γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1β2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (Laodelphax striatellus) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1β2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1β2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the "aromatic box" in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.
{"title":"Structural insights into the interaction between gabazine (SR-95531) and <i>Laodelphax striatellus</i> GABA receptors.","authors":"Yuki Fujie, Genyan Liu, Fumiyo Ozoe, Yoshihisa Ozoe","doi":"10.1584/jpestics.D22-007","DOIUrl":"https://doi.org/10.1584/jpestics.D22-007","url":null,"abstract":"<p><p>γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1β2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (<i>Laodelphax striatellus</i>) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1β2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1β2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the \"aromatic box\" in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"78-85"},"PeriodicalIF":2.4,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/50/d2/jps-47-2-D22-007.PMC9184248.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability to predict the environmental behavior of chemicals precisely is important for realizing more rational regulation. In this study, the bioaccumulation of nine chemicals of different molecular weights absorbed via the intestinal tract was evaluated in fish using the everted gut sac method. The amounts of chemicals that passed through the intestinal membrane after a 24-hr exposure were significantly decreased for chemicals with MW≥548 and Dmax min≥15.8 Å (or Dmax aver≥17.2 Å). These thresholds are consistent with those previously proposed in terms of MW (>800) and molecular size (Dmax min>15.6 Å or Dmax aver>17.1 Å) for the limit of permeable chemicals through the gill membrane. The results show that the same MW and Dmax criteria can be used to predict low bioaccumulation through both the gill membrane and the intestinal tract. These findings are helpful in reducing the need to conduct animal tests in environmental safety studies.
{"title":"Permeability of the fish intestinal membrane to bulky chemicals.","authors":"Chiyoko Miyata, Yoshihide Matoba, Makiko Mukumoto, Yoshiaki Nakagawa, Hisashi Miyagawa","doi":"10.1584/jpestics.D21-055","DOIUrl":"10.1584/jpestics.D21-055","url":null,"abstract":"<p><p>The ability to predict the environmental behavior of chemicals precisely is important for realizing more rational regulation. In this study, the bioaccumulation of nine chemicals of different molecular weights absorbed <i>via</i> the intestinal tract was evaluated in fish using the everted gut sac method. The amounts of chemicals that passed through the intestinal membrane after a 24-hr exposure were significantly decreased for chemicals with MW≥548 and D<sub>max min</sub>≥15.8 Å (or D<sub>max aver</sub>≥17.2 Å). These thresholds are consistent with those previously proposed in terms of MW (>800) and molecular size (D<sub>max min</sub>>15.6 Å or D<sub>max aver</sub>>17.1 Å) for the limit of permeable chemicals through the gill membrane. The results show that the same MW and D<sub>max</sub> criteria can be used to predict low bioaccumulation through both the gill membrane and the intestinal tract. These findings are helpful in reducing the need to conduct animal tests in environmental safety studies.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"86-92"},"PeriodicalIF":1.5,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/11/jps-47-2-D21-055.PMC9184245.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of external factors such as temperature, humidity, pesticide formulation, and pesticide concentration on the contact angle of pesticide droplets on rice leaf surfaces were analyzed. The experiments showed that there were significant differences in the contact angles of droplets on the leaf surfaces under different temperatures and humidity. As the ambient temperature increased, the contact angle first decreased and then increased, reaching a minimum value at 25°C. With a gradual increase in humidity, the contact angle significantly increased and reached a maximum at 100% humidity. Finally, it was concluded that both the formulation and concentration of the pesticide had a significant effect on the contact angle of droplets on rice leaf surfaces. The experiments also illustrated that the effects of the pesticide formulation and concentration on the contact angle were more significant than those of temperature and humidity.
