首页 > 最新文献

Journal of Ginseng Research最新文献

英文 中文
Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19) 人参和人参皂甙对心血管和肺部疾病的影响;冠状病毒(COVID-19)的药理潜力
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-02 DOI: 10.1016/j.jgr.2023.10.002
Ajay Vijayakumar, Jong-Hoon Kim

Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.

自 2019 年底爆发以来,2019 年冠状病毒病(COVID-19)大流行已在全球范围内造成了严重的发病和死亡。由严重急性呼吸系统综合征冠状病毒-2(SARS-CoV-2)引起的 COVID-19 大流行对心血管和肺部系统造成了严重的并发症。死亡率升高的原因是某些对疾病发展至关重要的生物标志物被延迟检测。此外,细胞信号通路中的某些蛋白质和酶在 SARS-CoV-2 的复制过程中起着重要作用。大多数病例的症状为轻度至中度,但严重的 COVID-19 病例会导致死亡。检测 C 反应蛋白、心肌肌钙蛋白、肌酸激酶、肌酸激酶-MB、降钙素原和基质金属蛋白酶等生物标志物的水平有助于早期发现疾病的严重程度。同样,通过下调肾素-血管紧张素系统、白细胞介素、丝裂原活化蛋白激酶和磷脂酰肌醇 3- 激酶途径,COVID-19 可得到有效控制,并可预防死亡。人参和人参皂苷具有治疗心肺并发症的潜力,有多项研究表明,人参和人参皂苷抑制了这些生物标志物,下调了这些通路,从而抑制了疾病的进一步扩散。补充人参或人参皂苷可以作用于多种途径,显著降低生物标志物的水平,减轻心肺损伤。因此,本综述通过 COVID-19 总结了人参提取物和人参皂苷在控制心血管和肺部疾病方面的潜力。
{"title":"Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19)","authors":"Ajay Vijayakumar,&nbsp;Jong-Hoon Kim","doi":"10.1016/j.jgr.2023.10.002","DOIUrl":"10.1016/j.jgr.2023.10.002","url":null,"abstract":"<div><p>Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 2","pages":"Pages 113-121"},"PeriodicalIF":6.3,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323001471/pdfft?md5=f6d5060b075728d8cb41e982a6c1516f&pid=1-s2.0-S1226845323001471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135326138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense 灰葡萄孢低毒力菌株△BcSpd1诱导的人参防御
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.08.005
Shuhan Zhang , Junyou Han , Ning Liu , Jingyuan Sun , Huchen Chen , Jinglin Xia , Huiyan Ju , Shouan Liu

Background

Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence.

Methods

We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinereaBcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed.

Results

We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth.

Conclusion

B. cinereaBcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.

灰霉病是由灰霉病(Botrytis cinerea)引起的农业真菌病害之一。生物方法比化学杀菌剂更适合用于控制灰霉病,因为它们对环境的毒性较小,并且可以诱导植物对病原体的抗性。在本研究中,我们试图了解低毒真菌菌株△BcSpd1是否能诱导人参对灰绿杆菌的防御。BcSpd1编码调控真菌致病性的Zn(II)2Cys6转录因子,我们最近报道了△BcSpd1突变体降低真菌毒力。方法通过对宿主的转录组学分析,探讨灰芽孢杆菌△BcSpd1对人参的诱导防御反应。采用UPLC-ESI-MS/MS法测定人参黄酮类化合物通路代谢产物,并进行抑菌活性测定。结果△BcSpd1作用于健康人参叶片后,增强了人参的防御反应,并进一步改变了黄酮类化合物的代谢。与未处理植株相比,施用△BcSpd1显著增加了人参叶片对香豆酸和杨梅素的积累,对真菌的生长有抑制作用。cinerea△BcSpd1能有效诱导药用植物防御,是人参病害管理中的生物防治剂。
{"title":"Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense","authors":"Shuhan Zhang ,&nbsp;Junyou Han ,&nbsp;Ning Liu ,&nbsp;Jingyuan Sun ,&nbsp;Huchen Chen ,&nbsp;Jinglin Xia ,&nbsp;Huiyan Ju ,&nbsp;Shouan Liu","doi":"10.1016/j.jgr.2023.08.005","DOIUrl":"10.1016/j.jgr.2023.08.005","url":null,"abstract":"<div><h3>Background</h3><p>Gray mold, caused by <em>Botrytis cinerea</em>, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to <em>B. cinerea</em> could be induced by fungal hypovirulent strain △<em>BcSpd1</em>. <em>BcSpd1</em> encodes Zn(II)<sub>2</sub>Cys<sub>6</sub> transcription factor which regulates fungal pathogenicity and we recently reported △<em>BcSpd1</em> mutants reduced fungal virulence.</p></div><div><h3>Methods</h3><p>We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by <em>B. cinerea</em> △<em>BcSpd1</em>. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed.</p></div><div><h3>Results</h3><p>We found that △<em>BcSpd1</em> enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △<em>BcSpd1</em> on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth.</p></div><div><h3>Conclusion</h3><p><em>B. cinerea</em> △<em>BcSpd1</em> could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 773-783"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323001112/pdfft?md5=467ee89358f54102b157182d8b842366&pid=1-s2.0-S1226845323001112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49547468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive function improvement effects of gintonin-enriched fraction in subjective memory impairment: An assessor- and participant-blinded placebo-controlled study 富含gintonin的部分对主观记忆障碍的认知功能改善作用:一项评估者和参与者的盲法安慰剂对照研究
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.06.005
Rami Lee , Han Sang Lee , Won-Woo Kim , Manho Kim , Seung-Yeol Nah

