Pub Date : 2024-07-25DOI: 10.1177/1045389x241265155
Liming Zhou, He Zhu, Zhong Zhang, Fei Cheng
Accurate mechanical analysis is essential for reliable utilization of piezoelectric composite materials (PCMs). Isogeometric analysis (IGA) of PCMs (termed PCMIGA) based on the asymptotic homogenization method (AHM) is presented in this study and employed to investigate the static mechanical characteristics of PCMs. PCMIGA provides accurate curve representation and shorter preprocessing time, and thus demonstrates both precision and efficiency. First, AHM is utilized to calculate the effective parameters of PCMs at different volume fractions. Next, these effective parameters are combined with the basic equations and boundary conditions of PCMs to derive equations of PCMIGA based on AHM. Finally, the results from several numerical examples are compared with the reference solution to validate the convergence and precision. PCMIGA is proven to be a reliable and accurate method for analyzing the mechanical properties of PCMs.
{"title":"Electro-mechanical coupling isogeometric analysis of static characteristics in piezoelectric composite materials based on asymptotic homogenization method","authors":"Liming Zhou, He Zhu, Zhong Zhang, Fei Cheng","doi":"10.1177/1045389x241265155","DOIUrl":"https://doi.org/10.1177/1045389x241265155","url":null,"abstract":"Accurate mechanical analysis is essential for reliable utilization of piezoelectric composite materials (PCMs). Isogeometric analysis (IGA) of PCMs (termed PCMIGA) based on the asymptotic homogenization method (AHM) is presented in this study and employed to investigate the static mechanical characteristics of PCMs. PCMIGA provides accurate curve representation and shorter preprocessing time, and thus demonstrates both precision and efficiency. First, AHM is utilized to calculate the effective parameters of PCMs at different volume fractions. Next, these effective parameters are combined with the basic equations and boundary conditions of PCMs to derive equations of PCMIGA based on AHM. Finally, the results from several numerical examples are compared with the reference solution to validate the convergence and precision. PCMIGA is proven to be a reliable and accurate method for analyzing the mechanical properties of PCMs.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"44 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/1045389x241257719
Weijun Li, Kun Lin, Kaifa Wang, Baolin Wang
The vibration responses of a sandwich beam with partially covered by shear thickening fluid (STF) layer under an impact load are investigated. The nonlinear governing equations of the flexural vibration are derived based on extended Hamilton’s principle and are solved by the finite difference method. The model is then validated and used to develop a complete parametric study of partially covered beams with the STF-filled core to properly design and place the STF patch. It is found that, for the first vibration mode, maximum damping, and the smallest change in the natural frequency are achieved when the coverage length of the partial STF patch exceeds 50% and the center of the patch is positioned at 56.25% from the left edge. For the second vibration mode, the coverage length is 37.5% and the center of the patch is located at 75% from the left edge of the beam. Additionally, it has been observed that maintaining a thickness ratio of 0.75 between the constraining layer and the base beam leads to increased damping, while simultaneously minimizing alterations in the natural frequency of the original beam. The results can be used for the structural design of sandwich beams partially covered by STF.
