Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca2+]cyt signalling through phosphorylation. However, Ca2+-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold. We studied the interaction between the calcium and signalling systems of abscisic acid (ABA) at various temperatures. The hormonal state, stress-induced senescence, and expression of important corresponding genes were investigated. We showed that inactivation of the autoinhibitory domain of the modified constitutively active form of AtCPK1 has a positive effect on resistance not only to long-term cold but also to heat. We showed that the constitutively active form of AtCPK1 under nonstressed conditions activated biosynthesis of ABA, but a decrease in ABA content was detected upon heat exposure. On the basis of our results, we can assume that this effect is achieved through the CPK-dependent activation of salicylic acid (SA) signalling. The obtained data shed light on heat-associated molecular processes and support the possibility of using intradomain modifications of CDPK both for comprehensive study of its functional features and as a bioengineering tool.