding of barchan dune morphodynamics comes from field observations, numerical simulations, and downsized water-tunnel experiments as well. Many of the evolution of barchan dunes in water-tunnel experiments are similar to those of aeolian cases, although they have notable differences in scale, sand particle motion and hydrodynamic characteristics. Here, we first review the literature on the local similarities between aeolian and downsized subaqueous barchan dunes, focusing on (a) dune formation, (b) dune morphology, (c) particle-scale characteristics, and (d) sand/dune emission at horns. A comprehensive description of double-dune interaction modes is then presented to illustrate the local similarity of barchan dune morphodynamics. Specifically, as the interaction mode undergoes a process of “merging-splitting-chasing,” the similarity between the interaction modes of aeolian and downsized subaqueous dunes continuously decreases. Furthermore, we summarize the significance and limitations of downsized water-tunnel experiments for barchan dunes, and highlight the focus for future investigation.
{"title":"Local Similarity Between Aeolian Barchan Dunes and Their Downsized Subaqueous Counterparts","authors":"Yang Zhang, Yuanwei Lin, Nan He, Xin Gao, Bin Yang","doi":"10.1029/2023JF007617","DOIUrl":"https://doi.org/10.1029/2023JF007617","url":null,"abstract":"<p>Aeolian barchan dunes on Earth and other planets have been widely investigated. Much of the understanding of barchan dune morphodynamics comes from field observations, numerical simulations, and downsized water-tunnel experiments as well. Many of the evolution of barchan dunes in water-tunnel experiments are similar to those of aeolian cases, although they have notable differences in scale, sand particle motion and hydrodynamic characteristics. Here, we first review the literature on the local similarities between aeolian and downsized subaqueous barchan dunes, focusing on (a) dune formation, (b) dune morphology, (c) particle-scale characteristics, and (d) sand/dune emission at horns. A comprehensive description of double-dune interaction modes is then presented to illustrate the local similarity of barchan dune morphodynamics. Specifically, as the interaction mode undergoes a process of “merging-splitting-chasing,” the similarity between the interaction modes of aeolian and downsized subaqueous dunes continuously decreases. Furthermore, we summarize the significance and limitations of downsized water-tunnel experiments for barchan dunes, and highlight the focus for future investigation.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SeanPaul M. La Selle, Alan R. Nelson, Robert C. Witter, Bruce E. Jaffe, Guy Gelfenbaum, Jason S. Padgett
The 26 January 1700 CE Cascadia subduction zone earthquake ruptured much of the plate boundary and generated a tsunami that deposited sand in coastal marshes from northern California to Vancouver Island. Although the depositional record of tsunami inundation is extensive in some of these marshes, few sites have been investigated in enough detail to map the inland extent of sand deposition and depict variability in tsunami deposit thickness and grain size. We collected 129 cores in marshes of the Salmon River estuary in Oregon and reanalyzed 114 core logs from a 1987–88 study that mapped the inland extent of circa 1700 CE sandy tsunami deposits. The ca. 1700 CE tsunami deposit in the Salmon River estuary is easily recognized in cores ≤1 m deep in which a buried marsh peat is overlain by a well sorted sand bed with a sharp lower contact that thins and fines inland. We use tsunami deposit data and models of sandy tsunami sediment transport (using Delft3D-FLOW) to test 15 rupture models that could represent a ca. 1700 CE earthquake. At least 12–16 m of slip offshore of the Salmon River, which results in 0.8–1.0 m of coastal coseismic subsidence, is required to match the ca. 1700 CE sand deposit's inland extent, which is consistent with models of heterogeneous megathrust slip in ca. 1700 CE. Our methods of detailed tsunami deposit mapping, combined with sediment transport modeling, can be used to test models of megathrust ruptures and their tsunamis to potentially improve earthquake and tsunami hazard assessments.