{"title":"Vibration analysis of a partially covered beam with a shear thickening fluid core","authors":"Weijun Li, Kun Lin, Kaifa Wang, Baolin Wang","doi":"10.1177/1045389x241257719","DOIUrl":"https://doi.org/10.1177/1045389x241257719","url":null,"abstract":"The vibration responses of a sandwich beam with partially covered by shear thickening fluid (STF) layer under an impact load are investigated. The nonlinear governing equations of the flexural vibration are derived based on extended Hamilton’s principle and are solved by the finite difference method. The model is then validated and used to develop a complete parametric study of partially covered beams with the STF-filled core to properly design and place the STF patch. It is found that, for the first vibration mode, maximum damping, and the smallest change in the natural frequency are achieved when the coverage length of the partial STF patch exceeds 50% and the center of the patch is positioned at 56.25% from the left edge. For the second vibration mode, the coverage length is 37.5% and the center of the patch is located at 75% from the left edge of the beam. Additionally, it has been observed that maintaining a thickness ratio of 0.75 between the constraining layer and the base beam leads to increased damping, while simultaneously minimizing alterations in the natural frequency of the original beam. The results can be used for the structural design of sandwich beams partially covered by STF.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/1045389x241259371
Taha Ajnada, Yves Bernard, Laurent Daniel
The paper presents the snap-through of a bistable system using piezoelectric (PZ) actuation. The bistable system consists of a pre-buckled beam fixed between two jaws. The bistability and snap-through of the beam are modelled using two approaches. An analytical model is first implemented. The results are compared to a full finite element simulation. These modelling approaches are used to find the optimal positioning of the PZ patches used for switching. The PZ-actuated snap-through is then modelled using both an analytical equivalent moment model and finite element simulations. An experimental validation setup is developed accordingly. The validation addresses all aspects of the modelling: bistability, snap-through and PZ-actuated snap-through. For the latter two configurations were studied, namely a switching actuated by a single PZ patch or by two patches. A remarkable agreement is found between both modelling approaches and experimental measurements. The proposed analytical modelling tool can be used for rapid pre-design of bistable devices. It is for instance shown that a centimetre-scale steel-device with an initial transverse displacement about 1 mm can be switched with a few-Newton force or alternatively with a few hundreds of Volts using a PZ patch.
{"title":"Snap-through of a bistable beam using piezoelectric actuation","authors":"Taha Ajnada, Yves Bernard, Laurent Daniel","doi":"10.1177/1045389x241259371","DOIUrl":"https://doi.org/10.1177/1045389x241259371","url":null,"abstract":"The paper presents the snap-through of a bistable system using piezoelectric (PZ) actuation. The bistable system consists of a pre-buckled beam fixed between two jaws. The bistability and snap-through of the beam are modelled using two approaches. An analytical model is first implemented. The results are compared to a full finite element simulation. These modelling approaches are used to find the optimal positioning of the PZ patches used for switching. The PZ-actuated snap-through is then modelled using both an analytical equivalent moment model and finite element simulations. An experimental validation setup is developed accordingly. The validation addresses all aspects of the modelling: bistability, snap-through and PZ-actuated snap-through. For the latter two configurations were studied, namely a switching actuated by a single PZ patch or by two patches. A remarkable agreement is found between both modelling approaches and experimental measurements. The proposed analytical modelling tool can be used for rapid pre-design of bistable devices. It is for instance shown that a centimetre-scale steel-device with an initial transverse displacement about 1 mm can be switched with a few-Newton force or alternatively with a few hundreds of Volts using a PZ patch.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/1045389x241260976
Maryne Febvre, Jonathan Rodriguez, Simon Chesne, Manuel Collet
Piezoelectric transducers are used within smart structures to create functions such as energy harvesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and instability. The design of the structure becomes more complex with shape optimization and the integration of multiple transducers. Most active vibration control strategies require the tuning of multiple parameters. In addition, the optimization of control methods has to consider experimental uncertainties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever beam. The algorithm is trained to maximize a reward function that represents the objective of vibration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s interaction with the environment. The paper compares DRL tuning strategies with [Formula: see text] and [Formula: see text] norm minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control performance of the different tuning methods on the model and experimental setup.