Background

Gintonin is a new material of ginseng that acts through the ginseng-derived lysophosphatidic acid (LPA) receptor ligand. The gintonin-enriched fraction (GEF) inhibits amyloid plaque accumulation in the cortex and hippocampus, improves cognitive dysfunction by increasing acetylcholine levels, and promoted hippocampal neurogenesis in an animal model of Alzheimer's disease. We evaluated the effect of the GEF on the cognitive performance of subjects with subjective memory impairment (SMI).

Methods

In this eight-week, randomized, assessor- and participant-blinded, placebo-controlled study, participants with SMI were assigned to three groups receiving placebo, GEF 300 mg/day or GEF 600 mg/day. The Korean versions of the Alzheimer's Disease Assessment Scale (K-ADAS), Mini-Mental State Examination (K-MMSE), and Stroop color-word test (K-SCWT) were also evaluated along with the safety profiles.

Results

One hundred thirty-six participants completed the study. After eight weeks, we analyzed intergroup differences in primary or secondary outcome score changes. When we compared the GEF group with the placebo group, we observed significant improvements in the K-ADAS and K-SCWT scores. The GEF group did not show a significant improvement in K-MMSE and BDI scores compared to the placebo group. No adverse events were observed in the gintonin and placebo groups for eight weeks.

Conclusion

The GEF is safe and effective in improving subjective cognitive impairment related to both the K-ADAS and K-SCWT in this study. However, further large-scale and randomized controlled studies are warranted to secure other cognitive function tests besides the K-ADAS and K-SCWT, and to confirm the findings of the current study.

