To evaluate the bioaccumulation potential of chemicals in fish, a molecular-size descriptor, Dmax aver, has been used as a weight of evidence under the EU REACH. The Dmax aver value, however, is estimated on the basis of 3-D structures of possible stable conformers in a vacuum using OASIS software that requires expertise upon parameter input. We developed a method to calculate the 3-D conformers in water, which is more suitable for bioaccumulation potential evaluation in an aquatic environment, by introducing MD simulation. By examining the relationship of the calculated molecular size of 1665 chemicals with their reported BCF values, we found that 17.1 Å of Dmax aver or 15.6 Å of Dmax min was a threshold of molecular size in water to predict the low bioaccumulation (i.e., BCF<5000) of a chemical. Setting this threshold as a new standard would reduce the number of animal tests without compromising the quality of safety evaluation.
We sought to elucidate the mechanisms underlying the aerobic dechlorination of the persistent organic pollutants hexachlorobenzene (HCB) and pentachlorophenol (PCP). We performed genomic and heterologous expression analyses of dehalogenase genes in Nocardioides sp. PD653, the first bacterium found to be capable of mineralizing HCB via PCP under aerobic conditions. The hcbA1A2A3 and hcbB1B2B3 genes, which were involved in catalysing the aerobic dechlorination of HCB and PCP, respectively, were identified and characterized; they were classified as members of the two-component flavin-diffusible monooxygenase family. This was subsequently verified by biochemical analysis; aerobic dechlorination activity was successfully reconstituted in vitro in the presence of flavin, NADH, the flavin reductase HcbA3, and the HCB monooxygenase HcbA1. These findings will contribute to the implementation of in situ bioremediation of HCB- or PCP-contaminated sites, as well as to a better understanding of bacterial evolution apropos their ability to degrade heavily chlorinated anthropogenic compounds under aerobic conditions.
Species sensitivity distributions (SSDs) of 38 pesticides with various modes of action were analyzed as a higher-tier ecological effect assessment based on collected acute toxicity data. Then the 5% hazardous concentrations (HC5) based on each SSD were calculated as the predicted no-effect concentrations for aquatic ecosystems. The differences between HC5 and registration criteria were small (within ten-fold) for 35 of the 38 pesticides. However, there were more than ten-fold differences for a fungicide and two herbicides. These results suggest that the current effect assessment scheme could underestimate the effect of such pesticides. This could be caused by differences in sensitivity of specific properties of the mode of action.
RNA-seq data analysis of cigarette beetle (Lasioderma serricorne) strains having different sensitivities to pyrethroids identified sodium channel mutations in strains showing pyrethroid resistance: the T929I and F1534S mutations. These results suggest that reduced sensitivity of the sodium channel confers the pyrethroid resistance of L. serricorne. Results also showed that the F1534S mutation mostly occurred concurrently with the T929I mutation. The functional relation between both mutations for pyrethroid resistance is discussed.
Plants synthesize and accumulate a wide variety of compounds called secondary metabolites. Secondary metabolites serve as chemical barriers to protect plants from pathogens and herbivores. Antimicrobial secondary metabolites are accumulated to prevent pathogen infection. These metabolites are classified into phytoalexins (induced in response to pathogen attack) and phytoanticipins (present prior to pathogen infection). The antimicrobial compounds in the grass family (Poaceae) were studied from the viewpoint of evolution. The studies were performed at three hierarchies, families, genera, and species and include the following: 1) the distribution of benzoxazinoids (Bxs) in the grass family, 2) evolutionary replacement of phytoanticipins from Bxs to hydroxycinnamic acid amide dimers in the genus Hordeum, and 3) chemodiversity of flavonoid and diterpenoid phytoalexins in rice. These studies demonstrated dynamic changes in secondary metabolism during evolution, indicating the adaptation of plants to their environment by repeating scrap-and-build cycles.