{"title":"Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam","authors":"Maryne Febvre, Jonathan Rodriguez, Simon Chesne, Manuel Collet","doi":"10.1177/1045389x241260976","DOIUrl":"https://doi.org/10.1177/1045389x241260976","url":null,"abstract":"Piezoelectric transducers are used within smart structures to create functions such as energy harvesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and instability. The design of the structure becomes more complex with shape optimization and the integration of multiple transducers. Most active vibration control strategies require the tuning of multiple parameters. In addition, the optimization of control methods has to consider experimental uncertainties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever beam. The algorithm is trained to maximize a reward function that represents the objective of vibration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s interaction with the environment. The paper compares DRL tuning strategies with [Formula: see text] and [Formula: see text] norm minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control performance of the different tuning methods on the model and experimental setup.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"61 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/1045389x241256830
Nathan Sell, Tom Feehally, Andrew Plummer, Peter Wilson, Jonathan du Bois, Nigel Johnston, Jens Roesner, Andrea De Bartolomeis, Tom Love
Traditional valve-controlled hydraulic cylinders are usually very inefficient due to power loss through the control valve. An efficient alternative architecture is to distribute power electrically rather than hydraulically to a group of cylinders and drive each cylinder via individual servomotor-driven pumps. This arrangement is called electrohydrostatic actuation. Such actuators are currently available for power ratings of several hundred watts or greater, but not in the sub-100 W range. This paper details the design, simulation and testing of a piezopump which is intended to address this gap. The motivation is for aerospace applications, and in particular accessory actuators used in the landing gear system. The 10–100 W range is a high-power output for a piezopump, and to achieve this a novel design using disc-style reed valves was developed to allow pumping frequencies above 1 kHz. These high frequencies necessitated the development of custom power electronics capable of delivering 950 V peak-peak sine wave excitation to a largely capacitive load. Experimental results show that the piezopump is capable of delivering over 30 W of hydraulic power, and at no-load can deliver up to 2 L/min of flow at 1250 Hz. Future development includes a transition to multi-cylinder pumps, and improved reed-valve modelling to improve the accuracy of simulated performance.
传统的阀控液压缸通常效率很低,因为控制阀会造成功率损失。一种高效的替代结构是通过电力而不是液压将动力分配到一组油缸,并通过单独的伺服电机驱动泵来驱动每个油缸。这种安排称为静电流体传动。目前,这种执行器的额定功率为几百瓦或更大,但还没有低于 100 瓦的执行器。本文详细介绍了压电泵的设计、模拟和测试,旨在弥补这一不足。其动机是用于航空航天应用,特别是起落架系统中使用的附件致动器。10-100 W 的功率范围对于压电泵来说是很高的输出功率,为了实现这一目标,我们开发了一种使用圆盘式簧片阀的新颖设计,允许泵送频率超过 1 kHz。由于频率较高,因此有必要开发定制的功率电子器件,以便能够向大电容负载提供峰值为 950 V 的正弦波激励。实验结果表明,压泵能够提供 30 W 以上的液压功率,空载时在 1250 Hz 的频率下可提供高达 2 L/min 的流量。未来的发展包括过渡到多缸泵,以及改进簧片阀建模,以提高模拟性能的准确性。
{"title":"Design and testing of a high power piezo pump for hydraulic actuation","authors":"Nathan Sell, Tom Feehally, Andrew Plummer, Peter Wilson, Jonathan du Bois, Nigel Johnston, Jens Roesner, Andrea De Bartolomeis, Tom Love","doi":"10.1177/1045389x241256830","DOIUrl":"https://doi.org/10.1177/1045389x241256830","url":null,"abstract":"Traditional valve-controlled hydraulic cylinders are usually very inefficient due to power loss through the control valve. An efficient alternative architecture is to distribute power electrically rather than hydraulically to a group of cylinders and drive each cylinder via individual servomotor-driven pumps. This arrangement is called electrohydrostatic actuation. Such actuators are currently available for power ratings of several hundred watts or greater, but not in the sub-100 W range. This paper details the design, simulation and testing of a piezopump which is intended to address this gap. The motivation is for aerospace applications, and in particular accessory actuators used in the landing gear system. The 10–100 W range is a high-power output for a piezopump, and to achieve this a novel design using disc-style reed valves was developed to allow pumping frequencies above 1 kHz. These high frequencies necessitated the development of custom power electronics capable of delivering 950 V peak-peak sine wave excitation to a largely capacitive load. Experimental results show that the piezopump is capable of delivering over 30 W of hydraulic power, and at no-load can deliver up to 2 L/min of flow at 1250 Hz. Future development includes a transition to multi-cylinder pumps, and improved reed-valve modelling to improve the accuracy of simulated performance.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"68 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/1045389x241258417
Kim Thach Tran, Lei Deng, Shida Jin, Haiping Du, Hung Quoc Nguyen, Weihua Li
The inerter emerged as a mechanical analogy to the electrical capacitor, completing the force-current analogy. It operates as a one-port, two terminal device, where the equal and opposite forces at its terminals correlate with the relative acceleration between them. This relationship is governed by ‘inertance’, a quantity that bears the unit of mass, allowing inerters to exert inertial forces. Inerters have gained considerable traction, particularly in vibration control applications. Derived from their passive counterparts, variable inertance inerters enable active control of their inertance through integrated control mechanisms. This work presents the design, modelling and evaluation of a variable inertance inerter prototype dubbed the ‘Variable Inertance Bypass Fluid Inerter’ (VIBFI). An experimental prototype of the concept was designed, constructed and tested. Simultaneously, an effort to develop and validate a mathematical model of the VIBFI is thoroughly documented. Experimental results demonstrate the controllability of performance parameters of the device, including inertance and damping coefficients, through modulating the flow restriction of the bypass channel. The mathematical models derived for the device can serve as an estimate for its performance parameters, though further refinement is required.