背景银杏素是一种通过人参源溶血磷脂酸(LPA)受体配体起作用的新物质。在阿尔茨海默病动物模型中,富含gintonin的部分(GEF)抑制皮层和海马中的淀粉样斑块积累,通过增加乙酰胆碱水平改善认知功能障碍,并促进海马神经发生。我们评估了GEF对主观记忆障碍(SMI)受试者认知表现的影响。在这项为期8周的随机、评估者和参与者盲法、安慰剂对照研究中,重度精神障碍患者被分为三组,分别接受安慰剂、GEF 300 mg/天或GEF 600 mg/天。韩国版阿尔茨海默病评估量表(K-ADAS)、简易精神状态检查(K-MMSE)和Stroop颜色单词测试(K-SCWT)也与安全性档案一起进行了评估。结果136名参与者完成了这项研究。8周后,我们分析了主要或次要结局评分变化的组间差异。当我们将GEF组与安慰剂组进行比较时,我们观察到K-ADAS和K-SCWT评分有显著改善。与安慰剂组相比,GEF组在K-MMSE和BDI评分方面没有显着改善。在八周的时间里,没有观察到银杏苷组和安慰剂组的不良事件。结论GEF在改善K-ADAS和K-SCWT相关的主观认知功能障碍方面安全有效。然而,除了K-ADAS和K-SCWT之外,还需要进一步的大规模和随机对照研究来确保其他认知功能测试,并证实当前研究的结果。
{"title":"Cognitive function improvement effects of gintonin-enriched fraction in subjective memory impairment: An assessor- and participant-blinded placebo-controlled study","authors":"Rami Lee ,&nbsp;Han Sang Lee ,&nbsp;Won-Woo Kim ,&nbsp;Manho Kim ,&nbsp;Seung-Yeol Nah","doi":"10.1016/j.jgr.2023.06.005","DOIUrl":"10.1016/j.jgr.2023.06.005","url":null,"abstract":"<div><h3>Background</h3><p>Gintonin is a new material of ginseng that acts through the ginseng-derived lysophosphatidic acid (LPA) receptor ligand. The gintonin-enriched fraction (GEF) inhibits amyloid plaque accumulation in the cortex and hippocampus, improves cognitive dysfunction by increasing acetylcholine levels, and promoted hippocampal neurogenesis in an animal model of Alzheimer's disease. We evaluated the effect of the GEF on the cognitive performance of subjects with subjective memory impairment (SMI).</p></div><div><h3>Methods</h3><p>In this eight-week, randomized, assessor- and participant-blinded, placebo-controlled study, participants with SMI were assigned to three groups receiving placebo, GEF 300 mg/day or GEF 600 mg/day. The Korean versions of the Alzheimer's Disease Assessment Scale (K-ADAS), Mini-Mental State Examination (K-MMSE), and Stroop color-word test (K-SCWT) were also evaluated along with the safety profiles.</p></div><div><h3>Results</h3><p>One hundred thirty-six participants completed the study. After eight weeks, we analyzed intergroup differences in primary or secondary outcome score changes. When we compared the GEF group with the placebo group, we observed significant improvements in the K-ADAS and K-SCWT scores. The GEF group did not show a significant improvement in K-MMSE and BDI scores compared to the placebo group. No adverse events were observed in the gintonin and placebo groups for eight weeks.</p></div><div><h3>Conclusion</h3><p>The GEF is safe and effective in improving subjective cognitive impairment related to both the K-ADAS and K-SCWT in this study. However, further large-scale and randomized controlled studies are warranted to secure other cognitive function tests besides the K-ADAS and K-SCWT, and to confirm the findings of the current study.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 735-742"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000714/pdfft?md5=d2b3918bb8b69c816e94269665a32893&pid=1-s2.0-S1226845323000714-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47178326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Letter to Editor: Antiviral activities of ginseng and its potential benefit against monkeypox virus: A mini review 给编辑的信:人参的抗病毒活性及其对猴痘病毒的潜在益处:一个小综述
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.08.004
Zubair Ahmed Ratan , Rajib Chandra Das , Jae Youl Cho
{"title":"Letter to Editor: Antiviral activities of ginseng and its potential benefit against monkeypox virus: A mini review","authors":"Zubair Ahmed Ratan ,&nbsp;Rajib Chandra Das ,&nbsp;Jae Youl Cho","doi":"10.1016/j.jgr.2023.08.004","DOIUrl":"10.1016/j.jgr.2023.08.004","url":null,"abstract":"","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Page 686"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323001100/pdfft?md5=0f0de5524f27ced1a65121a631dac186&pid=1-s2.0-S1226845323001100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45176196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx 蒸参纯化提取物通过介导小窝蛋白-1磷酸化的钙内流保护心肌细胞免受缺血性损伤
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.07.003
Hai-Xia Li , Yan Ma , Yu-Xiao Yan , Xin-Ke Zhai , Meng-Yu Xin , Tian Wang , Dong-Cao Xu , Yu-Tong Song , Chun-Dong Song , Cheng-Xue Pan

Background

Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model.

Methods

PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured.

Results

EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG.