{"title":"Effects of temperature and humidity on the contact angle of pesticide droplets on rice leaf surfaces.","authors":"Jiantao Zhang, Tengyuan Zhou, Jiajun Zeng, Xuanchun Yin, Yubin Lan, Sheng Wen","doi":"10.1584/jpestics.D21-068","DOIUrl":"https://doi.org/10.1584/jpestics.D21-068","url":null,"abstract":"<p><p>The effects of external factors such as temperature, humidity, pesticide formulation, and pesticide concentration on the contact angle of pesticide droplets on rice leaf surfaces were analyzed. The experiments showed that there were significant differences in the contact angles of droplets on the leaf surfaces under different temperatures and humidity. As the ambient temperature increased, the contact angle first decreased and then increased, reaching a minimum value at 25°C. With a gradual increase in humidity, the contact angle significantly increased and reached a maximum at 100% humidity. Finally, it was concluded that both the formulation and concentration of the pesticide had a significant effect on the contact angle of droplets on rice leaf surfaces. The experiments also illustrated that the effects of the pesticide formulation and concentration on the contact angle were more significant than those of temperature and humidity.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"59-68"},"PeriodicalIF":2.4,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c1/b1/jps-47-2-D21-068.PMC9184250.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-20DOI: 10.1584/jpestics.D22-012
Samuel Cruz-Esteban, Irais Brito-Bonifacio, David Estrada-Valencia, Edith Garay-Serrano
Orius insidiosus, known as the pirate bug, is widely distributed throughout the Americas. It is employed for the biological control of Frankliniella occidentalis in organic berry crops in Mexico. In conventional crops, spinosad is the main control method for this pest. The LD50 of spinosad on O. insidiosus was determined. In addition, we monitored the population density of F. occidentalis in blackberry crops under two types of management (biochemical+mass trapping, and biological control). The LD50 was 225.65 ppm 3.8 times greater than the 60 ppm dose commonly used in blackberry crops. Both types of control are efficient; however, spinosad is less effective and should be combined with other environmentally friendly strategies. The possibility of combining chromatic traps+spinosad application and chromatic traps+strategic release of O. insidiosus to effectively control thrips without compromising fruit quality is discussed.
{"title":"Mortality of <i>Orius insidiosus</i> by contact with spinosad in the laboratory as well as in the field and a perspective of these as controllers of <i>Frankliniella occidentalis</i>.","authors":"Samuel Cruz-Esteban, Irais Brito-Bonifacio, David Estrada-Valencia, Edith Garay-Serrano","doi":"10.1584/jpestics.D22-012","DOIUrl":"https://doi.org/10.1584/jpestics.D22-012","url":null,"abstract":"<p><p><i>Orius insidiosus</i>, known as the pirate bug, is widely distributed throughout the Americas. It is employed for the biological control of <i>Frankliniella occidentalis</i> in organic berry crops in Mexico. In conventional crops, spinosad is the main control method for this pest. The LD<sub>50</sub> of spinosad on <i>O. insidiosus</i> was determined. In addition, we monitored the population density of <i>F. occidentalis</i> in blackberry crops under two types of management (biochemical+mass trapping, and biological control). The LD<sub>50</sub> was 225.65 ppm 3.8 times greater than the 60 ppm dose commonly used in blackberry crops. Both types of control are efficient; however, spinosad is less effective and should be combined with other environmentally friendly strategies. The possibility of combining chromatic traps+spinosad application and chromatic traps+strategic release of <i>O. insidiosus</i> to effectively control thrips without compromising fruit quality is discussed.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"93-99"},"PeriodicalIF":2.4,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/eb/jps-47-2-D22-012.PMC9184249.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, Methanosarcina spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.
{"title":"Studies on the inhibition of methanogenesis and dechlorination by (4-hydroxyphenyl) chloromethanesulfonate.","authors":"Yudai Hotta, Chizu Yagoshi, Ryo Okazaki, Mitsumasa Ikeda","doi":"10.1584/jpestics.D21-071","DOIUrl":"10.1584/jpestics.D21-071","url":null,"abstract":"<p><p>The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, <i>Methanosarcina</i> spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"69-77"},"PeriodicalIF":1.5,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/73/jps-47-2-D21-071.PMC9184246.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40491929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-20DOI: 10.1584/jpestics.D22-016
Takashi Yamamoto
Bacillus thuringiensis (Bt) has been used as sprayable pesticides for many decades. Bt strains utilized in these products produce multiple insecticidal proteins to complement a narrow insect specificity of each protein. In the late 1990s, genes encoding Bt insecticidal proteins were expressed in crop plants such as cotton and corn to protect these crops from insect damage. The first Bt protein used in transgenic cotton was Cry1Ac to control Heliothis virescens (tobacco budworm). Cry1Ab was applied to corn to control Ostrinia nubilalis (European corn borer). Since these insects have developed resistance to Cry1Ac and Cry1Ab, new Bt proteins are required to overcome the resistance. In order to protect corn furthermore, it is desired to control Diabrotica virgifera (Western corn rootworm), Helicoverpa zea (corn earworm) and Spodoptera frugiperda (fall armyworm). Recently, many new Bt insecticidal proteins have been discovered, but most of them require protein engineering to meet the high activity standard for commercialization. The engineering process for higher activity necessary for Bt crops is called optimization. The seed industry has been optimizing Bt insecticidal proteins to improve their insecticidal activity. In this review, several optimization projects, which have led to substantial activity increases of Bt insecticidal proteins, are described.