{"title":"Design, modelling and evaluation of a variable inertance bypass fluid inerter","authors":"Kim Thach Tran, Lei Deng, Shida Jin, Haiping Du, Hung Quoc Nguyen, Weihua Li","doi":"10.1177/1045389x241258417","DOIUrl":"https://doi.org/10.1177/1045389x241258417","url":null,"abstract":"The inerter emerged as a mechanical analogy to the electrical capacitor, completing the force-current analogy. It operates as a one-port, two terminal device, where the equal and opposite forces at its terminals correlate with the relative acceleration between them. This relationship is governed by ‘inertance’, a quantity that bears the unit of mass, allowing inerters to exert inertial forces. Inerters have gained considerable traction, particularly in vibration control applications. Derived from their passive counterparts, variable inertance inerters enable active control of their inertance through integrated control mechanisms. This work presents the design, modelling and evaluation of a variable inertance inerter prototype dubbed the ‘Variable Inertance Bypass Fluid Inerter’ (VIBFI). An experimental prototype of the concept was designed, constructed and tested. Simultaneously, an effort to develop and validate a mathematical model of the VIBFI is thoroughly documented. Experimental results demonstrate the controllability of performance parameters of the device, including inertance and damping coefficients, through modulating the flow restriction of the bypass channel. The mathematical models derived for the device can serve as an estimate for its performance parameters, though further refinement is required.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"72 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/1045389x241265043
Shida Jin, Zexin Chen, Shuaishuai Sun, Lei Deng, Jian Yang, Haiping Du, Weihua Li
Civil engineering structures are susceptible to collapsing when exposed to severe vibrations. Therefore, it is essential to protect them from undesirable vibrations triggered by natural calamities like earthquakes or strong winds. This paper proposes an innovative semi-active Magnetorheological (MR) inerter system with a compact structure for seismic protection. The inerter system consists of four rubber bearings and the semi-active MR inerter. The inertance of the semi-active MR inerter can be switched according to different working scenarios. This unique operating principle enhances the adaptability of the system. To assess the performance of the proposed inerter system, a scaled three-storey building was constructed following scaling laws. Four scaled earthquake signals with different dominant frequencies were used as ground motion excitations. An inertance switch controller based on short-time Fourier transformation (STFT) methodology was built to determine the desired inertance of the inerter. Both the simulation and experimental results indicated that the proposed semi-active MR inerter system provides superior vibration mitigation capacity over the passive inerter systems. Specifically, the employment of the semi-active MR inerter effectively reduces the acceleration responses of the structures under different seismic excitations.