Conclusions

Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

caveolin-1是富含胆固醇内陷的支架蛋白,在储存操作的Ca2+内流中起重要作用,其Tyr14位点磷酸化(p-caveolin-1)对动员保护心肌缺血(MI)损伤至关重要。SOCE包括STIM1、ORAI1和TRPC1,有助于心肌细胞内Ca2+ ([Ca2+]i)的积累。蒸参纯化提取物(EPG)可减轻心肌梗死[Ca2+]i超载。因此,本研究的目的是探讨EPG影响p-caveolin-1进一步介导SOCE/[Ca2+]i对新生大鼠心肌细胞和大鼠模型心肌梗死损伤的可能性。方法采用p-caveolin-1抑制剂spp2。分析心肌细胞活力、[Ca2+]i浓度。采用免疫荧光法检测p-caveolin-1和STIM1, RT-PCR和Western blot法检测caveolin-1、STIM1、ORAI1和TRPC1的表达水平。测定LDH、cTnI、BNP的释放量。结果人参皂苷sepg能抑制LDH、cTnI和BNP的释放,并通过抑制Ca2+内流对心肌细胞起到保护作用,占57.96%。EPG可显著减轻心肌梗死面积、心肌细胞凋亡、纤维化和超微结构异常。EPG通过增加p-caveolin-1蛋白,降低ORAI1 mRNA和ORAI1、TRPC1、STIM1蛋白水平负向调控SOCE。更重要的是,p-caveolin-1的抑制显著抑制了EPG的上述心脏保护作用。结论p-caveolin-1磷酸化可能通过增加p-caveolin-1负性调节SOCE/[Ca2+]i参与EPG对心肌梗死的保护作用。
{"title":"The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx","authors":"Hai-Xia Li ,&nbsp;Yan Ma ,&nbsp;Yu-Xiao Yan ,&nbsp;Xin-Ke Zhai ,&nbsp;Meng-Yu Xin ,&nbsp;Tian Wang ,&nbsp;Dong-Cao Xu ,&nbsp;Yu-Tong Song ,&nbsp;Chun-Dong Song ,&nbsp;Cheng-Xue Pan","doi":"10.1016/j.jgr.2023.07.003","DOIUrl":"10.1016/j.jgr.2023.07.003","url":null,"abstract":"<div><h3>Background</h3><p>Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca<sup>2+</sup> influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>i</sub>) accumulation in cardiomyocytes. The purified extract of steamed <em>Panax ginseng</em> (EPG) attenuated [Ca<sup>2+</sup>]<sub>i</sub> overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca<sup>2+</sup>]<sub>i</sub> against MI injury in neonatal rat cardiomyocytes and a rat model.</p></div><div><h3>Methods</h3><p>PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca<sup>2+</sup>]<sub>i</sub> concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured.</p></div><div><h3>Results</h3><p>EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca<sup>2+</sup> influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE <em>via</em> increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG.</p></div><div><h3>Conclusions</h3><p>Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury <em>via</em> increasing p-caveolin-1 to negatively regulate SOCE/[Ca<sup>2+</sup>]<sub>i</sub>.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 755-765"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000775/pdfft?md5=bcb54304c2d1e4cb007c3318a7f5c33c&pid=1-s2.0-S1226845323000775-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46519949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comment on antiviral activities of ginseng and putative benefits against monkeypox virus 人参抗病毒活性及对猴痘病毒的疗效评价
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.07.004
Amnuay Kleebayoon , Viroj Wiwanitkit
{"title":"Comment on antiviral activities of ginseng and putative benefits against monkeypox virus","authors":"Amnuay Kleebayoon ,&nbsp;Viroj Wiwanitkit","doi":"10.1016/j.jgr.2023.07.004","DOIUrl":"10.1016/j.jgr.2023.07.004","url":null,"abstract":"","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Page 685"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000787/pdfft?md5=9921a520c33e9b0335ae3457f71cf0c3&pid=1-s2.0-S1226845323000787-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46308600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review 人参对猴痘病毒的抗病毒活性及其潜在和可能的益处:综述
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.03.002
Rajib Chandra Das , Zubair Ahmed Ratan , Md Mustafizur Rahman , Nusrat Jahan Runa , Susmita Mondal , Konstantin Konstantinov , Hassan Hosseinzadeh , Jae Youl Cho

Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.

由于新冠肺炎大流行,已有600多万人死亡,给我们的生活带来了前所未有的挑战。最近猴痘病毒(MPXV)的爆发在科学界引起了新的紧张局势。目前,MPXV没有特定的治疗方案。一些抗病毒药物、牛痘免疫球蛋白(VIG)和天花疫苗已被用于治疗MPXV。人参是传统药物中比较有名的一种,几千年来一直被用于治疗传染病。它已经显示出很有希望的抗病毒效果。人参可以作为一种潜在的适应原剂,与其他药物和疫苗一起帮助预防MPXV感染。在这篇综述中,我们基于人参的抗病毒活性探讨了人参在MPXV预防中的可能应用。
{"title":"Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review","authors":"Rajib Chandra Das ,&nbsp;Zubair Ahmed Ratan ,&nbsp;Md Mustafizur Rahman ,&nbsp;Nusrat Jahan Runa ,&nbsp;Susmita Mondal ,&nbsp;Konstantin Konstantinov ,&nbsp;Hassan Hosseinzadeh ,&nbsp;Jae Youl Cho","doi":"10.1016/j.jgr.2023.03.002","DOIUrl":"10.1016/j.jgr.2023.03.002","url":null,"abstract":"<div><p>Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 687-693"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells 人参皂苷Rg5通过降低SLC7A11对树突状细胞efferocytosis的负调控,促进糖尿病伤口愈合
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.06.006
Wei Xia , Zongdong Zhu , Song Xiang , Yi Yang

Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms.

Methods

Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies.

Results

Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

背景:人参皂苷Rg5是一种罕见的人参皂苷,已知对糖尿病小鼠有降糖作用。本研究旨在探讨人参皂苷Rg5对Leprdb/db突变体(db/db)小鼠(C57BL/KsJ背景)模型皮肤创面愈合的影响及其机制。方法采用7周龄雄性C57BL/6J、slc7a11敲除小鼠(KO)、同窝野生型小鼠(WT)和db/db小鼠进行体内和离体实验。结果灌胃给药人参皂苷Rg5可显著减轻db/db小鼠创面凋亡细胞丰度,促进皮肤创面愈合。50 μM人参皂苷Rg5处理后,db/db小鼠骨髓源性树突状细胞(bmdc)的efferocytic能力几乎增加了一倍。它还能呈剂量依赖性地降低db/db小鼠损伤区NF-κB p65和SLC7A11的表达。人参皂苷Rg5与SLC7A11物理相互作用,抑制db/db和SLC7A11- wt小鼠BMDCs的胱氨酸摄取和谷氨酸分泌,但对SLC7A11- ko小鼠BMDCs无抑制作用。在BMDCs和传统的1型树突状细胞(cDC1s)中,人参皂苷Rg5减少了它们的糖储存并增强了厌氧糖酵解。糖原磷酸化酶抑制剂CP-91149几乎消除了人参皂苷Rg5的促红细胞增生作用。结论:人参皂苷Rg5可通过物理结合抑制SLC7A11的表达并抑制其活性。这些作用共同减轻了SLC7A11对厌氧糖酵解的负面调节,而厌氧糖酵解促进了树突状细胞的efferocytosis。因此,人参皂苷Rg5具有潜在的辅助治疗试剂,可支持糖尿病足溃疡等创面愈合问题患者。
{"title":"Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells","authors":"Wei Xia ,&nbsp;Zongdong Zhu ,&nbsp;Song Xiang ,&nbsp;Yi Yang","doi":"10.1016/j.jgr.2023.06.006","DOIUrl":"10.1016/j.jgr.2023.06.006","url":null,"abstract":"<div><p>Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the <em>Lepr</em><sup><em>db/db</em></sup> mutant (<em>db/db</em>) mice (C57BL/KsJ background) model and the underlying mechanisms.</p></div><div><h3>Methods</h3><p>Seven-week-old male C57BL/6J, <em>SLC7A11</em>-knockout (KO), the littermate wild-type (WT), and <em>db/db</em> mice were used for <em>in vivo</em> and <em>ex vivo</em> studies.</p></div><div><h3>Results</h3><p>Ginsenoside Rg5 provided through oral gavage in <em>db/db</em> mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from <em>db/db</em> mice. It also reduced NF-κB p65 and <em>SLC7A11</em> expression in the wounded areas of <em>db/db</em> mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from <em>db/db</em> and <em>SLC7A1</em>1-WT mice but not in BMDCs from <em>SLC7A11-</em>KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 784-794"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000726/pdfft?md5=22b32861715ef40999b1d8b10c43661e&pid=1-s2.0-S1226845323000726-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42586187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling 人参皂苷Rg5通过p38MAPK和Akt/mTOR信号通路促进肌肉再生
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.06.004
Ryuni Kim , Jee Won Kim , Hyerim Choi , Ji-Eun Oh , Tae Hyun Kim , Ga-Yeon Go , Sang-Jin Lee , Gyu-Un Bae

Background

Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce.

Methods

To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1).

Results

Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1.