{"title":"Engineering of <i>Bacillus thuringiensis</i> insecticidal proteins.","authors":"Takashi Yamamoto","doi":"10.1584/jpestics.D22-016","DOIUrl":"https://doi.org/10.1584/jpestics.D22-016","url":null,"abstract":"<p><p><i>Bacillus thuringiensis</i> (Bt) has been used as sprayable pesticides for many decades. Bt strains utilized in these products produce multiple insecticidal proteins to complement a narrow insect specificity of each protein. In the late 1990s, genes encoding Bt insecticidal proteins were expressed in crop plants such as cotton and corn to protect these crops from insect damage. The first Bt protein used in transgenic cotton was Cry1Ac to control <i>Heliothis virescens</i> (tobacco budworm). Cry1Ab was applied to corn to control <i>Ostrinia nubilalis</i> (European corn borer). Since these insects have developed resistance to Cry1Ac and Cry1Ab, new Bt proteins are required to overcome the resistance. In order to protect corn furthermore, it is desired to control <i>Diabrotica virgifera</i> (Western corn rootworm), <i>Helicoverpa zea</i> (corn earworm) and <i>Spodoptera frugiperda</i> (fall armyworm). Recently, many new Bt insecticidal proteins have been discovered, but most of them require protein engineering to meet the high activity standard for commercialization. The engineering process for higher activity necessary for Bt crops is called optimization. The seed industry has been optimizing Bt insecticidal proteins to improve their insecticidal activity. In this review, several optimization projects, which have led to substantial activity increases of Bt insecticidal proteins, are described.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 2","pages":"47-58"},"PeriodicalIF":2.4,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/15/jps-47-2-D22-016.PMC9184247.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40580379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-12DOI: 10.1186/s13287-022-02789-0
Ramanaiah Mamillapalli, SiHyun Cho, Levent Mutlu, Hugh S Taylor
Background: Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI.
Methods: Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired t test with Welch's correction used for data analysis between two groups.
Results: Mice with an intact uterus, and hence an endogenous source of UDCs, had a higher survival rate after bilateral ischemic AKI compared to hysterectomized mice. Mice treated with infusion of exogenous UDCs after hysterectomy/AKI had lower serum creatinine levels and higher survival rates compared to controls that did not receive UDCs. Engraftment of labeled UDCs was significantly higher in kidneys of bilateral ischemic AKI mice compared to those that underwent a sham surgery. When unilateral ischemic AKI was induced, higher numbers of UDCs were found in the injured than non-injured kidney. Immunofluorescence staining demonstrated double-positive DsRed/Lotus tetragonolobus agglutinin (LTA) positive cells and DsRed/CD31 positive cells indicating contribution of UDCs in renal tubular and vascular regeneration. Expression of Cxcl12, Bmp2, Bmp4, and Ctnf in renal tissue was significantly higher in the UDCs injection group than the control group.