{"title":"Development of a semi-active MR inerter for seismic protection of civil structures","authors":"Shida Jin, Zexin Chen, Shuaishuai Sun, Lei Deng, Jian Yang, Haiping Du, Weihua Li","doi":"10.1177/1045389x241265043","DOIUrl":"https://doi.org/10.1177/1045389x241265043","url":null,"abstract":"Civil engineering structures are susceptible to collapsing when exposed to severe vibrations. Therefore, it is essential to protect them from undesirable vibrations triggered by natural calamities like earthquakes or strong winds. This paper proposes an innovative semi-active Magnetorheological (MR) inerter system with a compact structure for seismic protection. The inerter system consists of four rubber bearings and the semi-active MR inerter. The inertance of the semi-active MR inerter can be switched according to different working scenarios. This unique operating principle enhances the adaptability of the system. To assess the performance of the proposed inerter system, a scaled three-storey building was constructed following scaling laws. Four scaled earthquake signals with different dominant frequencies were used as ground motion excitations. An inertance switch controller based on short-time Fourier transformation (STFT) methodology was built to determine the desired inertance of the inerter. Both the simulation and experimental results indicated that the proposed semi-active MR inerter system provides superior vibration mitigation capacity over the passive inerter systems. Specifically, the employment of the semi-active MR inerter effectively reduces the acceleration responses of the structures under different seismic excitations.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"40 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1177/1045389x241262609
Zabihulah Zabihi, Morteza Dardel, Alireza Fathi
This work investigates the effectiveness of a shape-memory alloy (SMA) in controlling the instabilities of triangular composite plates under supersonic flow. Lagoudas’ quadratic polynomial hardening theory models the SMA effect. First-order piston theory was used for the aerodynamic modeling, and the reference-temperature method was used for modeling the thermal heating. The buckling and post-buckling behaviors were studied for different boundary conditions with four different layups. In addition, buckling and post-buckling of the composite plate, with and without shape memory alloy wire, has been studied. The effect of SMA wire on aeroelastic instabilities is accurately studied. The embedded SMA wire significantly increased the stability region (postpone divergence and flutter velocities) and buckling temperature. Also, the time responses of the triangular composite plate are determined at different Mach numbers, showing that by increasing the Mach number, the SMA wire can control or decrease the vibration amplitudes.
这项研究探讨了形状记忆合金(SMA)在超音速流动条件下控制三角形复合板不稳定性的有效性。Lagoudas 的二次多项式硬化理论建立了 SMA 效应模型。一阶活塞理论用于空气动力学建模,参考温度法用于热加热建模。研究了四种不同铺层在不同边界条件下的屈曲和屈曲后行为。此外,还研究了有形状记忆合金丝和无形状记忆合金丝复合板的屈曲和后屈曲。还精确研究了 SMA 线对气动弹性不稳定性的影响。嵌入的 SMA 线明显增加了稳定区域(后发散和扑腾速度)和屈曲温度。此外,还测定了三角形复合板在不同马赫数下的时间响应,结果表明通过增加马赫数,SMA 线可以控制或减小振动幅度。
{"title":"Thermo-aeroelastic analysis of triangular composite plate with embedded shape memory alloy at supersonic flow","authors":"Zabihulah Zabihi, Morteza Dardel, Alireza Fathi","doi":"10.1177/1045389x241262609","DOIUrl":"https://doi.org/10.1177/1045389x241262609","url":null,"abstract":"This work investigates the effectiveness of a shape-memory alloy (SMA) in controlling the instabilities of triangular composite plates under supersonic flow. Lagoudas’ quadratic polynomial hardening theory models the SMA effect. First-order piston theory was used for the aerodynamic modeling, and the reference-temperature method was used for modeling the thermal heating. The buckling and post-buckling behaviors were studied for different boundary conditions with four different layups. In addition, buckling and post-buckling of the composite plate, with and without shape memory alloy wire, has been studied. The effect of SMA wire on aeroelastic instabilities is accurately studied. The embedded SMA wire significantly increased the stability region (postpone divergence and flutter velocities) and buckling temperature. Also, the time responses of the triangular composite plate are determined at different Mach numbers, showing that by increasing the Mach number, the SMA wire can control or decrease the vibration amplitudes.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"6 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Researchers in the field of vibration control have shown increasing interest in magneto-rheological dampers (MRDs) in recent years. Conventional flow-mode MRDs typically employ a gas chamber as an accumulator to accommodate volume changes and promote fluid communication. However, this approach introduces manufacturing complexities and raises production costs. To overcome these challenges, we propose a novel configuration for flow-mode MRDs that replaces the accumulator with a structural constraint. This modification leads to a more compact and cost-effective MRD solution suitable for engineering applications. This paper presents an introduction, followed by the configuration and design of the novel MRD for a case study involving a vehicle suspension system. To enhance output performance, we optimize the significant geometry of the damper using the finite element method (FEM), taking into account the damping force, off-state force, and inductive time constant of the damper. Based on the optimal simulation results, we provide a detailed design of the optimized flow-mode MRD without an accumulator for prototype fabrication. To assess the practical performance of the proposed MRD prototype, we conducted experiments on a test rig and engaged in comprehensive discussions based on the obtained results.