Conclusion

This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

骨骼肌在身体活动和能量代谢中起着关键作用。骨骼肌质量的减少会导致新陈代谢和身体活动方面的问题。目前正在进行研究,通过增加肌肉的质量和再生能力来预防这些疾病。据报道,人参皂苷Rg5具有广泛的药理活性。然而,关于Rg5对肌肉分化和生长影响的研究很少。方法采用诱导C2C12成肌细胞向Rg5分化,免疫印迹、免疫染色和qRT-PCR检测成肌标志物和前肌生成信号(p38MAPK),研究Rg5对成肌的影响。免疫沉淀证实Rg5通过p38MAPK增加了MyoD和E2A之间的相互作用。采用地塞米松诱导C2C12肌管肌萎缩的方法,探讨Rg5对肌质量损失的预防作用。对肌源性标志物、Akt/mTOR蛋白合成信号通路和萎缩相关基因(atrogin1和MuRF1)进行免疫印迹、免疫染色和qRT-PCR检测。结果rg5通过磷酸化p38MAPK和MyoD/E2A异源二聚化促进C2C12成肌细胞分化。此外,Rg5通过磷酸化Akt/mTOR刺激C2C12肌管肥大。Akt磷酸化诱导FoxO3a磷酸化,从而降低Atrogin-1和MuRF1的表达。结论Rg5促进肌肉发生和肥厚,预防地塞米松诱导的肌肉萎缩。据我们所知,这项研究首次表明Rg5促进肌肉再生,并表明Rg5可用于肌肉无力和萎缩的治疗干预,包括癌症恶病质。
{"title":"Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling","authors":"Ryuni Kim ,&nbsp;Jee Won Kim ,&nbsp;Hyerim Choi ,&nbsp;Ji-Eun Oh ,&nbsp;Tae Hyun Kim ,&nbsp;Ga-Yeon Go ,&nbsp;Sang-Jin Lee ,&nbsp;Gyu-Un Bae","doi":"10.1016/j.jgr.2023.06.004","DOIUrl":"10.1016/j.jgr.2023.06.004","url":null,"abstract":"<div><h3>Background</h3><p>Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce.</p></div><div><h3>Methods</h3><p>To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A <em>via</em> p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1).</p></div><div><h3>Results</h3><p>Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy <em>via</em> phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1.</p></div><div><h3>Conclusion</h3><p>This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 726-734"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000702/pdfft?md5=30085717af922d3493fa7dc43b2388fa&pid=1-s2.0-S1226845323000702-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43684553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system 改善人参皂苷口服生物利用度差的方法:预处理、结构修饰、药物联合、微纳米给药等
IF 6.3 2区 医学 Q1 CHEMISTRY, MEDICINAL Pub Date : 2023-11-01 DOI: 10.1016/j.jgr.2023.07.005
Qi-rui Hu , Huan Hong , Zhi-hong Zhang , Hua Feng , Ting Luo , Jing Li , Ze-yuan Deng , Fang Chen

Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.

人参是一种传统的中药,在亚洲被广泛用作滋补品。人参的主要药理活性成分是达玛烷型人参皂苷,已被证明具有抗癌、抗炎、免疫调节、神经保护和代谢调节活性。此外,一些人参皂苷(如Rh2和Rg3)已被开发成营养保健品。然而,由于人参皂苷在细胞中的渗透性差,在人体中的生物利用度低,限制了人参皂苷在临床中的应用。显然,人参皂苷的达玛烷骨架和糖基是造成这些限制的原因。因此,提高人参皂苷的口服生物利用度已成为亟待解决的问题。本文从人参皂苷的结构出发,综述了影响人参皂苷口服生物利用度的因素,介绍了提高人参皂苷口服生物利用度的方法,并对今后提高人参皂苷口服生物利用度的研究方向进行了展望。
{"title":"Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system","authors":"Qi-rui Hu ,&nbsp;Huan Hong ,&nbsp;Zhi-hong Zhang ,&nbsp;Hua Feng ,&nbsp;Ting Luo ,&nbsp;Jing Li ,&nbsp;Ze-yuan Deng ,&nbsp;Fang Chen","doi":"10.1016/j.jgr.2023.07.005","DOIUrl":"10.1016/j.jgr.2023.07.005","url":null,"abstract":"<div><p>Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"47 6","pages":"Pages 694-705"},"PeriodicalIF":6.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000799/pdfft?md5=5e3f00e336bd90bb9e2ed327e2b28ece&pid=1-s2.0-S1226845323000799-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41973593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ginseng Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1