{"title":"Testing Megathrust Rupture Models Using Tsunami Deposits","authors":"SeanPaul M. La Selle, Alan R. Nelson, Robert C. Witter, Bruce E. Jaffe, Guy Gelfenbaum, Jason S. Padgett","doi":"10.1029/2023JF007444","DOIUrl":"https://doi.org/10.1029/2023JF007444","url":null,"abstract":"<p>The 26 January 1700 CE Cascadia subduction zone earthquake ruptured much of the plate boundary and generated a tsunami that deposited sand in coastal marshes from northern California to Vancouver Island. Although the depositional record of tsunami inundation is extensive in some of these marshes, few sites have been investigated in enough detail to map the inland extent of sand deposition and depict variability in tsunami deposit thickness and grain size. We collected 129 cores in marshes of the Salmon River estuary in Oregon and reanalyzed 114 core logs from a 1987–88 study that mapped the inland extent of circa 1700 CE sandy tsunami deposits. The ca. 1700 CE tsunami deposit in the Salmon River estuary is easily recognized in cores ≤1 m deep in which a buried marsh peat is overlain by a well sorted sand bed with a sharp lower contact that thins and fines inland. We use tsunami deposit data and models of sandy tsunami sediment transport (using Delft3D-FLOW) to test 15 rupture models that could represent a ca. 1700 CE earthquake. At least 12–16 m of slip offshore of the Salmon River, which results in 0.8–1.0 m of coastal coseismic subsidence, is required to match the ca. 1700 CE sand deposit's inland extent, which is consistent with models of heterogeneous megathrust slip in ca. 1700 CE. Our methods of detailed tsunami deposit mapping, combined with sediment transport modeling, can be used to test models of megathrust ruptures and their tsunamis to potentially improve earthquake and tsunami hazard assessments.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007444","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is considerable interest in developing quantitative methods for analyzing present-day fluvial landscapes with a view to extracting information about tectonic forcing and drainage evolution, together with the influence of lithologic substrates and of paleoclimatic variations. In view of the multifactorial nature of this complex problem, it has previously been proposed that natural geomorphic experiments could play a significant role in developing a quantitative understanding of landscape growth and decay. Here, we describe and analyze a stacked sequence of five buried transient landscapes that punctuate marine strata along the fringes of the North Atlantic Ocean. We propose that these landscapes constitute a suite of natural experiments, which illuminate significant aspects of quantitative fluvial geomorphology. Our preliminary analysis of four of these buried landscapes suggests that the amplitude of external tectonic forcing plays a significant role in fluvial landscape evolution. In future, we hope that this suite of natural experiments will be further exploited by the fluvial community with a view to identifying the most appropriate analytical techniques.
{"title":"The Significance of Ancient Buried Landscapes as Natural Geomorphic Experiments","authors":"B. W. Conway-Jones, N. J. White","doi":"10.1029/2023JF007519","DOIUrl":"https://doi.org/10.1029/2023JF007519","url":null,"abstract":"<p>There is considerable interest in developing quantitative methods for analyzing present-day fluvial landscapes with a view to extracting information about tectonic forcing and drainage evolution, together with the influence of lithologic substrates and of paleoclimatic variations. In view of the multifactorial nature of this complex problem, it has previously been proposed that natural geomorphic experiments could play a significant role in developing a quantitative understanding of landscape growth and decay. Here, we describe and analyze a stacked sequence of five buried transient landscapes that punctuate marine strata along the fringes of the North Atlantic Ocean. We propose that these landscapes constitute a suite of natural experiments, which illuminate significant aspects of quantitative fluvial geomorphology. Our preliminary analysis of four of these buried landscapes suggests that the amplitude of external tectonic forcing plays a significant role in fluvial landscape evolution. In future, we hope that this suite of natural experiments will be further exploited by the fluvial community with a view to identifying the most appropriate analytical techniques.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Lundsten, C. K. Paull, R. Gwiazda, S. Dobbs, D. W. Caress, L. A. Kuhnz, M. Walton, N. Nieminski, M. McGann, T. Lorenson, G. Cochrane, J. Addison
Recent surface ship multibeam surveys of the Sur Pockmark Field, offshore Central California, reveal >5,000 pockmarks in an area that is slated to host a wind farm, between 500- and 1,500-m water depth. Extensive fieldwork was conducted to characterize the seafloor environment and its recent geologic history, including visual observations with remotely operated vehicles, sediment core sampling, and high-resolution, near-bottom Chirp and multibeam surveys collected with autonomous underwater vehicles to capture the morphology and stratigraphy of the pockmarks. No evidence of high methane concentrations in sediments, chemosynthetic biological communities, or methane-derived diagenetic byproducts was found. Chirp data and sediment cores showed alternating layers of slowly accumulating hemipelagic drapes interrupted by more reflective turbidite horizons that extend throughout the pockmark field and beyond. Chirp data showed multiple episodes of lateral migration over time in some of the pockmarks in association with erosion and infilling events. Laterally continuous turbidite horizons that overlay erosional surfaces indicated that pockmark migration occurred synchronously in multiple pockmarks separated by tens of kilometers. These shifts are presumed to be the result of asymmetrical erosion of the pockmark flanks caused by passing sediment gravity flows. While some pockmarks occur in chains, most are not clustered or randomly spaced but are regularly dispersed within the pockmark field. We hypothesize that intermittent, unconfined sediment gravity flows occurring over at least the last 280,000 years are the source of the regionally continuous turbidite deposits and the mechanism that maintained the regularly dispersed pockmarks.