{"title":"Design and experimental evaluation of a novel flow-mode magnetorheological damper without accumulator","authors":"Quoc-Duy Bui, Long-Vuong Hoang, Huu-Quan Nguyen, Quoc Hung Nguyen","doi":"10.1177/1045389x241256094","DOIUrl":"https://doi.org/10.1177/1045389x241256094","url":null,"abstract":"Researchers in the field of vibration control have shown increasing interest in magneto-rheological dampers (MRDs) in recent years. Conventional flow-mode MRDs typically employ a gas chamber as an accumulator to accommodate volume changes and promote fluid communication. However, this approach introduces manufacturing complexities and raises production costs. To overcome these challenges, we propose a novel configuration for flow-mode MRDs that replaces the accumulator with a structural constraint. This modification leads to a more compact and cost-effective MRD solution suitable for engineering applications. This paper presents an introduction, followed by the configuration and design of the novel MRD for a case study involving a vehicle suspension system. To enhance output performance, we optimize the significant geometry of the damper using the finite element method (FEM), taking into account the damping force, off-state force, and inductive time constant of the damper. Based on the optimal simulation results, we provide a detailed design of the optimized flow-mode MRD without an accumulator for prototype fabrication. To assess the practical performance of the proposed MRD prototype, we conducted experiments on a test rig and engaged in comprehensive discussions based on the obtained results.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"25 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1177/1045389x241253120
Jun Jian Zhang, Min Qian, Zhi Hua Feng
A novel piezoelectric-hydraulic hybrid actuation system with a half-wave resonator is proposed in this paper to generate high-frequency, high-pressure liquid flow and mechanical output through liquid resonance. The new hybrid actuator is similar to the traditional hybrid actuator, with the main difference being the pump chamber itself. The length of the specially designed pump chamber is greater than that of the traditional pump chamber, which facilitates resonance by virtue of the compliance and inertia of the liquid. Once the excitation frequency approaches the resonant frequency of the liquid in the pump chamber, the pressure in the pump chamber will be higher than that under quasi-static conditions, and the output of the hybrid actuator will benefit from it. The compositional structure and working principle of the new hybrid actuator are presented, and its output performance is experimentally studied. When the voltage is 400 Vp-p and the frequency is approximately 2.44 kHz, the actuator can output a maximum no-load velocity of 5.4 mm/s and a maximum blocking force of 181 N. This strategy verifies the feasibility of using liquid resonance for actuation and realizes high-frequency excitation of the hybrid actuator, which also provides a reference for future research on high-frequency hybrid actuators.
{"title":"Design and research of a piezoelectric-hydraulic hybrid actuation system with a half-wave resonator","authors":"Jun Jian Zhang, Min Qian, Zhi Hua Feng","doi":"10.1177/1045389x241253120","DOIUrl":"https://doi.org/10.1177/1045389x241253120","url":null,"abstract":"A novel piezoelectric-hydraulic hybrid actuation system with a half-wave resonator is proposed in this paper to generate high-frequency, high-pressure liquid flow and mechanical output through liquid resonance. The new hybrid actuator is similar to the traditional hybrid actuator, with the main difference being the pump chamber itself. The length of the specially designed pump chamber is greater than that of the traditional pump chamber, which facilitates resonance by virtue of the compliance and inertia of the liquid. Once the excitation frequency approaches the resonant frequency of the liquid in the pump chamber, the pressure in the pump chamber will be higher than that under quasi-static conditions, and the output of the hybrid actuator will benefit from it. The compositional structure and working principle of the new hybrid actuator are presented, and its output performance is experimentally studied. When the voltage is 400 V<jats:sub>p-p</jats:sub> and the frequency is approximately 2.44 kHz, the actuator can output a maximum no-load velocity of 5.4 mm/s and a maximum blocking force of 181 N. This strategy verifies the feasibility of using liquid resonance for actuation and realizes high-frequency excitation of the hybrid actuator, which also provides a reference for future research on high-frequency hybrid actuators.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"246 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}