Conclusions: UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
背景:急性肾损伤(AKI)会导致肾功能突然恶化,破坏新陈代谢、电解质和体液平衡。虽然急性肾损伤的发病率在稳步上升,但目前尚无确切的治疗方案,导致严重的发病率和死亡率。我们评估了子宫衍生多能干细胞在缺血性 AKI 后肾脏再生中的作用:方法:雌性C57BL/6J小鼠被切除子宫,随后受到单侧或双侧肾缺血再灌注损伤。从雌性转基因 DsRed 小鼠子宫中分离出含有子宫干细胞群的子宫衍生细胞(UDCs),然后静脉注射给 AKI 小鼠。DsRed细胞的移植情况通过流式细胞术进行分析,血清肌酐水平则通过比色法测定。UDC标记物和细胞因子标记物的表达分别通过免疫组化和qRT-PCR方法进行分析。采用 Kaplan-Meier 法分析存活时间,两组间的数据分析采用韦尔奇校正的非配对 t 检验:结果:与切除子宫的小鼠相比,子宫完好的小鼠在双侧缺血性 AKI 后存活率更高,因此也是 UDCs 的内源性来源。子宫切除/AKI后输注外源性UDCs的小鼠与未接受UDCs的对照组相比,血清肌酐水平更低,存活率更高。与接受假手术的小鼠相比,标记的 UDCs 在双侧缺血性 AKI 小鼠肾脏中的移植率明显更高。当诱导单侧缺血性 AKI 时,在损伤肾脏中发现的 UDC 数量高于非损伤肾脏。免疫荧光染色显示了DsRed/Lotus tetragonolobus agglutinin(LTA)阳性细胞和DsRed/CD31阳性细胞的双重阳性,表明UDCs在肾小管和血管再生中的作用。UDCs注射组肾脏组织中Cxcl12、Bmp2、Bmp4和Ctnf的表达明显高于对照组:结论:UDCs移植了损伤肾脏,促进了近端肾小管和血管再生,改善了AKI小鼠的肾功能并提高了存活率。注射UDC是治疗AKI的一种很有前景的新疗法。内源性子宫干细胞也可能保护肾功能,这表明子宫和肾脏之间存在一种新的相互作用。我们认为,子宫切除可能会对肾损伤反应产生不利影响。
{"title":"Therapeutic role of uterine-derived stem cells in acute kidney injury.","authors":"Ramanaiah Mamillapalli, SiHyun Cho, Levent Mutlu, Hugh S Taylor","doi":"10.1186/s13287-022-02789-0","DOIUrl":"10.1186/s13287-022-02789-0","url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI.</p><p><strong>Methods: </strong>Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired t test with Welch's correction used for data analysis between two groups.</p><p><strong>Results: </strong>Mice with an intact uterus, and hence an endogenous source of UDCs, had a higher survival rate after bilateral ischemic AKI compared to hysterectomized mice. Mice treated with infusion of exogenous UDCs after hysterectomy/AKI had lower serum creatinine levels and higher survival rates compared to controls that did not receive UDCs. Engraftment of labeled UDCs was significantly higher in kidneys of bilateral ischemic AKI mice compared to those that underwent a sham surgery. When unilateral ischemic AKI was induced, higher numbers of UDCs were found in the injured than non-injured kidney. Immunofluorescence staining demonstrated double-positive DsRed/Lotus tetragonolobus agglutinin (LTA) positive cells and DsRed/CD31 positive cells indicating contribution of UDCs in renal tubular and vascular regeneration. Expression of Cxcl12, Bmp2, Bmp4, and Ctnf in renal tissue was significantly higher in the UDCs injection group than the control group.</p><p><strong>Conclusions: </strong>UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"23 1","pages":"107"},"PeriodicalIF":2.7,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89802099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-20DOI: 10.1584/jpestics.d21-054
T. Nagai, Shunji Yachi, K. Inao
We quantitatively evaluated the cumulative ecological risks from multiple pesticides used in paddy fields in Japan. Moreover, we visualized the temporal and regional variability of those risks for 1990–2010. Considering the region-specific parameters of environmental conditions, region-specific predicted environmental concentrations were estimated at 350 river-flow monitoring sites in Japan. Then the multi-substance potentially affected fraction (msPAF) was calculated as a risk index of multiple pesticides by using the computation tool NIAES-CERAP. The median msPAF values for insecticides and herbicides decreased by 92.4% and 53.1%, respectively, from 1990 to 2010. This substantial reduction in ecological risk was attributed to the development of low-risk pesticides by manufacturers, the efforts of farmers in risk reduction, and tighter regulation by the Japanese government. In particular, the substantial reduction of the ecological risk from insecticides was largely due to the decrease in the use of organophosphorus insecticides.