最近对加利福尼亚州中部近海的 Sur Pockmark Field 进行的水面舰艇多波束勘测显示,在水深 500 米至 1,500 米之间的区域内,有 5,000 个麻点,该区域计划建设风力发电场。为了确定海底环境及其近期地质历史的特征,进行了广泛的实地考察,包括使用遥控潜水器进行目视观察、沉积物岩芯取样,以及使用自动潜水器进行高分辨率、近底 Chirp 和多波束测量,以捕捉麻点的形态和地层。没有发现沉积物、化合生物群落或甲烷衍生成岩副产品中甲烷浓度较高的证据。Chirp 数据和沉积物岩芯显示,缓慢堆积的半沉积层交替出现,被反射性更强的浊积层打断,这些浊积层延伸至整个麻子地及其以外的区域。Chirp 数据显示,随着时间的推移,一些麻子坑发生了多次横向迁移,与侵蚀和填充事件有关。覆盖在侵蚀表面的横向连续浊积层表明,麻子的迁移是在相距几十公里的多个麻子中同步进行的。据推测,这些移动是由于经过的沉积重力流对麻子侧翼造成的不对称侵蚀所致。虽然有些麻点成链出现,但大多数麻点并不是成群出现或随机分布的,而是有规律地分散在麻点区域内。我们推测,至少在过去 28 万年中发生的间歇性、无约束的沉积重力流是区域性连续浊积岩沉积的来源,也是维持有规律分散的麻子的机制。
{"title":"Pockmarks Offshore Big Sur, California Provide Evidence for Recurrent, Regional, and Unconfined Sediment Gravity Flows","authors":"E. Lundsten, C. K. Paull, R. Gwiazda, S. Dobbs, D. W. Caress, L. A. Kuhnz, M. Walton, N. Nieminski, M. McGann, T. Lorenson, G. Cochrane, J. Addison","doi":"10.1029/2023JF007374","DOIUrl":"https://doi.org/10.1029/2023JF007374","url":null,"abstract":"<p>Recent surface ship multibeam surveys of the Sur Pockmark Field, offshore Central California, reveal >5,000 pockmarks in an area that is slated to host a wind farm, between 500- and 1,500-m water depth. Extensive fieldwork was conducted to characterize the seafloor environment and its recent geologic history, including visual observations with remotely operated vehicles, sediment core sampling, and high-resolution, near-bottom Chirp and multibeam surveys collected with autonomous underwater vehicles to capture the morphology and stratigraphy of the pockmarks. No evidence of high methane concentrations in sediments, chemosynthetic biological communities, or methane-derived diagenetic byproducts was found. Chirp data and sediment cores showed alternating layers of slowly accumulating hemipelagic drapes interrupted by more reflective turbidite horizons that extend throughout the pockmark field and beyond. Chirp data showed multiple episodes of lateral migration over time in some of the pockmarks in association with erosion and infilling events. Laterally continuous turbidite horizons that overlay erosional surfaces indicated that pockmark migration occurred synchronously in multiple pockmarks separated by tens of kilometers. These shifts are presumed to be the result of asymmetrical erosion of the pockmark flanks caused by passing sediment gravity flows. While some pockmarks occur in chains, most are not clustered or randomly spaced but are regularly dispersed within the pockmark field. We hypothesize that intermittent, unconfined sediment gravity flows occurring over at least the last 280,000 years are the source of the regionally continuous turbidite deposits and the mechanism that maintained the regularly dispersed pockmarks.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao-Sheng Tang, Bo Liu, Farshid Vahedifard, Ning-Jun Jiang, Cheng Zhu, Zheng-Tao Shen, Xiao-Hua Pan, Qing Cheng, Bin Shi
Climatic wetting-drying cycles exacerbated by climate change can trigger several weakening mechanisms in surface soils, potentially leading to instability and failure of slopes and earthen structures. This study proposes a bio-mediated approach based on microbially induced calcite precipitation (MICP) to increase soil resilience to wetting-drying cycles. To explore its viability and the underlying mechanisms, we conducted a series of laboratory tests on clayey soil that underwent six wetting-drying cycles. The tests were conducted with different treatment methods to investigate the effect of treatment sequence and cementation solution concentration. After MICP treatment, the initial evaporation rate, surface crack ratio during drying, and total soil weight loss during rainfall erosion were reduced by up to 32%, 85%, and 90%, respectively. Spraying the cementation solution first in the MICP treatment sequence proves more effective in improving soil water retention capacity. On the other hand, initiating the sequence with the bacterial solution demonstrates a more pronounced effect in reducing soil desiccation cracks and erosion. Microstructure analysis reveals that the content and distribution of CaCO3 precipitation are the major factors controlling the effectiveness of MICP for the cementation of clayey soil. Employing MICP can minimize the carbon footprint and contribute to developing environmentally friendly solutions for soil improvement in regions affected by climatic wetting-drying cycles.