{"title":"Temporal and regional variability of cumulative ecological risks of pesticides in Japanese river waters for 1990–2010","authors":"T. Nagai, Shunji Yachi, K. Inao","doi":"10.1584/jpestics.d21-054","DOIUrl":"https://doi.org/10.1584/jpestics.d21-054","url":null,"abstract":"We quantitatively evaluated the cumulative ecological risks from multiple pesticides used in paddy fields in Japan. Moreover, we visualized the temporal and regional variability of those risks for 1990–2010. Considering the region-specific parameters of environmental conditions, region-specific predicted environmental concentrations were estimated at 350 river-flow monitoring sites in Japan. Then the multi-substance potentially affected fraction (msPAF) was calculated as a risk index of multiple pesticides by using the computation tool NIAES-CERAP. The median msPAF values for insecticides and herbicides decreased by 92.4% and 53.1%, respectively, from 1990 to 2010. This substantial reduction in ecological risk was attributed to the development of low-risk pesticides by manufacturers, the efforts of farmers in risk reduction, and tighter regulation by the Japanese government. In particular, the substantial reduction of the ecological risk from insecticides was largely due to the decrease in the use of organophosphorus insecticides.","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 1","pages":"22 - 29"},"PeriodicalIF":2.4,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43329865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-20DOI: 10.1584/jpestics.D21-063
Kojiro Kawada, Yasuyuki Sasaki, T. Asami, S. Yajima, S. Ito
Strigolactones (SLs) are carotenoid-derived plant hormones involved in several growth and developmental processes. Also, SLs are allelochemicals that induce the seed germination of root parasitic plants and the hyphal branching of arbuscular mycorrhizal fungi. In this study, to identify novel lead chemicals that inhibit SL biosynthesis, we evaluated the effect of agrochemicals on SL biosynthesis. We found that the diacylhydrazine insect growth regulator, chromafenozide, reduced the endogenous level of 4-deoxyorobanchol (4DO), a major SL in rice. Furthermore, treatment with the same class of insect growth regulator, methoxyfenozide, also resulted in the reduction of 4DO levels in rice root exudates. These results suggest that chromafenozide and methoxyfenozide are novel lead inhibitors of SL biosynthesis.
{"title":"Insect growth regulators with hydrazide moiety inhibit strigolactone biosynthesis in rice","authors":"Kojiro Kawada, Yasuyuki Sasaki, T. Asami, S. Yajima, S. Ito","doi":"10.1584/jpestics.D21-063","DOIUrl":"https://doi.org/10.1584/jpestics.D21-063","url":null,"abstract":"Strigolactones (SLs) are carotenoid-derived plant hormones involved in several growth and developmental processes. Also, SLs are allelochemicals that induce the seed germination of root parasitic plants and the hyphal branching of arbuscular mycorrhizal fungi. In this study, to identify novel lead chemicals that inhibit SL biosynthesis, we evaluated the effect of agrochemicals on SL biosynthesis. We found that the diacylhydrazine insect growth regulator, chromafenozide, reduced the endogenous level of 4-deoxyorobanchol (4DO), a major SL in rice. Furthermore, treatment with the same class of insect growth regulator, methoxyfenozide, also resulted in the reduction of 4DO levels in rice root exudates. These results suggest that chromafenozide and methoxyfenozide are novel lead inhibitors of SL biosynthesis.","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 1","pages":"43 - 46"},"PeriodicalIF":2.4,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47582515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-20DOI: 10.1584/jpestics.D21-061
Nguyen Thi Ngoc Anh, Daisuke Miyaji, Kumiko Osaki-Oka, Tatsuo Saito, A. Ishihara, A. Yajima
We synthesized the proposed structure of an antifungal compound detected in the culture broth of the edible mushroom Hypsizygus marmoreus. Using the Evans aldol and Abiko–Masamune aldol reactions as the key steps, we synthesized all of the stereoisomers of the compound with high stereoselectivity. The GC retention times and the fragmentation patterns in the mass spectra of the synthesized isomers did not match those of the natural product. Therefore, this result may imply that it is necessary to reisolate the natural product and reconsider its structure. All of the synthesized isomers were found to exhibit antifungal activity against the phytopathogenic fungus Alternaria brassicicola. Due to their simple structures, the obtained isomers could be lead compounds for new pesticides.
{"title":"Synthesis and antifungal activity of the proposed structure of a volatile compound isolated from the edible mushroom Hypsizygus marmoreus","authors":"Nguyen Thi Ngoc Anh, Daisuke Miyaji, Kumiko Osaki-Oka, Tatsuo Saito, A. Ishihara, A. Yajima","doi":"10.1584/jpestics.D21-061","DOIUrl":"https://doi.org/10.1584/jpestics.D21-061","url":null,"abstract":"We synthesized the proposed structure of an antifungal compound detected in the culture broth of the edible mushroom Hypsizygus marmoreus. Using the Evans aldol and Abiko–Masamune aldol reactions as the key steps, we synthesized all of the stereoisomers of the compound with high stereoselectivity. The GC retention times and the fragmentation patterns in the mass spectra of the synthesized isomers did not match those of the natural product. Therefore, this result may imply that it is necessary to reisolate the natural product and reconsider its structure. All of the synthesized isomers were found to exhibit antifungal activity against the phytopathogenic fungus Alternaria brassicicola. Due to their simple structures, the obtained isomers could be lead compounds for new pesticides.","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"47 1","pages":"17 - 21"},"PeriodicalIF":2.4,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48956579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}