{"title":"Enhancing Soil Resilience to Climatic Wetting-Drying Cycles Through a Bio-Mediated Approach","authors":"Chao-Sheng Tang, Bo Liu, Farshid Vahedifard, Ning-Jun Jiang, Cheng Zhu, Zheng-Tao Shen, Xiao-Hua Pan, Qing Cheng, Bin Shi","doi":"10.1029/2023JF007573","DOIUrl":"https://doi.org/10.1029/2023JF007573","url":null,"abstract":"<p>Climatic wetting-drying cycles exacerbated by climate change can trigger several weakening mechanisms in surface soils, potentially leading to instability and failure of slopes and earthen structures. This study proposes a bio-mediated approach based on microbially induced calcite precipitation (MICP) to increase soil resilience to wetting-drying cycles. To explore its viability and the underlying mechanisms, we conducted a series of laboratory tests on clayey soil that underwent six wetting-drying cycles. The tests were conducted with different treatment methods to investigate the effect of treatment sequence and cementation solution concentration. After MICP treatment, the initial evaporation rate, surface crack ratio during drying, and total soil weight loss during rainfall erosion were reduced by up to 32%, 85%, and 90%, respectively. Spraying the cementation solution first in the MICP treatment sequence proves more effective in improving soil water retention capacity. On the other hand, initiating the sequence with the bacterial solution demonstrates a more pronounced effect in reducing soil desiccation cracks and erosion. Microstructure analysis reveals that the content and distribution of CaCO<sub>3</sub> precipitation are the major factors controlling the effectiveness of MICP for the cementation of clayey soil. Employing MICP can minimize the carbon footprint and contribute to developing environmentally friendly solutions for soil improvement in regions affected by climatic wetting-drying cycles.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barrier islands are highly dynamic coastal landforms that are economically, ecologically, and societally important. Woody vegetation located within barrier island interiors can alter patterns of overwash, leading to periods of periodic-barrier island retreat. Due to the interplay between island interior vegetation and patterns of barrier island migration, it is critical to better understand the factors controlling the presence of woody vegetation on barrier islands. To provide new insight into this topic, we use remote sensing data collected by LiDAR, LANDSAT, and aerial photography to measure shrub presence, coastal dune metrics, and island characteristics (e.g., beach width, island width) for an undeveloped mixed-energy barrier island system in Virginia along the US mid-Atlantic coast. We apply decision tree and random forest machine learning methods to identify new empirical relationships between island geomorphology and shrub presence. We find that shrubs are highly likely (90% likelihood) to be present in areas where dune elevations are above ∼1.9 m and island interior widths are greater than ∼160 m and that shrubs are unlikely (10% likelihood) to be present in areas where island interior widths are less than ∼160 m regardless of dune elevation. Our machine learning predictions are 90% accurate for the Virginia Barrier Islands, with almost half of our incorrect predictions (5% of total transects) being attributable to system hysteresis; shrubs require time to adapt to changing conditions and therefore their growth and removal lags changes in island geomorphology, which can occur more rapidly.
{"title":"Predicting Barrier Island Shrub Presence Using Remote Sensing Products and Machine Learning Techniques","authors":"Benton Franklin, Laura J. Moore, Julie C. Zinnert","doi":"10.1029/2023JF007465","DOIUrl":"10.1029/2023JF007465","url":null,"abstract":"<p>Barrier islands are highly dynamic coastal landforms that are economically, ecologically, and societally important. Woody vegetation located within barrier island interiors can alter patterns of overwash, leading to periods of periodic-barrier island retreat. Due to the interplay between island interior vegetation and patterns of barrier island migration, it is critical to better understand the factors controlling the presence of woody vegetation on barrier islands. To provide new insight into this topic, we use remote sensing data collected by LiDAR, LANDSAT, and aerial photography to measure shrub presence, coastal dune metrics, and island characteristics (e.g., beach width, island width) for an undeveloped mixed-energy barrier island system in Virginia along the US mid-Atlantic coast. We apply decision tree and random forest machine learning methods to identify new empirical relationships between island geomorphology and shrub presence. We find that shrubs are highly likely (90% likelihood) to be present in areas where dune elevations are above ∼1.9 m and island interior widths are greater than ∼160 m and that shrubs are unlikely (10% likelihood) to be present in areas where island interior widths are less than ∼160 m regardless of dune elevation. Our machine learning predictions are 90% accurate for the Virginia Barrier Islands, with almost half of our incorrect predictions (5% of total transects) being attributable to system hysteresis; shrubs require time to adapt to changing conditions and therefore their growth and removal lags changes in island geomorphology, which can occur more rapidly.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141053492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}